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We study the effects of emergent coastal forests on the propagation of long surface
waves of small amplitude. The forest is idealized by an array of vertical cylinders.
Simple models are employed to represent bed friction and to simulate turbulence
generated by flow through the tree trunks. A multi-scale (homogenization) analysis
similar to that for seepage flows is carried out to deduce the effective equations on
the macro-scale. The effective coefficients are calculated by numerically solving the
micro-scale problem in a unit cell surrounding one or several cylinders. Analytical
and numerical solutions for wave attenuation on the macro-scale for different
bathymetries and coastal forest configurations are presented. For a transient incident
wave, analytical results are discussed for the damping of a leading tsunami. For
comparison series of laboratory data for periodic and transient incident waves are also
presented. Good agreement is found even though some of the measured waves are
short or nonlinear.

Key words: shallow water flows, surface gravity waves, wave–turbulence interactions

1. Introduction
The hydrodynamics of tidal flows through mangrove swamps have been widely

studied to understand the health of coastal ecosystems (see Wolanski, Jones & Bunt
1980; Wolanski 1992; Mazda, Kobashi & Okada 2005). For inland waters, Nepf (1999)
has investigated transport and diffusion of nutrients and solvents in a steady current.
It has also been noted that coastal forests can serve as barriers against tides, storm
surges and tsunami waves. Historical evidence suggests that mangroves shielded the
Eastern coast of India and reduced the number of deaths in the 1999 cyclone attack
(Dasa & Vincent 2009). Records of the 2004 Indian Ocean tsunami have given strong
support to the idea of shore protection by mangroves and trees (Danielsen et al.
2005; Tanaka et al. 2007). Field experiments conducted in Australia and Japan have
demonstrated that during high tides only 50 % of incident wave energy is transmitted
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through forests over a distance of 200 m (Massel, Furukawa & Binkman 1999). This
evidence has motivated suggestions for laboratory studies of planting a strip of trees
along shores. For instance, Hiraishi & Harada (2003) have proposed the Green Belt
with trees planted in water. Similarly, Irtem et al. (2009) have shown experimentally
that trees planted on the landward side of the shore can reduce the maximum run-up
of a model tsunami by as much as 45 %. On the other hand, short wind waves through
salt marshes have been studied in the laboratory by Augustin, Irish & Lynett (2009),
Kobayashi, Raichlen & Asano (1993) and Suzuki, Dijkstra & Stive (2008), and in the
field by, for example, Möller et al. (1999) and Möller (2006). Also, Fernando et al.
(2008) and Thuy et al. (2009) have examined the significant enhancement of tsunami
height in an open gap between coral reefs in Sumatra. Various models of numerical
simulations have been proposed by these authors based on assumed equations for the
macro-scale (wavelength) motion and empirically fitted coefficients.

In tidal swamps, part or most of the vegetation may be constantly immersed in
water. For effective protection against tsunamis, the thickness of the green forest
needed can be hundreds of metres. Hence submerged plantation would probably be
a more preferred option along well-populated shores. In this article, we describe a
micro-mechanical theory for the propagation and dissipation process of long waves
through emergent vegetation.

The dissipation of wave energy is dominated by turbulence generated between the
tree trunks, branches and leaves throughout the entire sea depth, and by bed friction
(Massel et al. 1999). To avoid massive computations, a number of simplifications are
made here to enable an analysis of the macro-scale phenomenon from the micro-scale
upwards. The first is to limit considerations to long waves of small amplitude so that
a linearized approximation applies. The second is to use the model of constant eddy
viscosity with values taken from past experiments for steady flows through vegetated
waters. Bottom friction is modelled by a linear term with an empirical friction
coefficient. Finally, only the effects of tree trunks are modelled by vertical cylinders
in a periodic array. With these simplifications the two-scale method of homogenization
is carried out to derive the macro-scale equations which are reminiscent of those
governing seepage flows in porous media. The effective hydraulic conductivity, which
quantifies the effects of tree trunks on the mean flows, is calculated from the solution
of an initial-boundary-value problem on the micro-scale. Then several macro-scale
problems are solved analytically for different incident wave conditions and coastal
forest configurations. A series of laboratory experiments is also carried out for both
periodic and transient incident waves. Comparisons of measurements and numerical
simulations are discussed.

2. Formulation

Let x = (x1, x2) denote the horizontal coordinates and z represent the vertical
direction. We consider a shallow sea of water depth h(x) which varies over a distance
scale comparable to a wavelength. Over a large horizontal area, vertical cylinders
are planted as a periodic array to represent trees. Infinitesimal long waves enter the
emergent vegetation from the open sea. The tree spacing ` and the typical water
depth h0 are comparable to but much smaller than the typical wavelength O(1/k0), i.e.
k0` = O(k0h0)� 1. The characteristic wavenumber k0 is related to the frequency ω by
k0 = ω/√gh0, where g is the gravitational acceleration.
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2.1. Linearized equations
Under the assumption of constant eddy viscosity and infinitesimal waves, the three-
dimension flow between the trees are governed by the linearized Reynolds equations:

∂ui

∂xi
+ ∂w

∂z
= 0, i= 1, 2, (2.1)

and

∂ui

∂t
=− 1

ρ

∂p

∂xi
+ νe

(
∂2ui

∂xj∂xj
+ ∂

2ui

∂z2

)
, i, j= 1, 2. (2.2)

In the above, ui and w are the horizontal and vertical velocity components respectively,
ρ denotes the density, νe is the eddy viscosity, and p represents the dynamic pressure
so that the total pressure is

P= p− ρgz. (2.3)

No-slip boundary conditions are imposed on the seabed,

ui = w= 0, z=−h(x), (2.4)

and on the cylinders,

ui = w= 0, (x, z) ∈ SB. (2.5)

The kinematic condition on the mean free surface is

∂η

∂t
= w, z= 0, (2.6)

where η denotes the free-surface displacement. For the dynamic conditions on the free
surface, we require the vanishing of both the normal and tangential stresses, hence

gη − p

ρ
+ 2νe

∂w

∂z
= 0, z= 0, (2.7)

and

∂ui

∂z
+ ∂w

∂xi
= 0, z= 0. (2.8)

2.2. Depth-averaged equations
The incoming waves dictate the size of the dynamic pressure scale [p] = ρgA, where
A denotes the typical wave amplitude. The corresponding horizontal gradient is k0[p].
We regard the typical wavelength, 1/k0, as the characteristic macro-length scale, and
the tree spacing, `, as the micro-length scale. Using ` and h0 to normalize the spatial
coordinates and the inverse of characteristic frequency, 1/ω, as the time scale, we
introduce the following dimensionless variables:

x∗i =
xi

`
, z∗ = z

h0
, t∗ = tω, h∗ = h

h0
,

η∗ = η
A
, p∗ = p

ρgA
, ui

∗ = ui√
gh0A/h0

, w∗ = w

Aω
.

