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Abstract 

A theoretical study of the hydraulic jump in a Bingham fluid is presented in this paper. Based on 

the approximation for lubrication theory, the formulae for conjugate depths, sequent bottom 

shear stress and critical depth are established. Due to the absence of an exact solution of the basic 

equations for conjugate depths, an analytical approximation has been developed. This formula is 

shown to provide good results, with a small error of less than 4%. The analytical results have 

revealed that the critical depth and the ratio of conjugate depths increase until the bottom shear 

stress reaches a certain value and decreases above that. Both the critical depth and the ratio of 

conjugate depths have maximum values where the critical flow or the jump is coupled between 

the effects of shear-free and shear regions. Reasonable agreement is achieved between the 

theoretical results and experimental data for conjugate and critical depths. The observation that 

the critical depth increases greatly when the dimensionless yield stress λ≥0.1 in the experiment 

provides further justification for the theoretical approach. 

 

RÉSUMÉ 

Une étude théorique du ressaut hydraulique dans un fluide de Bingham est présentée dans cet 

article. Les formules pour des profondeurs conjuguées, l’effort de cisaillement inférieur résultant 

et la profondeur critique sont établis en partant de l’approximation de la théorie de la 

lubrification,. En raison de l’absence d’une solution exacte des équations de base pour des 

profondeurs conjuguées, une solution analytique a été développée. On montre que cette formule 

donne de bons résultats, avec une petite erreur inférieure à 4%. Les résultats analytiques 

montrent que la profondeur critique et le rapport des profondeurs conjuguées augmentent jusqu’à 

ce que l’effort de cisaillement de fond atteigne une certaine valeur et puis diminuent au-delà. La 

profondeur critique et le rapport des profondeurs conjuguées ont des valeurs maximum quand 

l’écoulement critique ou le ressaut est couplé entre les effets des régions avec et sans 

cisaillement. Un accord raisonnable est réalisé entre les résultats théoriques et les données 

expérimentales pour des profondeurs conjuguées et critiques. L’observation que la profondeur 

critique augmente considérablement quand la contrainte sans dimensions λ≥ 0.1 dans 

l’expérience conforte l’approche théorique. 
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1. Introduction 

In almost five centuries since the hydraulic jump was described by Leonardo da Vinci, there 

have been a large number of papers on hydraulic jumps involving Newtonian fluids, motivated 

by scientific and technical reasons. This includes Bakhmeteff and Matzke (1936), Bidone (1820), 

Chow (1959), Rajaratnam (1967), Sarma and Newnham (1973), Watson (1964), U.S. Bureau of 

Reclamation (1955) and Task Force on Energy Dissipators for Spillways and Outlet Works of 

the Committee on Hydraulic Structures (1964). These studies permitted design charts to be 

prepared which were particularly useful for the design of small stilling basins. The hydraulic 

jump in non-Newtonian fluids has received considerably less attention yet is a necessary first 

step in gradually varied flow analysis. 

      

     The hydraulic jump is an important feature in the flow of mud over a dam. The mud, a 

mixture of water and cohesive clay particles, behaves as an inelastic non-Newtonian fluid. The 

reason for the inelastic non-Newtonian behaviour lies in the chemical cross-links between the 

clay particles. The cross-link formation resists motion as a solid until a yield stress is reached, at 

which point the cross-links are mechanically broken and the mud behaves as a fluid. 

      

     The Bingham fluid is a simple model which is widely used for this type of non-Newtonian 

fluid. In this model the process of the cross-link formation and destruction is instantaneous. Its 

thixotropic tendency has been ignored and the excess deviatoric stress τ over the yield stress    is 

assumed to be a linear function of the strain rate ∂u/∂y, so that (see Fig. 1) 

 

 

(1) 

 

where    is the fluid viscosity. Note that for a Newtonian fluid   = 0. 

      

     Our aim is to seek an adequate mathematical model for the hydraulic jump in a Bingham fluid 

to improve the prediction of prototype performance from physical models and to extend or 

interpret field or laboratory data with non-Newtonian properties. 

