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Verifying Temporal Data in Geotagged Images via
Sun Azimuth Estimation

Pravin Kakar, Student Member, IEEE and N. Sudha, Senior Member, IEEE

Abstract—Image metadata provides useful information for
applications such as image retrieval, content description and
geolocation. However, it is relatively easy to tamper with this data
using metadata manipulation tools. In this paper, we address the
issue of authenticating the time of capture of an image based on
its geolocation information. By utilizing a novel two-stage shadow
detection process, we are able to estimate the azimuthal direction
of the sun in an image and compare it against a calculated
theoretical value to establish the authenticity of the time of
capture. In case of ambiguous direction estimation from shadows,
we improve an existing method using cues from vertical surfaces
to resolve the ambiguity. The sky is used as a cue to perform
verification in difficult scenarios such as the absence of shadows.
Results are provided which show that our technique is able to
estimate the sun azimuth with good accuracy. Additional results
pertaining to date verification and camera direction estimation
are also provided.

Index Terms—Time of capture, EXIF data, Image forensics

I. INTRODUCTION

IMAGE metadata is a useful source of data about the
content of the image. It helps provide information for

querying image databases, describing the image content and
allowing one to establish the place of capture of the image,
among myriad other uses. There are various formats in which
this metadata may be stored in an image - Exchangeable
Image File Format (EXIF), International Press Telecommuni-
cations Council’s Information Interchange Model (IPTC-IIM)
and Adobe Extensible Metadata Platform (XMP) [1]. These
formats offer different functionalities for different workflows
(image sharing, image copyright management, image process-
ing, etc.) with some overlap. For instance, EXIF provides for
accurate GPS coordinates storage for geolocation purposes,
while a combination of IPTC-IIM and XMP allows for storing
location information in a textual format (country, city, street,
etc.).

In recent years, the number of cameras and smartphones
that include GPS receivers has been growing. This enables
recording the geographical information about the place where
the image was captured, known as geotagging. Alternatively,
information about mobile network coverage or wireless net-
works may be used to supplement or substitute for such
location information. In certain images with distinctive con-
tent, the technique of [2] may be used to estimate the GPS
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coordinates in an unsupervised manner. As mentioned earlier,
this information is stored in the EXIF data in the image, and
so, we only consider this metadata format in the remainder
of this paper. While EXIF data can often provide detailed
information about the image, it is quite easy to tamper with
this data using freely available software packages such as
ExifTool1. Specifically considering geo-temporal data, it may
be possible to verify geographical data visually by comparing
the image content with data from earth-mapping software.
However, visually verifying temporal data is not an easy task
due to factors such as unfamiliarity with the location of capture
of the image, non-uniform spacing of timezones, and periodic
temporal shifts such as those introduced by daylight savings.
How then can one authenticate the time of capture of an
image?

Our work in this paper presents a solution to this problem.
To the best of our knowledge, this is the first ever technique
to ascertain temporal information from a single image. In
particular, by utilizing the geolocation information (latitude
and longitude of the location where the image was cap-
tured along with the orientation of the camera obtained from
the “GPSLatitude”, “GPSLongitude” and “GPSImgDirection”
tags respectively in the EXIF data) and the date of capture,
we are able to calculate the appropriate position of the sun
in the sky relative to the camera. As this position varies with
time, we estimate the direction of the sun from the content of
the image such as shadows and the sky and verify the time
of capture by comparing the closeness of the calculated and
estimated directions.

Our major contributions in this paper are as follows:

• A new technique that uses the sun direction estimate and
other EXIF data to verify time of capture, date of capture
and camera direction of the image.

• A novel two-stage shadow detection technique to estimate
the azimuthal direction of the sun.

• Improvement of an existing method to use vertical sur-
faces in determining the relative sun orientation.

The rest of this paper is organized as follows. In Section
II, we discuss the existing related work in image forensics.
Section III explains our method for estimating the sun azimuth
direction, while Section IV discusses the calculation of the
theoretical position of the sun. In Section V, we discuss the
handling of cases where the estimated sun direction may
be ambiguous or unreliable. We provide results from our
technique in Section VI.

1http://owl.phy.queensu.ca/∼phil/exiftool/
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II. RELATED WORK

Traditional approaches to passive image forensics (e.g.
[3]–[6]) have focused on detecting inconsistencies in image
content in order to detect tampering in images. However, we
are concerned with tampering of image metadata, not image
content. It is entirely possible that the image content is left
untouched, but the metadata is modified, rendering approaches
similar to the above ones to declare the image (based on its
content) as untampered.

Various approaches have been formulated for the purpose
of camera forensics which could ostensibly be used to verify
certain fields in the metadata of an image. Certain methods
(e.g. [7], [8]) use demosaicking methods and sensor noise char-
acteristics to identify source cameras. The authors of [9] use
dust patterns on lenses to identify the lens used for capturing
an image. Camera make, model, and lens characteristics are
often recorded in image metadata. It may be possible to verify
these using the above methods.