(2.9)

The normalized equations are

∂u∗i
∂x∗i
+ ε ∂w∗

∂z∗
= 0, (2.10)
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ε
∂u∗i
∂t∗
=−∂p∗

∂x∗i
+ εσ

[
∂2u∗i
∂x∗j ∂x∗j

+
(
`

h0

)2
∂2u∗i
∂z∗∂z∗

]
, (2.11)

where

ε ≡ k0`= ω`√
gh0
� 1 (2.12)

is the small ratio of micro-to-macro length scales, `/h0 = O(1), and

σ = νe

ω`2
(2.13)

is the square of the ratio of turbulent diffusion length to tree spacing. Note that σ can
take a wide range of values including O(1) and is larger for longer waves or denser
forests.

The dimensionless boundary conditions on the free surface are

∂η∗

∂t∗
= w∗, z∗ = 0, (2.14)

and

η∗ − p∗ + 2ε2σ
∂w∗

∂z∗
= 0, z∗ = 0, (2.15)

∂u∗i
∂z∗
+ ε
(

h0

`

)2
∂w∗

∂x∗i
= 0, z∗ = 0. (2.16)

Denoting by an overbar the depth-average,

F̄ = 1
h∗(x∗)

∫ 0

−h∗
F dz∗, (2.17)

we have from (2.10)

∂(h∗ū∗i )
∂x∗i

+ ε ∂η
∗

∂t∗
= 0. (2.18)

Use is made of (2.4), (2.6) and the assumption that h = h(x) varies significantly over
the distance O(1/k0) only, but not over O(`).

By similar depth-averaging of (2.11), we get

ε
∂ ū∗i
∂t∗
=−∂η

∗

∂x∗i
+ εσ ∂2ū∗i

∂x∗j ∂x∗j
+ ε σ

h∗

(
`

h0

)2[
∂u∗i
∂z∗

]0

−h∗
, (2.19)

where the long-wave assumption has been made. We further represent the bottom shear
by a linear term,

σ

h∗

(
`

h0

)2[
∂u∗i
∂z∗

]
−h∗
≡ αū∗i , (2.20)

which defines α. Equation (2.19) becomes

ε
∂ ū∗i
∂t∗
=−∂η

∗

∂x∗i
+ εσ ∂2ū∗i

∂x∗j ∂x∗j
− εαū∗i . (2.21)
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In physical units, (2.18) and (2.21) are

∂(hūi)

∂xi
+ ∂η
∂t
= 0, (2.22)

∂ ūi

∂t
=−g

∂η

∂xi
+ νe

∂2ūi

∂xj∂xj
− f ūi, (2.23)

where f is the bed friction coefficient and α = f /ω. The bottom shear stress, (2.20),
becomes

νe

[
∂ui

∂z

]
−h

= f ūih. (2.24)

Both parameters νe and f (or σ and α in the dimensionless form) are given by
empirical formulae to be discussed shortly.

2.3. Estimation of controlling parameters
In the absence of direct measurements of momentum diffusivity in transient flows
through a cylinder array, we shall use the empirical diffusivity for steady flows through
emergent vegetation obtained from extensive tests by Nepf (1999) who also collected
other field data for a moderate range of Reynolds number, Red = U0d/ν =400–2000,
where ν is the molecular kinematic viscosity of water, U0 the characteristic velocity
and d the diameter of the cylinders. From her figure 10, the turbulent diffusivity, νe,
can be roughly fitted by the formula

νe

U0`
≈ 1.86 (1− n)2.06, (2.25)

where the range of porosity, n = 1 − π (d/2`)2, of the available data is 0.945 6 n 6
0.994. Estimating U0 by the maximum orbital velocity in open water, U0 =√gh0A/h0,
we get

σ ≈ 1.86 (1− n)2.06 1
k0`

A

h0
. (2.26)

We point out that the data in Nepf (1999) are for random arrays of vegetation or
cylinders. In the absence of empirical data from wave experiments for a periodic
array of cylinders, the preceding empirical relation will be adopted in our numerical
simulations.

Bed friction for waves is often modelled by a formula quadratic in the local velocity,
but can be replaced by a linear law with the equivalent friction coefficient (Mei 1983;
Nielsen 1992),

f = fw
4

3π
U0

h0
, (2.27)

where fw is a dimensionless friction factor in the quadratic law. Values of fw can be
estimated by an empirical formula of Swart (1974):

fw = exp
[
5.213κ0.194 − 5.977

]
, (2.28)

where κ = r/A with r being the bed roughness (see Nielsen 1992). Consequently, by
using U0 =√gh0A/h0 we obtain

α ≈ 0.424fw
1

k0h0

A

h0
. (2.29)
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h0 (m) ` (m) n 2π/ω
(min)

A/h0 1/k0 (m) k0` k0h0 Max Red σ α

2.5 1 0.80 0.167 0.05 7.88 0.1269 0.317 1.25×105 0.027 0.003
2.5 1 0.85 1 0.05 47.29 0.0211 0.053 1.08×105 0.088 0.018
5.0 1 0.90 2 0.10 133.76 0.0075 0.037 2.50×105 0.217 0.051
5.0 2 0.90 10 0.05 688.79 0.0030 0.007 2.50×105 0.271 0.128
7.5 2 0.92 30 0.05 2460 0.0008 0.003 2.74×105 0.628 0.313

TABLE 1. Estimations of sample parameters. In all examples, fw = 0.045 and values of σ
and α are calculated according to (2.26) and (2.29), respectively.

It is known that fw = O(10−2) for 0 6 κ 6 0.1. In later computations we shall take for
illustration fw = 0.045 corresponding to κ = 0.05.