 

     Experiments on a hydraulic jump in a Bingham fluid have recently been conducted by 

Ogihara and Miyazawa (1994) using a mixture of water and bentonite which is regarded as a 

Bingham fluid. It was observed that the critical depth increased dramatically when the relative 

yield stress was over 0.1. This phenomenon is not amenable to any current theoretical analysis 

based on Newtonian fluid mechanics. In this paper, the macroscopic description of the jump is 

taken a step forward to describe such non-Newtonian behavior. Formulae for conjugate depths, 



sequent bottom shear stress and critical depth are derived. Theoretical analysis is carried out and 

the solution to the basic equations is compared with experimental data. 

 

 

2. Governing equations 

 

A Bingham fluid is characterized by a yield stress. Only if the driving shear stress is larger than 

the yield stress, can it flow. Otherwise, the Bingham fluid behaves as a shear-free “solid”. Since 

the shear stress decreases towards the channel top or pipe centre, the Bingham fluid becomes 

solid in the upper region of the channel or the centre of the pipe and remains fluid elsewhere, i.e. 

the Bingham fluid in a channel consists of two regions: the shear-free and shear regions. This is 

sketched in Fig. 2. 

 

     The governing equations for the steady flow of a Bingham fluid can be written in vector form 

as 

(2) 

(3) 

(4) 

 

 

where p is the pressure, ρ the density, V the velocity vector, σ the stress tensor, τ the shear stress 

tensor, δ the Kronecker delta, F the external force and ∇ the gradient operator. 

 

     If the Bingham fluid in an open channel is approximated as a two-dimensional half-Poiseuille 

flow with an imposed dimensional pressure gradient in the x direction (see Fig. 2), the analytical 

solution for velocity can be obtained by integrating Eqs (3) and (4) (Liu and Mei, 1989), 

(5) 

 

 

 

where ξ = y/h, λ =   /  ,    is the shear-free velocity (Fig. 2) and   ,  is the shear stress at the 

channel bottom. 

 

     In most situations, the vertical acceleration is small and can be neglected with little loss of 

accuracy. For this reason, Eq. (3) in the y direction can be simplified and be replaced by 

(6) 

 

which is commonly used to approximate the pressure profile in open channel flows. 

 

 



3. Hydraulic jump 

 

Conjugate depths, sequent bottom shear stress and critical depth are of primary importance in 

defining the characteristics of a hydraulic jump. The basic equations for these quantities can be 

established based on the integral continuity and momentum equations, combined with the 

properties of the Bingham fluid. 

 

     By referring to Fig. 3 and using subscripts 1 and 2 to designate quantities upstream and 

downstream of the jump, after applying the integral continuity equation, we have 

(7) 

 

 

where q is the discharge per unit width. 

 

     Substitution of Eq. (5) into the above equation leads to 

(8) 

 

 

     Similarly, after the integral momentum equation is applied, the following equation is obtained 

(9) 

 

 

Incorporation of Eqs (5) and (6) into the above equation results in 

(10) 

 

 

Generally, the flow conditions upstream of the jump are known, i.e.    ,     and     are given. 

The two equations, Eqs (8) and (10), are obviously not sufficient to determine the three 

unknowns    ,     and   . An additional equation must be provided. This comes from the 

definition of shear stress in the Bingham fluid. From the definition in Eq. (1), we obtain 

upstream of the jump, 

(11) 

 

 

Substitution of Eq. (5) into the above equation leads to 

(12) 

 

 

Similarly, we have the following expression downstream of the jump as 

(13) 



      Combining Eqs (12) and (13) results in 

(14) 

 

 

Equations (8), (10) and (14) are the basic equations for the three unknowns    ,     and    in the 

hydraulic jump for the Bingham fluid. 

 

     It should be noted that there are only two unknowns,    ,    for the hydraulic jump in a 

Newtonian fluid. Furthermore it is impossible to obtain an exact solution to the basic equations 

for the Bingham fluid, as will be shown in Section 3.1, except for the critical depth which will be 

described in Section 4. 