Image metadata has also been used directly for image
forensics. The utility of EXIF headers in assisting detection of
cases of child pornography was discussed in [10]. The authors
of [11] use EXIF data along with other cues to identify source
cameras and Photoshopped images. A technique presented in
[12] treats the invariance of EXIF data in many image pro-
cessing programs as a source of noise for camera fingerprint
matching.

To the best of our knowledge, there has not been much
work done in authenticating the temporal data of images,
using image metadata or otherwise. An approach is described
in [13] to estimate the time of creation of an audio or
video recording using the electric network frequency criterion.
Similarly, the authors of [14] use time lapse image sequences
to model the temporal color changes on outdoor surfaces
resulting from variations in sunlight to estimate geo-temporal
information. Such approaches obviously cannot be extended to
single images. The authors of [15] estimate the age of sensor
defects from a database of images taken with the same camera
to establish the date of capture of an image on the scale of
months. Apart from the requirement of multiple images, the
results are too coarse-grained to be useful in determining the
time, rather than the date, of capture of an image.

The crux of our technique is the estimation of the azimuthal
direction of the illuminating source (the sun, in this case).
Within the realm of image forgery detection, approaches in
[16], [17] use lighting inconsistencies to estimate the 2-D and
3-D lighting directions, but require human intervention in the
form of occluding boundary selection or the creation of 3-D
graphics models. Our work is inspired by the technique of
[18] which used manual photogrammetric rectification of cast
shadows, along with other cues, to resolve the issue of the
first person to reach the North Pole. Also, the work of [19]
uses shadows along with sky, vertical surface and pedestrian
cues to estimate the sun elevation and azimuth angle. This
estimate is then used for photorealistic insertion of a 3-D
graphics object in the image. However, for verifying time of
capture, it is sufficient to only know the sun azimuth angle,
which can generally be determined by only using shadows.

We improve the use of the various cues in [19] in our work.

III. SUN AZIMUTH ESTIMATION

The outline of our technique is shown in Fig 1. We first
apply various techniques for segmenting the ground plane,
detecting ground shadows and rectifying the ground plane.
This is followed by measuring the direction of ground shadow
lines in order to estimate the sun azimuth direction. Our pro-
posed method improves the reliability of the ground shadow
detection process, especially in cases where the cast shadows
are thin or weak.

A. Shadow Detection

In order to be able to estimate the sun direction, shadows
provide a strong cue. As many structures in the world stand
vertically on the ground, the shadows cast by these structures
can be used to estimate the direction of the sun [19]. In order
to enable this, the ground shadows need to be detected. Some
approaches do exist for finding illumination source direction
from cast shadows, but suffer from various limitations. The
approaches in [20]–[23] require multiple images and/or human
intervention in order to determine the direction of the illumi-
nation source. The technique in [24] assumes the surface on
which the shadow is cast to be Lambertian, which is not a
valid assumption for many ground textures like soil and grass
[25]. In light of such limitations, we use a two-stage shadow
detection process, detecting ground shadows with a technique
designed specifically for that purpose [26], and applying a new
method developed by us (Section III-A2) in the cases where
this technique fails to detect shadows reliably.

1) Detecting Ground Shadow Lines: We begin by seg-
menting the image into ground, vertical objects and sky
regions using the technique developed in [27]. Following this
segmentation, the technique of [26] is applied to the ground
region in order to localize ground shadows.

Long, straight lines in the shadows are detected using the
method presented in [28]. For a detected shadow edge con-
sisting of pixels (xi, yi), a connected components algorithm
based on the gradient directions of the edge pixels is applied.
Components with a significant length (>5% of image size)
are chosen for further analysis. For the matrix D of the line
support region,

D =

[ ∑
i x̃i

2 ∑
i x̃iỹi∑

i x̃iỹi
∑
i ỹi

2

]
(1)

the eigenvalues λ1 and λ2 are calculated. x̃i = xi − x where
x = 1

n

∑
i xi. ỹi are defined similarly. The ratio λ1

λ2
provides

the quality of fit of the line. If this ratio is above a threshold
proportional to the length of the connected component, the
component is declared to be a line.

In order to determine the angle of the shadow lines on the
ground, metric rectification is performed using information
about the horizon line l∞ in the image and the focal length
fc of the camera as described in [29]. The latter is obtained
from the EXIF data of the image, and the former is chosen
to be halfway between the lowest pixel of the sky segment
and the highest pixel of the ground segment obtained earlier.
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Fig. 1: Flowchart of our technique

This assumption is a useful approximation for most consumer
images. As the horizon line is assumed to be horizontal, the
equation of l∞ only has a y coefficient ly . Solving for the first
component of the imaged circular point I1 = α− iβ in

I21 + 2lyu0I1 + 2lyv0 + l2y(u20 + v20 + f2c ) + 1 = 0 (2)

with (u0, v0) as the image coordinates of the principal point
of the camera, the rectification matrix N is formed as:

N =

 1
β −αβ 0

0 1 0
0 ly 1

 (3)

The detected ground shadow lines are warped according to N
in order to determine their orientations relative to the camera.
The results from various steps of the above process are shown
in Fig 2. In all images in this paper, dashed lines indicate the
estimated horizon line and solid lines indicate detected shadow
lines. All images are taken from the popular photo-sharing
website Flickr2, unless otherwise stated. Note that only the
dominant (most likely) vertical surface segmentation is shown
in Fig 2(b). The segmentation used for determining l∞ consists
of all the possible ground and sky pixels, not just the dominant
ones.