Note that both σ and α depend on the wave amplitude, indicating the fact
that turbulence and bed friction are inherently nonlinear, here represented by linear
formulae. It is obvious that effects of coastal vegetation are more significant in
stronger and longer waves as can be seen from (2.26) and (2.29). To provide
some quantitative idea, σ and α are estimated in table 1 for several different
incident wave conditions and micro-scale geometry. Their values are clearly larger
for storm surges and tsunamis. Also, the maximum Reynolds numbers of these field
examples are seen to be very much greater than those in the steady-flow data of Nepf
(1999). Nevertheless we shall use (2.25) in later numerical simulations of laboratory
experiments for relatively lower Reynolds numbers, in order to assess the applicability
of steady-flow data to long waves. Good agreement would support the use of field-
scale data of steady flows for long waves.

From here on only the dimensionless equations of depth averages will be used. For
brevity, overbars and asterisks will be omitted.

3. Macro theory for sinusoidal waves
We first investigate sinusoidal waves propagating through an emergent forest. The

depth-averaged horizontal velocity and the free-surface displacement can be expressed
as

ui = ũi(x)e−it, η = η̃(x)e−it, (3.1)

where spatial factors are distinguished by tildes. Equations (2.18) and (2.21) become

−εiη̃ + ∂

∂xi
(ũih)= 0, (3.2)

and

−εiũi =− ∂η̃
∂xi
+ ε

(
σ
∂2ũi

∂xj∂xj
− αũi

)
, (3.3)

respectively.

3.1. Homogenization
The procedure employed here is similar to that for monochromatic sound
waves through a periodic porous medium. In addition to the dimensionless
coordinates x which describe the micro-scale motion, we introduce the macro-scale
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coordinates x′ = εx to describe the wave motion. The forest region is divided into
periodic cells surrounding one or more cylinders. Two-scale expansions are then
assumed for the dynamic unknowns:

ũi = ũ(0)i + εũ(1)i + ε2ũ(2)i + · · · , η̃ = η̃(0) + εη̃(1) + ε2η̃(2) + · · · , (3.4)

where ũ(n)i = ũ(n)i (x, x′) and η̃(n) = η̃(n)(x, x′). The sea depth is assumed to depend on
x′ only, i.e. h = h(x′). The perturbation analysis is very similar to that for steady
seepage flow (Ene & Sanchez-Palencia 1975; Keller 1980) and sound (Auriault 1980;
Mei & Vernescu 2010) through a periodic porous medium. The key result is that
at the leading order η̃(0) is independent of micro-scale coordinates. To determine its
macro-scale behaviour one has to solve first for the tensor K̃ij from the following
micro-scale boundary-value problem in a unit cell:

∂K̃ij

∂xi
= 0, x ∈Ωf , (3.5)

and

σ
∂2K̃ij

∂xk∂xk
+ (i− α)K̃ij = ∂Ãj

∂xi
− δij, x ∈Ωf , (3.6)

where Ωf denotes the fluid part in the unit cell of area Ω , and δij is the Kronecker
delta. On the cylinder walls, SB, there must be no slip,

K̃ij = 0, x ∈ SB. (3.7)

In addition, K̃ij and Ãj must be periodic from cell to cell. For uniqueness, the average
of Ãj over the cell volume Ω is set to zero,

〈Ãj〉 = 0, (3.8)

where

〈Q〉 = 1
Ω

∫∫
Ωf

Q dΩ (3.9)

denotes the cell average. Then the seepage velocity is related to the macro-scale
surface slope by

〈ũ(0)i 〉 = −〈K̃ij〉∂η̃
(0)(x′)
∂x′j

, (3.10)

which is an extension of Darcy’s law, where 〈K̃ij〉 is the hydraulic conductivity tensor
defined as the cell average of K̃ij. By taking the cell average of the mass conservation
law at O(ε) and invoking Gauss’ theorem and periodicity, we obtain

− iη̃(0) + ∂(〈ũ
(0)
j 〉h)
∂x′j

= 0. (3.11)

Equations (3.10) and (3.11) can be combined to give an equation for the cell-averaged
amplitude of the free-surface displacement,

iη̃(0) + 〈K̃ij〉 ∂
∂x′i

(
h
∂η̃(0)

∂x′j

)
= 0. (3.12)
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We note that the dimensionless hydraulic conductivity tensor 〈K̃ij〉 is related to its
dimensional counterpart 〈K̃phy

ij 〉 by 〈K̃ij〉 = 〈K̃phy
ij 〉k0h0/

√
gh0, and depends on the wave

frequency through σ and α. Note also that Ãi and K̃ij are independent of the local
sea depth, therefore 〈K̃ij〉 is the same for all x′. In the absence of forests and bottom
friction, (3.6) gives K̃ij→ iδij. Consequently, (3.10) and (3.12) reduce to the standard
linearized equations governing inviscid shallow water waves.

3.2. Numerical solution of the micro-scale cell problem
The micro-scale problem, (3.5)–(3.8), is similar to that for sound through a periodic
porous medium (Auriault 1980; Sheng & Zhou 1988; Zhou & Sheng 1989) and can be
solved by the Galerkin finite element method. For this purpose the governing equations
are first rewritten in the weak form as∫∫

Ω

2∑
i=1

∂K̃ij

∂xi
ϕj dΩ = 0, (3.13)

and∫∫
Ω

{[
(i− α)K̃ij − ∂Ãj

∂xi
+ δij

]
φij + σ∇K̃ij ·∇φij

}
dΩ = σ

∮
SB

∂K̃ij

∂nSB

φij ds, (3.14)

where ϕj and φij are the weighting functions and nSB is the unit normal to the cylinder
wall SB. No summation is taken over repeated indices j in (3.13) and i and j in
(3.14). Use has been made of Gauss’ theorem in obtaining (3.14). After discretizing
the fluid region in the unit cell into triangular elements, the unknown variables K̃ij

and Ãj are represented by linear interpolation functions which are also used for the
weighting functions ϕj and φij. Then, the integral conditions above are transformed
into algebraic equations for the unknown coefficients at each node, which are solved
numerically. For a circular cylinder inside a unit square cell, figure 1 shows the
discretization and the spatial variation of K̃11 inside a cell for n= 0.85, σ = 0.088 and
α = 0.018 which correspond to the second row in table 1. Due to cellular symmetry,
〈K̃ij〉 ≡ K δij is isotropic. Figure 2 shows the magnitude |K | and phase θ of the
normalized hydraulic conductivity against the wave frequency parameter, k0h0, for
n = 0.8, 0.85, 0.9, h0 = 2.5 m, ` = 1 m, A/h0 = 0.05, and fw = 0.045. Both quantities
start from zero at k0h0 = 0 (steady flow) and increase linearly at first with k0h0 (or
with frequency). Because of the normalization the dimensional hydraulic conductivity
is K phy =K