 

3.1. Solution to the basic equations 

 

A further mathematical consideration indicates that there is no exact solution to the basic 

equations and an asymptotic solution in one specific situation can be developed. 

     

 Substitution of Eq. (8) into Eq. (10) and Eq. (14), respectively, gives the following pair of 

equations 

(15) 

 

 

(16) 

 

 

where          and         √   , is the Froude number, in which     is the depth-

averaged velocity defined by 

(17) 

 

 

     Combining Eqs (15) and (16) will lead to a polynomial equation of fifth order in terms of 

either η or   . According to algebraic field theory, there are no exact solutions. Numerical 

solutions will be discussed in Section 5. 

 

     The form of Eq. (15) suggests that an asymptotic solution can be derived in the case of η → 1 

as follows. 

     Defining 

 

(18) 

 



Equation (15) becomes 

 

(19) 

 

With reference to Eq. (16),   is a function of η. Thus f(  ) can be expanded in terms of (1 − η) 

by use of Taylor series 

(20) 

 

 

   →   as η→ 1, hence 

 

(21) 

 

According to the chain rule, 

(22) 

 

 

and we have 

 

(23) 

 

Substitution of Eqs (21) and (23) into Eq. (20) yields 

 (24) 

 

 

Therefore, after substitution of Eq. (24) into Eq. (19) and rearrangement, we have 

(25) 

 

 

This can further be simplified as 

(26) 

 

 

By ignoring terms of order (1 − η) and higher, Eq. (26) becomes a quadratic equation 

(27) 

 

Where 

(28) 

 

 



The analytical solution to Eq. (27) is 

(29) 

 

 

     Equation (29) is the approximate formula for the conjugate depths. Theoretically, only under 

the condition that η is close to unity, can it be valid. However, the analysis and discussion in 

Sections 3.2 and 5.3 will indicate that it can also be used for other situations where η is larger 

than unity with a good accuracy. 

 

     After η is obtained through Eq. (29),    and     can be calculated by Eqs (8) and (16), 

respectively. 

 

3.2. Analysis of the solution 

 

The analysis of the solution of Eqs (15) and (16) based on a numerical method will be given in 

Section 5. Here we analyse and discuss the analytical solution (29). 

 

     The solution from Eq. (29) for the hydraulic jump in a Bingham fluid can be extended to two 

extreme cases: the solution for a hydraulic jump in fully-developed Newtonian viscous flow 

when    = 0 or    = 6/5, and that in inviscid flow when   = 1 or     = 1. In the range 0 <    < 1, 

   is a function of   . Mathematical manipulation indicates that     > 1 and there exists one 

maximum value of     , that is       = 1.22 when    = 0.213 or    /     = 0.213.      increases 

with     when 0 ≤   ≤ 0.213 and decreases with    when 0.213 <    ≤ 1. This is shown 

graphically in Fig. 4 noting that   /   = √  
 

   which will be given in Eq. (32) below. 

 

     Thus, for the hydraulic jump in a Bingham fluid, the ratio of depths between downstream and 

upstream is always bigger than that in inviscid flow; it is also bigger than that in fully-developed 

Newtonian viscous flow when 0 ≤  ≤ 0.41, but smaller when    is out of this range. The ratio 

of depths between downstream and upstream reaches the maximum when    = 0.213 as seen in 

Fig. 4. Gajjar and Smith (1983) analysed the process leading to a hydraulic jump in a uniform 

velocity layer with a thin sublayer at its bottom. They showed that the jump results from a 

viscous-inviscid interaction. For a fully-developed Bingham fluid in open channel, the flow in 

shear-free and shear regions can analogously be regarded as within “inviscid” and “viscous” 

layers respectively. The jump is strongly affected by this kind of viscous–inviscid interaction, so 

are the conjugate and the critical depths. Hence, this suggests that the maximum ratio of 

conjugate depths will appear when the jump is coupled between the effects of shear-free and 

shear regions, both of which have the same influence on the jump. When 0 ≤  ≤ 0.213, the 

shear region dominates the jump and the relative jump height    /     increases as a function of 

  ; when 0.213 ≤  ≤ 1, the shear-free region dominates the jump and    /    decreases as a 

function of    . 