2) Proposed Shadow Detection Technique: In cases where
shadows are very thin or weak, the technique of [26] may fail
to perform reliably. If some shadows, but no shadow lines, are
detected, we apply an intensity-based technique to detect these
thin and weak shadows. First, we convert the image to the
HSV colorspace and examine the ground region’s V-channel
for regions containing shadows. We assume that the ground
surface has regions consisting of three major types of intensity
values - dark regions caused by shadows and occlusions, the
majority of regions being the actual ground surface with its

2http://www.flickr.com

(a) (b)

(c) (d)

Fig. 2: Various steps in determining shadow line orientation. (a)
Original image. (b) Region segmentation. Green = ground, red =
vertical surface, blue = sky. (c) Shadow line detection. Dashed line
indicates the horizon line. (d) Shadow lines after rectification.

inherent intensity and bright regions such as road markings.
Let the set of intensity values of the ground pixels (ig) be
Vg = {ig|0 ≤ ig ≤ 255}. A threshold τ is defined as:

τ =

{
30 if Mo(Vg) > 150
85 otherwise (4)

where Mo is the mode of the set of values. The above values
are determined empirically from a small training set of fifteen
images containing shadows. The images in this dataset are
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(a) (b)

(c) (d)

Fig. 3: Detecting very thin shadows. (a) Original image. (b) Shadow
detection with [26]. (c) Shadow detection with our method. (d)
Shadow line detection.

φs θs
North South

West

Camera Direction

Horizontal Ground Plane

Fig. 4: Sun elevation θs and azimuth φs.

different from the ones used for evaluating our technique in
Section VI. Denoting the τ th percentile element in Vg by igτ ,

ig = igτ ∀ ig > igτ (5)

The reasoning for this is as follows. In the process of de-
tecting shadow edges, higher intensity textures, such as road
markings, can give rise to false positives. By eliminating
higher-intensity pixels (5), we reduce the chance of these
false positives occurring. By analyzing Mo(Vg) (4), we can
compensate for the difference in the inherent intensity of the
surface across materials. Surfaces made of darker material,
with a lower mode, may not have as great a contrast with
shadowed regions as brighter surfaces. By raising τ for lower
modes, we ensure that no shadows are falsely eliminated.

Segmenting using Otsu’s method [30] and performing mor-
phological cleaning, we detect regions where shadows are
likely to lie. Applying a Canny edge detector [31] with the
shadow regions as a mask, we find the shadow boundaries, and
proceed with detecting shadow lines as above. Our method
has a higher likelihood of false positives due to analyzing
only intensity values. Nevertheless, we have found the de-
tected shadows to outweigh the influence of false positives in
practice. An example of a case for using this method is shown
in Fig 3.

B. Estimating Sun Azimuth Direction

The position of the sun is expressed in terms of its elevation
θs and azimuth φs (Fig 4). The elevation of the sun is the

angle it makes with the horizontal ground plane. The azimuth
of the sun is the angle its projection on the ground plane
makes with the line in the camera direction. In the rest of
this paper, we refer to the sun azimuth direction as the sun
direction, for convenience. Mathematically, each shadow line
provides an estimate of the sun direction as follows. Consider
a ground shadow line li ∈ G, where G represents the set of all
ground shadow lines. Let its orientation on the ground plane
after rectification be αi, and the sun direction be φs. Then,
the angle between the shadow line orientation and the sun
direction is

6 (αi, φs) = min{6 (αi, φs), 6 (αi + 180◦, φs)} (6)

For a line li, one does not generally know which end (if any)
of li the object casting the shadow line is located. This gives
rise to the ambiguity in sun direction with two possible values.
The direction estimate of each shadow line li, is modeled as
the maximum of two normal distributions, denoted by N :

P (φs|αi) = max
φs

{N (αi, σ
2
g),N (αi + 180◦, σ2

g)} (7)

where σg reflects the uncertainty in the accuracy of the
estimate. We improve the direction estimation process by ob-
serving that the length of each shadow line plays an important
role in determining the reliability of the direction estimated
through it. A longer shadow line is less likely to be a false
detection resulting from aberrations (potholes on roads, rocky
soil, etc.) on the ground, and so, its estimate is more likely to
be the correct one. Hence, we sum the preferred sun directions
for the shadow lines in a final weighted estimate:

P (φs|G) ∝
∑
li∈G

|li|P (φs|αi) (8)

where |·| denotes length. In comparing the estimated direction
with the theoretical value, we ignore the one which cannot
possibly lie on the sun path, as discussed below. Failing that,
we employ cues from vertical surfaces in the image in order
to pick the likelier direction.