√
gh0/k0h0. The steady-flow limit of K phy is proportional to the local

slope of K , i.e. (dK /d(k0h0))
√

gh0 at the origin (k0h0 = 0) and is finite and real.
Figure 2 also reveals that for a given incident wave both |K | and θ are larger for a
smaller tree trunk, i.e. a higher porosity n. Figure 3 shows the dependence on σ . Since
σ ∝ 1/ω`2, both |K | and θ decrease monotonically with increasing σ . Also since
α ∝ 1/ω, their dependence on α is similar, and is not plotted.

We now turn to the macro-scale problems.

3.3. Constant water depth
For analytical simplicity, we consider first problems in one horizontal dimension with
uniform water depth everywhere, i.e. h = 1. The input parameters correspond to those
shown in figure 2, representative of weak monochromatic waves.
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FIGURE 1. (a) Discretization of a typical unit cell with a circular cylinder inside a square. (b)
Spatial distributions, K̃11(x). Due to isotropy, only K̃11 is needed. The input parameters are
listed in the second row of table 1.
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FIGURE 2. Complex hydraulic conductivity, K = |K |eiθ , as a function of depth-to-
wavelength ratio, k0h0: (a) magnitude |K |, (b) phase θ . The cell geometry is a circular
cylinder inside a square with n = 0.8, 0.85, 0.9. In all cases, h0 = 2.5 m, ` = 1 m, A/h0 =
0.05 and fw = 0.045 are fixed. The values of σ and α are calculated from (2.26) and (2.29) for
given n and k0h0.

3.3.1. Very thick forest
Let the forest occupy the semi-infinite domain, 0 < x′ <∞. Inside the forest, we

obtain from (3.12)

∂2η̃(0)

∂x′2
+ i

K
η̃(0) = 0, x′ > 0, (3.15)

where K =K R + iK I is the hydraulic conductivity. The solution is

η̃(0) = Be−x′/a, x′ > 0, (3.16)

with

a=
√

iK = aR + iaI =
√
|K |ei((θ/2)+(π/4)), θ = tan−1 K I

K R
<
π

2
. (3.17)
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FIGURE 3. Dependence of the complex hydraulic conductivity K on the controlling
parameter σ : (a) magnitude |K |, (b) phase θ . In all cases presented here, α = 0.

The corresponding velocity can be obtained from (3.10) as

〈ũ(0)〉 = 1
a
K Be−x′/a, x′ > 0. (3.18)

Equations (3.16) and (3.18) represent a propagating wave with decreasing amplitude.
We now consider the open water, x′ < 0, where dissipation is neglected. Solutions

for a frictionless seabed can be expressed as

η̃ = eix′ + Re−ix′, ũ= eix′ − Re−ix′, x′ < 0. (3.19)

Matching at x′ = 0 of the surface displacement and horizontal velocity yields two
algebraic equations for R and B, with the solutions

R= a−K

a+K
and B= 2a

a+K
, (3.20)

where R denotes the reflection coefficient. It can be readily shown that

|R |2 = (aR −K R)
2+ (aI −K I)

2

(aR +K R)
2 + (aI +K I)

2 6 1, (3.21)

and

|B |2 = 4|a |2
(aR +K R)

2 + (aI +K I)
2 > 0. (3.22)

Clearly waves are damped out after a distance of x′ = O(
√|K |).

Using the numerical values of K in figure 2, we show in figure 4 the square
of the reflection coefficient, |R|2, and the free-surface elevations inside the forest for
different porosities and dimensionless frequency. It is evident that reflection increases
with the wave period (or wavelength) and decreases with larger porosity. Since by
normalization the physical distance is x′/k0, the wave amplitude is more rapidly
attenuated for longer waves, as shown in figure 4(b).

3.3.2. A finite forest belt
Consider next a finite forest belt, 0< x′ < L′B, where L′B = k0LB is the ratio of forest

thickness (LB) to typical wavelength (1/k0). In the region of incidence, x′ < 0, (3.19)
still holds. Behind the forest, x′ > L′B, the solutions can be expressed as

η̃ = ũ= Teix′, x′ > L′B. (3.23)
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FIGURE 4. Periodic waves propagating through a semi-infinite forest in a constant water
depth region: (a) the square of the reflection coefficient, |R |2, against the wave frequency
parameter, k0h0, for n = 0.8, 0.85, 0.9; (b) snapshots of free-surface elevation at the phase
t = 0 for the case of n = 0.85. As can be seen, |R |2 grows with increasing wavelength (i.e.
smaller k0h0). In all calculations, the input parameters are same as in figure 2.

Inside the forests, 0< x′ < L′B, the solution is now of the form

η̃(0) = Be−x′/a + Dex′/a. (3.24)

Matching the displacement and velocity at both x′ = 0 and x′ = L′B, we obtain

R= (a2 −K 2)(−1+ e2L′B/a)

(a+K )
2 e2L′B/a − (a−K )

2
, (3.25a)

B= 2a(a+K )e2L′B/a

(a+K )
2 e2L′B/a − (a−K )

2
, (3.25b)

D= −2a(a−K )

(a+K )
2 e2L′B/a − (a−K )

2
, (3.25c)

T = 4aK eL′B(1/a−i)

(a+K )
2 e2L′B/a − (a−K )

2
. (3.25d)

Taking L′B →∞, coefficients R and B reduce to those shown in (3.20). Again for
the cell with a single cylinder at the centre, the effects of different forest thickness
and porosity are shown in figure 5. Values of σ and α are calculated from (2.26)
and (2.29) respectively for n = 0.8, 0.85, 0.9 with all other parameters listed in the
second row of table 1. The reflection coefficient, |R|, does not vary monotonically with
respect to the dimensionless forest thickness, L′B. This is a characteristic well-known
in one-dimensional scattering, as the multiply reflected waves from the opposite ends
can have different phases depending on their travel distances and interfere with one
another either constructively or destructively (Mei 1983). As L′B →∞, R reaches
asymptotically the value for the semi-infinite forest given in the previous section and
indicated by triangles in figure 5. Spatial decay of the surface waves is more rapid for
greater dimensionless L′B = k0LB, i.e. thicker forest relative to the wavelength.