     In order to give an insight into the behaviour of the sequent bottom shear stress     or   , Eq. 

(16) can be rearranged as 

(30) 

 

Where 

 

(31) 

 

This is a standard cubic equation. It can easily be proved that its discriminant is always less than 

zero under the condition 0 <    < 1. According to algebraic field theory, there are three different 

real roots: two are positive and one negative. But only one, which is larger than   , is a possible 

solution. Thus, the bottom shear stress     downstream is always smaller than     upstream of 

the jump in a Bingham fluid, as for a Newtonian fluid. 

 

 

4. Critical depth 

 

When the depths upstream and downstream of the jump are the same, the flow is referred to as 

critical flow. Since the approximate formula (29) becomes an exact solution when η = 1, it can 

be used to derive a formula for critical depth. 

     By setting η = 1 and    =    =    with     = q/√   
 , Eq. (29) results in 

(32) 

 

 

where    is the critical depth and 

(33) 

 

 

with λ =    /    due to    =    = λ in critical flow. 

 

     Equation (32) is the formula for critical depth in a Bingham fluid. Clearly, it will be the 

solution for fully viscous flow if λ = 0 or   = 6/5 and the one for fully inviscid flow if λ = 1 or 

  = 1.     changes with λ in the interval 0 < λ < 1. With reference to the nature of the function    

discussed in Section 3.2, it is evident that hc increases with λ when 0 ≤  ≤ 0.213 and decreases 

when 0.213 < λ ≤ 1.    reaches the maximum value of 1.068 √    
 

 at λ = 0.213, where the 

critical flow is coupled between the effects of the shear-free and shear regions. Furthermore, the 

shear region dominates the critical flow in the interval 0 ≤  ≤ 0.213 and the shear-free region 

dominates the flow in the interval 0.213 < λ ≤ 1. The features are also shown in Fig. 4 in terms 

of    /    against    /   or λ, where    = √    
 

. The critical depth is always greater than that 



in fully inviscid flow, and it is also bigger than that in fully viscous flow when 0 ≤λ ≤ 0.41, but 

smaller when 0.41 < λ ≤ 1. 

 

 

5. Numerical solution of the jump equation 

 

As pointed out in Section 3.1, Eqs (15) and (16) cannot be solved exactly. Hence a numerical 

method is used to approach them. In the present study, Newton’s method is applied to obtain the 

numerical solution. 

 

5.1. Conjugate depths 

 

The numerical results for the conjugate depths are plotted in Figs 5 and 6. It is clearly seen that η 

or    /   is almost a linear function of     but is not a linear function of    /    or   . η always 

increases with      but it may increase or decrease depending on the value of   , which can 

clearly be viewed from the figures. As expected, there is one peak or maximum value of η when 

   changes from 0 to 1. 

 

5.2. Sequent bottom shear stress 

 

Since   =    =    ,    represents the feature of the sequent bottom shear stress. The numerical 

dependence of    against    is shown in Fig. 7. As analysed in Section 3.2,    is always greater 

than    and increases as a function of   . The difference between the bottom shear stresses 

upstream and downstream of the jump increases with      and vanishes at    = 0 or 1 when    = 

0 or 1, i.e.     =    . 

 

5.3. Comparison of numerical results and analytical solution 

 

In Section 3.1, the analytical solution for conjugate depths is derived for η close to unity. In order 

to examine its accuracy, a comparison between the numerical results of Eqs (15) and (16) and the 

analytical solution of Eq. (29) is carried out. The results are plotted in Figs 8–11. 

 

     Figure 8 shows that the difference between the results increases significantly with    . Figure 

9 reveals that η for the two results reaches a maximum at the different values of    /    or   . 