IV. THEORETICAL SUN POSITION CALCULATION

For an observer on the earth’s surface, the sun appears to be
in motion, rising in the east each day, and setting in the west.
However, additional factors make this apparent motion of the
sun far from uniform, adding to the complexity of estimating
time from the sun position or vice versa.

A. Solar Declination
In addition to the east-west motion, the sun also has an

apparent annual motion, resulting from an almost constant tilt
in the earth’s axis of rotation with respect to the plane of
its orbit. As the earth orbits the sun, this constant tilt results
in the path of the sun in the sky moving along the north-
south axis over a year. This annual motion is responsible for
phenomena such as the occurrence of seasons, and manifests
itself in a phenomenon known as declination, denoted by δ.
This is defined as the angular distance of the sun from the
equatorial plane. The absolute value of δ is maximum at the
solstices in June and December, and zero at the equinoxes in
March and September.
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Fig. 5: Polar sun plots for (a) Singapore. (b) Barcelona, Spain. Blue
curves indicate path of sun on the 21st of each month from June to
December. Red curves indicate hourly intervals of equal solar time.
Green line indicates north in an overhead view.

B. Equation of Time

In addition to the declination of the sun, a phenomenon
known as the equation of time, te, causes variations in the
time estimated from the position of the sun. This results from
two contributing factors - the earth’s eccentric orbit around the
sun, and the tilt of the earth’s axis to its orbital plane. As the
earth orbits the sun in an elliptical orbit with an eccentricity
of about 0.017, in accordance with Kepler’s laws of motion,
the speed of the earth varies slightly around its orbit, causing
variation in the position of the sun (ignoring the effect of δ) at
the same time of the day according to a clock. The earth’s axial
tilt not only causes the apparent annual motion, it also causes
day-to-day shifts in the position of the sun, when projected on
to a 2-D surface, to be non-uniform. Tables3 of the values of
δ and te are published by various astronomical organizations.

C. Calculating Sun Position

The position of the sun depends on all the above factors.
Let the apparent path of the sun across the sky lie on the
inner surface of a unit sphere, with the observer on the
earth’s surface at its center. Consider a right-handed Cartesian
coordinate system with the positive x-axis lying along north
on the ground plane. Then, the position of the sun can be
calculated as [32]:

x = sin(δ) cos(θ)− cos(λ) sin(θ) cos(δ) (9)
y = sin(λ) cos(δ) (10)
z = sin(δ) sin(θ) + cos(λ) cos(θ) cos(δ) (11)

where θ is the latitude of the observer’s location on the earth’s
surface, and λ is the sun hour angle, defined as:

λ = (ts − 12) · 15◦ (12)

where ts is the solar time (time according to the sun) in hours
for the given location. It is related to clock time or local time
tl as:

ts = tl − to +
γ

15◦
+ te (13)

where to is the time offset from universal coordinated time
(UTC) due to timezones and daylight savings, and γ is the
longitude of the observer’s location on the earth’s surface.

By considering values of λ for which z > 0 in (11), the
visible path of the sun in the sky for any day and location

3http://freepages.pavilion.net/users/aghelyar/sundat.htm

on the earth can be determined. Polar sun plots for various
locations and days are shown in Fig 5. These plots show the
sun path in an overhead view of the location, with the vertical
upward direction being the viewing direction of the camera.
For Fig 5, this direction is assumed to be north. The sun always
lies along the north-south axis at solar noon, providing a useful
reference for interpreting these plots.

V. POSTPROCESSING

In this section, we examine the cases that generate undesir-
able results in our technique and propose solutions for them.
Specifically, we discuss the cases where the sun azimuth direc-
tion indicates multiple positions on the visible sun path, and
cases where shadows not cast by vertical surfaces introduce
large errors in our technique.

A. Determining Sun Direction from Vertical Surfaces

As discussed in Section III, shadows provide information
about two directions either one of which may correspond to the
sun azimuth direction. However, depending on the location and
time of capture of the image, only one of these time data may
be permissible. We determine the presence of ambiguity by
considering the intersection of both directions as determined
by the shadow estimation process, with the visible sun path. If
there are two intersections, then we resolve the ambiguity by
using cues from the vertical surfaces in the image. Although
this ambiguity can be resolved by asking the user to choose
the correct direction, we avoid human intervention by only
utilizing the content of the image. As an example, an image
captured in the early morning (Fig 6(a)) gives rise to shadows
the direction of which can be caused by multiple positions of
the sun on the given path. However, an image captured closer
to noon (Fig 6(c)) rarely suffers from such issues.