3.4. Variable water depth
In this section, we consider the effects of varying water depth where h varies linearly
in x′ over some distance. For validation, the analytical solutions have been checked by
discrete numerical computations.
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FIGURE 5. Periodic waves propagating through a finite patch of forest in a constant water
depth: (a) the square of reflection coefficient, |R |2, against the dimensionless thickness of
forest, L′B; (b) snapshots of free-surface elevation at t = 0 for n= 0.85 and L′B = 0.85, 1.25, 4.
Lines are the results from (3.24) and (3.25) while triangles give |R |2 of L′B→∞ predicted by
(3.21). In all calculations, k0`0 = 0.0211 and k0h0 = 0.053, corresponding to the second row
of table 1.

3.4.1. Forest on a plane beach
Let the open water be of constant depth: h = 1, x′ < 0. A forest covers the entire

beach of a constant slope S, i.e. h = 1 − Sx′ in 0 < x′ < 1/S. Over the sloping bottom,
the mean wave equation, (3.12), becomes

iη̃(0) − SK
∂η̃(0)

∂x′
+ (1− Sx′)K

∂2η̃(0)

∂x′2
= 0. (3.26)

Assuming perfect reflection at the shore, x′ = 1/S, the solution on the beach can be
expressed as

η̃(0) = B√
S

J0

(
2i
Sa

√
1− Sx′

)
, (3.27)

where Jn(z) is the Bessel function of the first kind. Again, the matching conditions at
x′ = 0 require

1+ R= B√
S

J0

(
2i
Sa

)
, 1− R=− B√

S

√
aJ1

(
2i
Sa

)
. (3.28)

Solving the above algebraic equations, we obtain

R=
J0

(
2i
Sa

)
+ aJ1

(
2i
Sa

)
J0

(
2i
Sa

)
− aJ1

(
2i
Sa

) and B= 2
√

S

J0

(
2i
Sa

)
− aJ1

(
2i
Sa

) . (3.29)

As a check, we take the limit of no forest, then K → i and the reflection coefficient
becomes

R→ J0(2/S)+ iJ1(2/S)
J0(2/S)− iJ1(2/S)

, (3.30)
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FIGURE 6. Snapshots at t = 0 of periodic waves propagating through a forest on a
plane beach of slope S = 1/20. Porosities are: n = 0.8, 0.85, 0.9 and k0h0 = 0.053. Other
parameters are shown in the second row of table 1. The corresponding hydraulic conductivity,
K , is shown in figure 2.

and the coefficient B reduces to

B→ 2
√

S

J0(2/S)− iJ1(2/S)
. (3.31)

For very small bottom slope S� 1, (3.30) and (3.31) reduce to the solutions of Keller
& Keller (1964). Figure 6 plots the free-surface elevation inside forests for different
values of n. The behaviour of these examples is similar to that of constant water depth
cases.

3.4.2. A finite forest belt on a sloping step
Let the sea bed be a plane slope in the middle region and horizontal on both sides,

i.e.

h=


1, x′ < 0
1− Sx′, 0< x′ < L′B
1− SL′B, x′ > L′B.

(3.32)

The forest covers the sloping part only. Now, the solution on the slope becomes

η̃(0) = 1√
S

{
BI0

(
2a

S

√
1− Sx′

)
+ DK0

(
2a

S

√
1− Sx′

)}
, 0< x′ < L′B, (3.33)

where In(z) and Kn(z) are the modified Bessel function of the first kind and second
kind, respectively. Coefficients B and D are yet to be determined. Let the transmitted
wave in the open water x′ > L′B be

η̃ = Teimx′, ũ= mTeimx′ with m= 1√
hB
= 1√

1− SL′B
, (3.34)

while the the free-surface elevation and horizontal velocity in the incident wave region,
x′ < 0, are given by (3.19). By matching at both x′ = 0 and x′ = L′B, the unknown
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FIGURE 7. Square of the reflection coefficient, |R|2, for waves through a finite forest belt of
dimensionless thickness L′B on a sloping step with a constant slope s= 1/20. Parameters used
in all calculations are same as those shown in figure 6.

coefficients can be found as

R= c34 [(c13 − c23)c42 − (c12 − c22)c43]− c44 [(c13 − c23)c32 − (c12 − c22)c33]
c34 [(c13 + c23)c42 − (c12 + c22)c43]− c44 [(c13 + c23)c32 − (c12 + c22)c33]

, (3.35a)

B= 2(c33c44 − c34c43)

c34 [(c13 + c23)c42 − (c12 + c22)c43]− c44 [(c13 + c23)c32 − (c12 + c22)c33]
, (3.35b)

D= 2(c32c44 − c34c42)

(c12 + c22)(c33c44 − c34c43)− (c13 + c23)(c32c44 − c34c42)
, (3.35c)

T = −2(c32c43 − c33c42)

c34 [(c13 + c23)c42 − (c12 + c22)c43]− c44 [(c13 + c23)c32 − (c12 + c22)c33]
,(3.35d)

where

c12 = 1√
S

I0 (Z) , c13 = 1√
S

K0 (Z) , (3.36a)

c22 =− 2i

S
√

S

1
Z

I1 (Z) , c23 = 2i

S
√

S

1
Z

K1 (Z) , (3.36b)

c32 = 1√
S

I0

(
Z
√

hB

)
, c33 = 1√

S
K0

(
Z
√

hB

)
, (3.36c)

c42 =− 2i

S
√

S

1

Z
√

hB
I1

(
Z
√

hB

)
, c43 = 2i

S
√

S

1

Z
√

hB
K1

(
Z
√

hB

)
, (3.36d)

c34 = exp
(
imL′B

)
, c44 = m exp

(
imL′B

)
, (3.36e)

with Z = 2/(Sa). Recall that a and m are given in (3.17) and (3.34), respectively.
In figure 7, the square of reflection coefficient, |R|2, is displayed against the

dimensionless thickness of the forest, L′B. Again, |R|2 does not vary monotonically
with L′B as discussed in § 3.3.2. The features are qualitatively similar to those for a
horizontal seabed.
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FIGURE 8. Sketch of experimental setup with sample arrangement of wave gauges Gi (not
to scale). The model forest has a width of 0.54 m and a thickness of 1.08 m. Wave flume is
0.54 m wide and 0.6 m deep. The length of the constant depth part is 25 m. Gauge locations
for different incident waves are listed in table 2.