Since the critical depth reaches a maximum at the same    (   =   for critical flow) as the 

conjugate depths from the analytical solution (29) (see Sections 3.2 and 4), the conjugate depth η 

from the numerical results and the critical depth    do not reach their maximum at the same 

value of   . This indicates that different    is required, respectively, for the hydraulic jump and 

for the critical flow to be coupled between shear-free and shear regions.    for the former is 

smaller than that for the latter, hence at smaller    the jump is coupled between the two regions, 



whereas at bigger values the critical flow is coupled. Also, the biggest difference from the two 

solutions takes place in the vicinity of    = 0.5. Figure 10 further shows the significant increase 

in the difference between the results with     when |   − 0.5| < 0.1. However, even for η larger 

than unity, the two results are still close to each other if |  −0.5| > 0.1. Inparticular, when   < 0.1 

or    > 0.9, they become almost identical. This is due to the assumption of    →   introduced in 

Eq. (29) as η → 1. Figure 11 shows that the relative error changes with    /    as well as Fr1. 

The relative error is defined by (     −     )/     , where      is calculated from Eqs (15) 

and (16) by the numerical method with ηana from Eq. (29). It is clear that the relative errors are 

notably increased with Fr1 when     > 10. For most values of    /   , the analytical solution 

from Eq. (29) is larger than the numerical one from Eqs (15) and (16). In addition, the relative 

error increases with    until it is above a certain value which is a function of     and then 

decreases to zero after that. The computation has shown that the relative error is smaller than 4% 

in the test range of     ≤ 25. Therefore Eq. (29) is a reasonable approximate formula for 

conjugate depths. If |   − 0.5| > 0.1, even in the situation where η is much greater than unity, an 

accurate result is obtained. 

 

 

6. Verification of the formulae 

 

Ogihara and Miyazawa (1994) carried out an experimental investigation into the hydraulic jump 

in a Bingham fluid using a mixture of water and bentonite. Such a mixture can normally be 

treated as a Bingham fluid based on its flow characteristics. Their experimental results are used 

to validate the theoretical results in the present study. 

 

6.1. Conjugate depths 

 

The comparison between the theoretical results and the experimental data for conjugate depths is 

plotted in Fig. 12. The experimental data are directly adopted from the results by Ogihara and 

Miyazawa, and the theoretical values are numerically calculated from Eqs (15) and (16). It can 

be seen that the experimental data are scattered. This may be due to the difficulty in measuring 

the conjugate depths. Nevertheless the magnitudes are quite similar. 

 

6.2. Critical depth 

 

Figure 13 shows that the exact solution (32) of critical depth as a function of discharge is in 

satisfactory agreement with Ogihara and Miyazawa’s experimental data. 

 

     In addition, Ogihara and Miyazawa reported that the critical depth increased dramatically 

when the dimensionless yield stress λ exceeded 0.1 in the experiment. This supports the 

theoretical result from the present study because    increases with λ in the range of 0 ≤λ ≤ 



0.213. As indicated in Section 4, the critical depth continues to increase up to λ = 0.213. After 

that, it decreases with λ. Unfortunately, in the experiment, there are no further results available 

for this comparison. 

 

 

7. Conclusions 

 

The hydraulic jump in a Bingham fluid has been investigated, based on the approximation for 

lubrication theory. Formulae for conjugate depths, sequent bottom shear stress and critical depth 

are derived. The critical depth reaches a maximum at λ = 0.213 where the critical flow is coupled 

between the effects of shear-free and shear regions. The sequent bottom shear stress     is 

always smaller than    , i.e.     <      or    >   . When    = 0 or 1, the solution is consistent 

with fully viscous or fully inviscid flows. In addition, an analytical solution for conjugate depths 

is developed for η close to unity. Study of the results from the analytical and numerical solutions 

suggests that this formula can also be valid in the situation where η is much larger than unity as 

long as |   − 0.5| > 0.1. The error caused by the approximation is always less than 4%. 

Validation of the formulae is carried out by comparison between the theoretical results and 

Ogihara and Miyazawa’s experimental data. The analysis indicates that satisfactory agreement is 

achieved for both conjugate and critical depths. The formula also indicates that there is an 

apparent increase of critical depth when    /     ≤ 0.213, which has been supported by the 

experimental observation that critical depth increased greatly as    /    ≥ 0.1. 
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