The technique of [27], used earlier to obtain the
ground/vertical surface/sky segmentation, classifies the vertical
surface region of the image into 5 subcategories - front-
facing, left-facing, right-facing, non-planar solid and porous.
Although the first three subcategories are useful for estimating
illumination direction, the vertical surfaces are not always
assigned correctly to these subcategories (Fig 7). The work of
[19] also uses these vertical surface cues for determining the
sun direction. However, we observe that the method attempts
to compute the sun direction from only 3 coarse, and often
unreliable, orientations. Instead, we only utilize the vertical
surface cues to resolve any directional ambiguity that may
exist. This only requires correctly estimating the sun direction
to within ±90◦.

A logistical intensity classifier is used to classify whether
the sun is in front of or behind a surface of a given orientation:

P (6 (βi, φs) < 90◦|bi) =
1

1 + e−(x1+x2bi)
(14)

In the above equation, bi is the mean intensity of the vertical
surface wi ∈ V, i ∈ {front, left, right}. βi is the normal
surface orientation of wi, and x1, x2 are parameters learned
from a database used in [27] with manually labeled sun
azimuth directions. Based on the above classification for each
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(a) (b)

(c) (d)

Fig. 6: Ambiguity in shadow direction. (a) Image containing shadows
with ambiguous direction. (b) Polar plot for (a). (c) Image containing
shadows with unambiguous direction. (d) Polar plot for (c). Red circle
indicates calculated sun position. Solid magenta line indicates correct
direction of sun from shadows; dashed magenta line indicates the
incorrect one. Dashed blue line indicates the sun direction estimate
from vertical surface cues only, where applicable. Black circles
indicate hourly intervals along the green sun path. Straight green
line indicates north.

Fig. 7: Segmentation of vertical surfaces into left-facing, front-facing
and right-facing.

surface orientation, the probability of the sun direction is
determined as:

P (φs|wi) =

{
N (βi, σ

2
w) if (14) ≥ 0.5

N (βi + 180◦, σ2
w) if (14) < 0.5 (15)

where σw is used to equate the fractional mass of the Gaussian
±90◦ in front of wi to the value determined from (14).
Then, the probabilistic directions obtained from the 3 surface
orientations are combined according to:

P (φs|V) ∝
∑
wi∈V

P (φs|wi) (16)

In order to deal with occlusions on the vertical surfaces,
the original technique uses a k-means classifier with k=2 to
pick the brighter intensity. However, while such an intensity
selection procedure works well for uniform surfaces, real-
world surfaces are far from uniform, containing variations in
texture due to windows, different building materials, environ-
mental degradation, etc. Moreover, erroneous segmentation of
the horizontal ground as a vertical surface in some images
further compounds this problem. Therefore, we mitigate this
issue by considering the mean intensity of a surface to be that
of the largest cluster, rather than the brightest cluster. This

(a) (b) (c)

Fig. 8: Using sky cue to verify sun position. (a) Image with poor sun
direction estimate. (b) Polar plot showing probability of sun location
according to sky cue. White indicates maximum probability. (c) Polar
plot with the top 10% probability values overlaid with calculated sun
position (red), likeliest sun position from sky cue (blue), visible sun
path (green) and north indication (straight green line).

ensures that a small bright patch on an otherwise dark vertical
surface does not result in wrong classification. As an example,
this modification allows us to pick the correct sun direction
for the image in Fig 6(a), while the method of [19] fails to do
so.

B. Verification of Sun Position using Sky Modeling

In some cases, the estimated sun azimuth direction may
differ very widely from the calculated value. In theory, this
should be an indicator of inconsistency in the image metadata.
However, we acknowledge that a wrong direction estimate
can also result from shadows cast by horizontal surfaces,
complex-shaped shadows or the complete absence of shadows.
In order to deal with this, we turn to the sky in order to obtain
information about the position of the sun.

By fitting the sky pixel intensities to models generated from
various discretized values of sun elevation and azimuth in [33],
the likely position of the sun in the sky can be found. The
probability of a particular sun elevation θs and azimuth φs is
determined from the sky pixel intensities si ∈ S as follows:

P (θs, φs|S) ∝ exp
( ∑
si∈S

−(si − kg(θs, φs, ui, vi, fc))
2

2σ2
s

)
(17)

where k is a scale factor, g(·) is the sky model of [33], (ui, vi)
are the image coordinates of si, fc is the focal length, and σs
reflects the uncertainty of the model. However, this estimate is
generally quite rough, frequently assigning a high probability
of the sun being located in a quadrant or more of the sky.

The authors of [19] combine this cue with shadow and
vertical surface cues in order to obtain an estimate of the
sun position. However, the sky estimate is usually not robust
enough to give a reliable estimate independently. In the
absence of other cues, instead of determining the sun azimuth
direction and thereby verifying the calculated sun position
according to the closeness of the estimate as we have done
so far, we verify the likelihood of the sun being in a particular
position in the sky, even though we cannot usually obtain an
estimate of the sun position from the sky cue alone.