Wave type G1 G2 G3 G4 G5 G6 G7 G8

Periodic waves −3.085 −2.935 −2.685 −0.005 0.540 1.085 2.025 2.275
Wave packets – – −3.025 −0.100 0.715 – 2.260 2.660
Solitary waves – −3.205 −3.005 −0.005 0.540 1.085 1.385 –

TABLE 2. Positions of wave gauges (in metres) (see figure 8). The origin is set at the front
edge of the model forest. In some tests records were not taken from all gauges.

3.5. Experiments and numerical simulation for periodic waves
A series of laboratory experiments has been conducted in the glass-walled wave
flume (32 m long, 0.54 m wide, and 0.6 m deep) in the Hydraulics Laboratory at the
Nanyang Technological University, Singapore. At one end, the flume is equipped with
a piston-type wavemaker which has active wave absorbing capability. At the other
end, there is an energy absorbing beach of 1-to-7 slope to minimize the reflection. In
the centre region of constant water depth, Perspex cylinders of 1 cm diameter were
installed as a square array spanning the entire width of the flume. The model forest
has a total thickness of 1.08 m and a porosity n= 0.913. Several resistance-type wave
gauges were employed to record time histories of free-surface elevation at a sampling
rate of 100 Hz. The experimental setup is sketched in figure 8. Three types of incident
waves were studied: periodic waves, transient wave packets, and solitary waves. The
maximum Reynolds numbers in the experiments are in a moderate range of 200–2500
which is similar to that of Nepf (1999) (400< Red < 2000) for steady flows.

Conditions for the first set of tests, all for h0 = 12 cm, are listed in table 3. A broad
range of wave periods including relatively short waves were tested. To minimize the
effect of nonlinearity, the amplitude of the longer waves (periods = 2.0, 2.5, 3.0 s)
is kept very small. The coefficient of beach reflection |RB| in the absence of the
forest is quite large for the three longest periods (2.0, 2.5, 3.0 s) and relatively small
for short waves due to partial breaking. In our numerical simulations the controlling
parameter σ is estimated by (2.26) which varies with the different input amplitudes for
different frequencies, hence the predictions do not fall on a smooth curve. Since the
tank bottom is smooth, we take α = 0. For the longest waves, higher harmonics
are noticeable. For instance, the Stokes–Ursell parameter for the test case with
period = 3.0 s is A/k2

0h3
0 ≈ 0.38, which is not small. The experimental reflection and

transmission coefficients are extracted from the data by taking only the first harmonics.
Initial comparison of predictions with data showed reasonable agreement only for
relatively short waves, but a large discrepancy for the reflection coefficients of the
three longest waves. We attribute the discrepancy to beach reflection and nonlinearity.
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Period (s) h0 (m) 2A (m) 1/k0 (m) k0h0 k0LB Max Red σ |RB|
0.8 0.12 0.0232 0.1207 0.9940 8.9464 1049 0.0047 0.065
1.0 0.12 0.0253 0.1587 0.7560 6.8044 1144 0.0068 0.101
1.2 0.12 0.0272 0.1956 0.6135 5.5218 1230 0.0090 0.050
1.4 0.12 0.0246 0.2318 0.5177 4.6593 1112 0.0096 0.014
1.6 0.12 0.0239 0.2676 0.4485 4.0362 1081 0.0108 0.022
1.8 0.12 0.0243 0.3031 0.3959 3.5633 1099 0.0124 0.099
1.9 0.12 0.0243 0.3208 0.3741 3.3670 1099 0.0132 0.090
2.0 0.12 0.0068 0.3384 0.3546 3.1915 307 0.0039 0.178
2.5 0.12 0.0065 0.4261 0.2816 2.5344 294 0.0047 0.239
3.0 0.12 0.0050 0.5134 0.2337 2.1036 226 0.0043 0.250

TABLE 3. Experimental conditions for periodic waves through a coastal forest. In all cases,
the forest thickness is LB = 1.08 m and porosity n = 0.913. Controlling parameter σ is
estimated by (2.26). |RB| is the measured beach reflection coefficient without the forest.
See figure 9 for corresponding reflection and transmission coefficients.

As a partial correction we adjusted the experimental results from the measured data by
accounting for the one-time passage of a beach-reflected wave as follows:

|R′| = |R| + |T| × |RB| × |T|, |T ′| = |T| − |T| × |RB| × |R|, (3.37)

where |R′| and |T ′| are determined directly from the first harmonics of the data. From
these equations the adjusted values |R| and |T| are calculated. Of course the above
correction is only a crude estimate without proper account of the wave phases and
wave nonlinearity. In figure 9 we compare both the measured and the adjusted data
with the predictions without a beach, shown by crosses. The agreement is much
improved. The quantity 1− |R |2−|T |2 which measures the percentage of wave energy
dissipated by the model forest is also shown. Note that although the parameters σ
and α are larger for longer waves, the ratio L′B = k0LB is smaller since LB = 1.08 m
is fixed. This leads to weaker attenuation hence higher transmission for longer waves,
as shown in figure 9. To bypass the complications of beach reflection and nonlinearity
unavoidable in laboratory tests on periodic long waves, we shall test our theory for
transient long waves of finite duration to be presented later in § 4.5.

We have conducted additional tests for shorter waves in deeper water and a wide
range of wave amplitudes under conditions listed in table 4. For three wave periods
(Set A: 0.8; Set B: 1; Set C: 1.2 (s)) and two water depths (0.15, 0.2 m), the wave
amplitudes ranged from 1 to 4 cm. Figure 10 shows the corresponding predictions of
reflection and transmission coefficients and the degree of dissipation, 1 − |R |2−|T |2,
by (3.25) along with measured data. Again, the agreement is surprisingly good even
for weakly nonlinear waves of intermediate length. Extension of the present theory to
k0h0 = O(1) would of course be desirable for a more valid comparison.

4. Macro theory for transient waves
4.1. Homogenization

Of interest in the protection against weak or distant tsunamis, let us consider
a transient wave invading a forest. Again, assuming two-scale expansions of the
dimensionless horizontal velocity and the free-surface elevation,

ui = u(0)i + εu(1)i + ε2u(2)i + · · · , η = η(0) + εη(1) + ε2η(2) + · · · , (4.1)
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FIGURE 9. (a) Reflection coefficient (|R|) and transmission coefficient (|T|) as functions of
k0LB. (b) 1 − |R |2−|T |2 vs. k0LB. Hollow squares: measured data; solid dots: adjusted data;
crosses: predictions without the beach.

Set Period (s) h0 (m) 1/k0 (m) k0h0 k0LB σ/(A/h0) (Max Red)/(A/h0)

A 0.8 0.15 0.130 1.152 8.297 0.0528 12 130
0.20 0.141 1.415 7.642 0.0573 14 007

B 1.0 0.15 0.174 0.864 6.223 0.0703 12 139
0.20 0.193 1.037 5.597 0.0782 14 107

C 1.2 0.15 0.215 0.696 5.014 0.0873 12 131
0.20 0.243 0.825 4.454 0.0983 14 107

TABLE 4. Experimental conditions for a wide range of A/h0 shown in figure 10.
Controlling parameter σ is estimated by (2.26). In all cases, the forest thickness is
LB = 1.08 m and porosity n = 0.913. The corresponding maximum Reynolds numbers are
in the range of 490 < MaxRed < 2520. Note that σ and Red are proportional to A/h0 by
definition.

where u(n) = u(n)(x, x′, t) and η(n) = η(n)(x, x′, t), we obtain the perturbation equations.
At O(ε0):

∂u(0)i

∂xi
= 0, (4.2)

∂η(0)

∂xi
= 0. (4.3)

Thus the leading-order free-surface height varies only over the macro-scale, η(0) =
η(0)(x′, t). At O(ε),

∂η(0)

∂t
+ ∂(u

(0)
i h)

∂x′i
+ h

∂u(1)i

∂xi
= 0, (4.4)

∂u(0)i

∂t
=−∂η

(0)

∂x′i
− ∂η

(1)

∂xi
+ σ ∂

2u(0)i

∂xj∂xj
− αu(0)i . (4.5)
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FIGURE 10. Reflection (|R|) and transmission (|T|) coefficients of periodic waves crossing a
finite patch of forest in constant water depth, as functions of amplitude-to-depth ratio (A/h0).
Symbols show the measured data while lines show the predictions by (3.25). Triangles and
solid lines are for h0 = 0.15 m, while circles and dashed lines are for depth h0 = 0.2 m. See
table 4 for experimental conditions: (a) Set A, (b) Set B, (c) Set C.

The unknown u(0) and η(1) can be represented as convolution integrals

u(0)i (xk, x′k, t)=−
∫ t

0
Kij(xk, t − τ)∂η

(0)(x′k, τ )
∂x′j

dτ, (4.6)

and

η(1) =−
∫ t

0
Aj(xk, t − τ)∂η

(0)(x′k, τ )
∂x′j

dτ. (4.7)

It follows from (4.2) that

∂Kij

∂xi
= 0, ∀xi ∈Ω, (4.8)

on the micro-scale. Substituting (4.6) and (4.7) into (4.5) and employing the Leibniz
rule, the left-hand side of (4.5) becomes

∂u(0)i

∂t
=−

∫ t

0

∂Kij(xk, t − τ)
∂t

∂η(0)(x′k, τ )
∂x′j

dτ − Kij(xk, 0+)
∂η(0)(x′k, t)

∂x′j
. (4.9)

The right-hand side of (4.5) can be expressed as

−∂η
(0)

∂x′i
−
∫ t

0
dτ
∂η(0)

∂x′j

{
−∂Aj(xk, t − τ)

∂xi
+ σ ∂

2Kij(xk, t − τ)
∂xk∂xk

− αKij

}
. (4.10)
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We now impose the initial condition,

Kij(xk, 0+)= δij, (4.11)

so that the last term in (4.9) can be written as −∂η(0)/∂x′i which cancels the first term
in (4.10). Finally, (4.5) becomes∫ t

0
dτ

∂η(0)

∂x′i

∣∣∣∣
τ

{
∂Kij

∂t

}
t−τ
=
∫ t

0
dτ

∂η(0)

∂x′i

∣∣∣∣
τ

{
−∂Aj

∂xi
+ σ ∂2Kij

∂xk∂xk
− αKij

}
t−τ
. (4.12)

Hence, Kij is governed on the micro-scale by

∂Kij

∂t
=−∂Aj

∂xi
+ σ ∂2Kij

∂xk∂xk
− αKij, ∀xi ∈Ω, t > 0. (4.13)

Again, Kij and Aj must be Ω-periodic and satisfy

Kij = 0, xk ∈ SB, (4.14)

and

〈Aj〉 = 0. (4.15)

Defined by (4.8), (4.11) and (4.13)–(4.15), the initial-boundary-value problem in
the unit cell can be solved numerically by the finite-element method. Note that these
equations, hence their solution, are independent of the macro coordinates. Then, the
cell-averaged horizontal velocity can be obtained as

〈u(0)i (x, x
′, t)〉 = −

∫ t

0
〈Kij(x, t − τ)〉∂η

(0)(x′, τ )
∂x′j

dτ, (4.16)

which is the transient Darcy’s law. By taking the cell average of (4.4) and invoking
Gauss’ theorem and Ω-periodicity, we obtain

∂η(0)

∂t
+ ∂

∂x′i

(
〈u(0)i 〉h

)
= 0. (4.17)

Combination of (4.17) with (4.16) leads to the mean-field equation for the free-surface
displacement

∂η(0)

∂t
= ∂

∂x′i

[
h(x′)

∫ t

0
〈Kij(x, t − τ)〉∂η

(0)(x′, τ )
∂x′j

dτ
]
. (4.18)

Clearly, the above equation reduces to the familiar long-wave equation in the absence
of forest.