In order to accomplish this, we perform a simple procedure
for problematic images like the one in Fig 8(a). After generat-
ing the sky probability map (Fig 8(b)), we consider the points
lying above the 90th percentile in the range of probabilities.
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(a) (b)

Fig. 9: Estimating the sun direction by using different cues indepen-
dently. (a) Image. (b) Polar sun plot. Red = calculated sun position,
blue = estimated sun position from shadows, magenta = estimated
sun position from vertical surfaces, amber = estimated sun position
from sky. Black circles indicate hourly intervals along the green sun
path. Straight green line indicates north.

These points correspond to highly likely positions of the sun,
and they do not necessarily form a single cluster (which
is another cause for unreliable estimates). If the calculated
position of the sun lies among these points (Fig 8(c)), then it
is likely that the temporal metadata of the image is reliable.
It is interesting to note that we utilize both the elevation and
azimuth in the verification from the sky cue, thus preventing
the likely regions where the sun may be present from growing
too large.

To sum up, shadow cues alone generally provide much more
accurate estimates of the time of capture than vertical surfaces
or the sky alone. An example of this is shown in Fig 9. We
employ the latter two to resolve any ambiguities that may arise
in estimating the time of capture of the image from shadow
cues alone.

VI. RESULTS

In order to calculate the theoretical position of the sun from
the EXIF data of an image, we process it as follows. The
latitude θ and longitude γ of the location where the image
was captured are obtained from the GPS information in the
EXIF data. The date and time of capture are also present in
the EXIF data, although the timezone information to is often
missing. Hence, we combine information from the GeoNames4

and tz5 databases to find out the timezone and applicability of
daylight savings for the date and location of the image. After
calculating the position of the sun by applying (9)-(13), we
use the camera direction present in the GPS information to
rotate the polar plot so that the overhead view has the camera
direction pointing up. The camera direction may be recorded
with reference to the geographic north pole or the magnetic
north pole. If it is recorded with respect to the latter, then we
compensate for the temporal variation in the earth’s magnetic
field (known as magnetic declination) by employing data from
the World Magnetic Model6.

For convenience, we represent the calculated and estimated
sun directions as φs and φ̂s respectively. We also use ∆φs =
|φs − φ̂s| to denote the absolute error. Similarly, ts, t̂s and
∆ts indicate the above quantities for time of capture.

4http://www.geonames.org/
5http://cs.ucla.edu/∼eggert/tz/tz-link.htm
6http://www.ngdc.noaa.gov/geomag/
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Fig. 11: Performance of proposed technique with variation in (a) Date
of capture. Dotted lines indicate errors with random date of capture.
(b) Latitude of capture. (c) Longitude of capture. Red curves indicate
mean; blue curves indicate median.

A. Verifying Time of Capture

Results obtained by applying our technique to various
images to verify ts are shown in Fig 10. It can be seen that,
knowing the GPS information and date of capture, t̂s is quite
accurate. This is achieved despite simplifying assumptions in
the rectification process. In cases where φ̂s has two possible
values, the ambiguity is resolved by using the vertical surface
cue as discussed in Section V-A.

B. Results on a Database

In order to evaluate the performance of our technique,
we constructed a database of 100 images from consumer
images taken from Flickr. We ensured that the images were
outdoor images, contained geolocation information, and had
discernible shadows. The images have been captured all over
the world, and with various cameras ranging from smartphone
cameras to professional DSLRs. We analyzed the performance
of our technique by introducing a variety of offsets in the day
of capture, and the GPS coordinates of the image. The results
of these operations are shown in Fig 11.

1) Ambiguity in Date of Capture: We first tested our
technique in the presence of ambiguity in the date of capture.
The results for this evaluation are shown in Fig 11(a). With
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(a) (b) (c) (d) (e)

Fig. 10: Verifying time of capture. Top row: Images; Bottom row: Corresponding polar sun plots. Red circle indicates calculated sun position;
Blue circle indicates estimated sun position. Black circles indicate hourly intervals along green sun path. Straight green line indicates north.

no ambiguity, our technique has a mean ∆ts of merely 27.7
minutes and a median ∆ts of 27.3 minutes. It can be seen that
even with an offset of ±45 days (a range of approximately
3 months), the median ∆ts of our technique is only about
37 minutes. The large mean ∆ts with positive offsets is due
to certain outliers. In these outlying cases, with variation
in the visible sun path with the day offset, the multiple
possible φ̂s are reduced to a single (incorrect) φ̂s, as the
correct intersection of φ̂s and the visible sun path is lost.
However, the median ∆ts is robust to such outliers and
displays the efficacy of our technique. In the case that the date
of capture is completely unknown, we tested the performance
of our technique by randomly assigning a date of capture for
each image in our database. The errors from such random
assignment are denoted by the dotted lines in Fig 11(a). As
can be seen, the median ∆ts is only about 38 minutes, whereas
the mean ∆ts is close to 72 minutes due to similar outliers as
above. We observe however that it is often possible to estimate
a rough month of capture from the image content (e.g. from
seasonal environmental changes) and in the case of smartphone
cameras, the date is usually obtained from the mobile network
and is quite accurate.

2) Ambiguity in Latitude of Capture: Next, our technique
is evaluated with variation in the latitude θ of the location
of capture. We add or subtract offsets to |θ|. This allows
positive offsets to move the location away from the equator,
and negative offsets towards it (except for locations close to
the equator, where this may be reversed). The results of this
analysis are shown in Fig 11(b). Note that ∆ts are lower for
negative offsets (moving towards the equator, in general) than
positive offsets. This is because ∆ts along the sun path varies
less for a given ∆φs over a significant part of the day as |θ|
moves closer to the equator. Also, the maximum offset of 15◦

that we tested our technique with corresponds to a distance of
about 1,667 km. Our technique has a ∆ts of less than an hour
even with this large variation in distance around the location
of capture.

3) Ambiguity in Longitude of Capture: Finally, we test our
technique against variation in longitude γ. Any variations in
to that may occur due to a change in γ are ignored. It can

TABLE I: Performance of proposed weighted sum of sun direction
probabilities. All values are in minutes.

Weighted Estimates Equal Estimates
(Proposed) [19]

Mean Error 27.7 32.4
Median Error 27.3 30.1

be seen from Fig 11(c) that apart from close to the correct
longitude, the mean and median ∆ts increase linearly, due to
the γ term in (13).

4) Effect of Length of Shadow Lines: We test the perfor-
mance of our proposed modification in combining the esti-
mated sun azimuth directions obtained from multiple shadow
lines (8). We have weighted the probability estimates of each
shadow line by its length, instead of considering all estimates
equal as in [19]. The results of the experiment are shown in
Table I. As can be seen, considering the length of the shadow
lines improves the combined φ̂s.

5) Sun Orientation Relative to Vertical Surfaces: We also
use our database of images in order to provide evidence for
our proposed idea of using the largest cluster rather than
the brightest cluster in Section V-A. As can be seen from
Table II, the performance with our modification in correctly
determining φ̂s to ∆φs = 90◦ is comparable to that of the
original technique. In our database, out of 100 images, there
are 21 in which φs gives rise to two possible positions of the
sun. When dealing with such images where φ̂s is ambiguous,
using the largest cluster as proposed by us outperforms using
the brightest cluster considerably. Note that such ambiguous
cases are exactly where we are using the vertical surface cue,
rendering the superior performance of our technique even more
relevant.

The reason for the better performance of our technique is as
follows. As mentioned earlier, ambiguity in φ̂s usually arises in
images captured in the early morning or late afternoon. This is
also the time when the sun is closer to the ground. This results
in the horizontal component of sunlight incident normally on a
vertical surface to be greater. As a result, vertical surfaces tend
to be more strongly bright or dark as compared to other times
of the day. In the case of the original technique, a small bright
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TABLE II: Performance of vertical surface cue on database

Incorrect images
Largest cluster Brightest cluster

(Proposed) [19]
All images 41/100 46/100

Ambiguous images 3/21 11/21

(a) (b)

(c)

Fig. 12: Verifying date of capture. (a) Image to be verified. (b) Polar
sun plot for image time of capture and location. Red curve indicates
path of sun at image time of capture over the year. Blue circles
indicate estimated sun positions on sun path. Green straight line
indicates north. (c) Magnified view.

aberration in uniformity on the vertical surface is sufficient to
result in a wrong estimate, whereas we mitigate this effect by
using the largest cluster.

C. Other Applications

In this section, we discuss other possible applications of
our technique. If ts is known, then the date of capture can be
verified. Similarly, if the direction of the camera is unknown,
it may be determined from other parameters.

1) Verifying date of capture: If ts and GPS information
(θ, γ, and camera direction) for an image are known, then
the date when it was captured can be verified, as shown in
Fig 12. The red path, known as an analemma, is obtained by
calculating the sun position at ts over all days of the year. The
characteristic shape of the path is due to the combined effects
of δ and te. By finding the intersection of a line oriented at
φ̂s with the analemma, the dates on which the sun could have
been in that position can be determined.

Up to four dates are obtained by the above intersection
depending on ts and the camera direction. Hence, this method
is suitable for verifying, not determining, the date of capture.
This can find application in legal situations where such infor-
mation needs to be authenticated. For Fig 12, the estimated
dates are May 24 and July 12. The image was captured on
July 9 (according to the EXIF data), which is an error of
merely 3 days. Note that as the sun path is far less variable in
this case as compared to the daily motion, the errors generally
tend to be larger than that for time verification. Nevertheless,

(a) (b)

(c) (d)

(e)

Fig. 13: Determining camera direction. (a) Image with wrong camera
direction in its metadata. (b) Polar sun plot. (c) View of location in
wrong direction. (d) View of location in corrected direction. (e) Sun
probability map according to sky cue for (a). (c) and (d) courtesy of
Google Street View.

in general, our method offers a reliable way of authenticating
the approximate date of capture.

2) Determining camera direction: Standalone and smart-
phone cameras use digital compasses to determine the camera
direction when an image is captured. However, these may not
be reliable in the presence of large metallic objects or when
the camera orientation is varied. If the time and date of capture
of the image, along with its GPS coordinates (θ, γ) are known,
then the correct image direction can be determined.

Consider the image in Fig 13(a). The EXIF data purports the
camera to have been facing a direction 264◦ clockwise from
north. From Fig 13(b), φs (from image metadata) is 8.25◦

from the camera direction, while φ̂s (from image content) is
271◦ from the camera direction, both clockwise. The street
view from the reported camera direction is shown in Fig 13(c).
Applying a counterclockwise correction of (271-8.25)◦ to the
camera direction as calculated by our technique gives a view
as in Fig 13(d) which matches closely to that of the original
image. Such camera direction correction has applications in
areas such as registration of geotagged images and accident
investigations.

It is important to note that an error in the recorded cam-
era direction gives a large error between the estimated and
calculated sun directions, similar to the scenario in Section
V-B. However, the sky probability map (Fig 13(e)) clearly
shows that it is unlikely that the sun could be in the calculated
position, thus rendering an error in φ̂s far less probable.
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TABLE III: Performance of proposed technique in challenging cases.
All values are in minutes.

Case Mean ∆ts Median ∆ts
Non-vertical shadows 155.6 141.5
Tilted horizon line 126.5 108.7
Tilted ground plane 73.3 55.8
Displaced horizon line 70.2 50.8
Unknown focal length 68.7 50.0

D. Discussion

In this section, we discuss the performance of our technique
on certain challenging cases which may sometimes occur.

Fig 14(a) shows that our proposed technique provides an
incorrect φ̂s from shadows when the majority of the cast
shadows are from horizontal objects. Note, however, that ∆φs
is about 90◦ which indicates that our technique works well
apart from the assumption of the vertical nature of the shadow-
casting objects. We tested the performance of our technique
on our database by randomly changing the orientation of each
detected shadow line by up to ±90◦. As seen in the first
row of Table III, the ∆ts is relatively large as the structural
dependence of the shadows is ignored in this case. Minimal
user interaction is likely to suffice in mitigating this issue.

Fig 14(b) presents a case where a horizontal horizon line is a
poor approximation of the actual horizon line. Unsurprisingly,
∆φs is relatively large. For testing on our database, we rotated
each image by a random value of up to ±30◦. As expected,
the values of ∆ts in the second row of Table III are quite
large at close to two hours. We will investigate the handling
of such cases, by possibly analyzing the dominant orientations
of edges in the image, in our future work.

Figs 14(c) and (d) respectively show cases where the ground
surface is not horizontal and where the estimated horizon line
is displaced quite far away (>100 pixels) from the actual
horizon line. Nevertheless, our technique is able to deal with
such problems fairly well, and ∆ts is reasonably low. In our
database, we simulated a tilted ground plane by rotating the
cast ground shadows by a random value of up to ±30◦. For
checking the performance with a displaced horizon line, we
introduced a random error of up to ±200 pixels in the position
of the estimated horizon line. As seen in the third and fourth
rows of Table III, the performance is reasonably good with a
median ∆ts of less than an hour.

Finally, Fig 14(e) presents an example of the performance
of our technique in case of missing fc information. For the
camera used (Sony DSC-HX5V), the range of possible fc
values is 4.25 mm - 42.5 mm. For a non-telephoto image
such as this one, the fc is likely to be at the lower end of this
range. The φ̂s for the two limits of the range, as well as for the
actual fc (5.09 mm) show that our technique performs quite
well even with some ambiguity about the actual fc value. Note
that such ambiguity is usually not an issue for smartphone
cameras which have fixed focal length lenses. In our database,
we randomly changed the fc values of images taken with
variable focal length lenses by up to 10× the fc stated in
the image metadata. Although this can result in a fc greater
than possible with the lens used, our technique performs quite
well as seen in the last row of Table III. The median ∆ts of

our technique is only 50 minutes in this case.

VII. CONCLUSION

Image metadata in the form of EXIF data contains GPS
information about the location where the image was captured
in the case of geotagged images. We use this information
in combination with information about the sun azimuthal
direction determined from shadows in order to verify the
time/date of capture of an image in our work. Also, we are
able to determine the camera direction from the geo-temporal
information present in the image metadata.

We have detected ground shadows using an existing tech-
nique, and applied a novel technique in cases where the
former technique fails. We have estimated the direction of
the sun based on straight ground shadow lines with longer
lines providing stronger estimates. This estimated direction is
then compared against a theoretical value calculated taking
into account solar declination, equation of time and timezone
offset effects.

By comparing the theoretical and estimated directions, we
are able to verify the time of capture of the image quite
accurately. In case of ambiguity in the estimated azimuthal
direction or in the absence of shadows, we have exploited
secondary cues from vertical surfaces and the sky to perform
verification.

We have tested our technique on a database of images,
and shown that it performs effectively even with ambiguity
in the date of capture and the geolocation information of
the image. Additionally, we have provided results showing
the applicability of our method in verifying the date of
capture and determining the camera direction using results
from astronomy.
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