4.2. One-dimensional initial-boundary-value problem
To illustrate the complete formulation of a macro-scale problem, we consider a one-
dimensional example where the sea depth is constant everywhere, i.e. h(x′)= 1. Inside
the forest, 0< x′ < L′B, the governing equations for η(0) and 〈u(0)〉 are (4.18) and (4.16),
respectively. The initial condition in the forest is assumed to be

η(0)(x′, 0)= 0. (4.19)

In the open water, x′ < 0, waves can be described by

η(0)− (x
′, t)=I (t − x′)+R(t + x′), u(0)− (x

′, t)=I (t − x′)−R(t + x′), (4.20)
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where I stands for incident waves and R for reflected waves. Matching the free-
surface elevation and velocity at the edge, x′ = 0, we obtain

I (t)= 1
2

(
η(0)(0, t)−

∫ t

0
〈Kij(x, t − τ)〉 ∂η

(0)(x′, τ )
∂x′

∣∣∣∣
x′=0

dτ
)
, (4.21)

and

R(t)= 1
2

(
η(0)(0, t)+

∫ t

0
〈Kij(x, t − τ)〉 ∂η

(0)(x′, τ )
∂x′

∣∣∣∣
x′=0

dτ
)
. (4.22)

Therefore, the boundary condition for η(0) at the incident edge, x′ = 0, is

η(0)(0, t)−
∫ t

0
〈Kij(x, t − τ)〉 ∂η

(0)(x′, τ )
∂x′

∣∣∣∣
x′=0

dτ = 2I (t). (4.23)

If the forest is of finite extent L′B, the solution in the open water on the transmission
side is of the form

η(0)+ (x
′, t)= u(0)+ (x

′, t)=T (t − x′), L′B < x′ <∞, (4.24)

where T denotes the transmitted wave. Matching the surface height and horizontal
velocity at x′ = L′B requires

η(0)(L′B, t)=T (t − L′B), (4.25)

and

−
∫ t

0
〈K(x, t − τ) 〉∂η

(0)(x′, τ )
∂x′

∣∣∣∣
x′=L′B

dτ =T (t − L′B), (4.26)

which can be combined to obtain the boundary condition at x′ = L′B,

η(0)(L′B, t)+
∫ t

0
〈K(x, t − τ) 〉∂η

(0)(x′, τ )
∂x′

∣∣∣∣
x′=L′B

dτ = 0. (4.27)

4.3. Numerical solution for the transient conductivity
The transient cell problem for Kij can be solved by the finite-element method by first
rewriting the initial-boundary-value problem in the weak form. Thus, we obtain from
(4.8), ∫∫

Ω

∂Kk
ij

∂xi
ϕj dΩ = 0, (4.28)

and from (4.13),∫∫
Ω

{[
Kk

ij − Kk−1
ij

1t
+ ∂Ak

j

∂xi
+ αKk

ij

]
φij + σ∇Kk

ij ·∇φij

}
dΩ = σ

∮
SB

∂Kk
ij

∂nSB

φij ds, (4.29)

where the index k denotes the kth time step and the time derivative is discretized by
the two-point backward difference. In (4.28), summation is over the index i but not
j. Again, linear triangular elements are used. The initial and boundary conditions are
given in (4.11) and (4.14), respectively. In addition, (4.15) is imposed.

As an example, we consider a micro-scale geometry consisting of a circular cylinder
inside a unit square as sketched in figure 1(a). Again due to micro-scale symmetry,
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FIGURE 11. Sample solutions of ln K (t) for a symmetric micro-scale configuration (see
figure 1a). The corresponding controlling parameters σ and α are calculated by (2.26) and
(2.29) respectively using n = 0.85, 0.9, 0.95 and all other parameters are listed in the third
row in table 1.

〈Kij〉 =K δij is isotropic. As shown in figure 11, our numerical results suggest that K
can be approximated by

K (t)=K0e−bt, (4.30)

where K0 and b depend on the geometry of the micro-scale problem and the
controlling parameters σ and α. In particular, K0 decreases while b increases with
decreasing porosity n, hence dissipation is stronger for a denser forest.

To examine the role of the cell geometry, we compare in figure 12 the conductivities
of two different micro-scale configurations, i.e. one cylinder per cell vs. five per
cell. Other parameters (i.e. n, α and σ , cell size) are kept the same. Note that
for the same porosity, the cell with multiple cylinders has the smaller permeability.
This is qualitatively consistent with the known feature in steady seepage flows
(Carmen 1937), where the permeability is not only a function of porosity but
also proportional to the square of the ratio L = (total volume)/(total surface area)
of a grain. For circular cylindrical grains we redefine the ratio as L =
(total sectional area)/(total circumference). For the single-cylinder cell, L 2 = (d/4)2
where d is the cylinder diameter. For the five-cylinder cell, the diameter of the four
small cylinders is d/2

√
2, and that of the larger cylinder is d/

√
2. The ratio is then

L 2 = (d/6√2)
2
. This explains the large difference of conductivities.

4.4. Tsunami through a thick forest
In this section, we examine a model of the leading tsunami from a distant origin
entering a forest normally. For brevity, the superscripts (0) and ′ will be omitted.

While the preceding initial-boundary-value problem can be solved numerically in
general, we give first an analytical solution for a semi-infinite forest with LB ∼ ∞
by Laplace transform. The result can be useful for physical understanding and for
validating discrete computations.

Instead of (4.27), the boundary condition at x ∼ ∞ is simply η→ 0. Taking the
Laplace transform and using the convolution theorem, we obtain from (4.18) an
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FIGURE 12. Effects of the cell geometry on the dynamic permeability, K : (a) shows two
different cell configurations, (b) compares the results of ln K . n = 0.9, σ = 0.217 and
α = 0.0051, which corresponds to the third row in table 1.

ordinary differential equation for the transformed free-surface displacement,

sη̂ = ˆK
∂2η̂

∂x2
, x> 0, (4.31)

where s is the transform variable and ( ̂ ) denotes the transformed functions in
s-domain. The solution satisfying the boundary condition (4.23) is

η̂ =
(

2

1+
√

s ˆK

)
Î (s) exp

(
−x
√

s
ˆK (s)

)
, x> 0. (4.32)

From the Laplace transforms of (4.21) and (4.22), we also obtain

R̂ =
(

1−
√

s ˆK

1+
√

s ˆK

)
Î . (4.33)

It has been shown by Kajiura (1963) (see also Mei 1983, p. 31, (1.42)) that the
leading tsunami from a distant and long fault line is a propagating one-dimensional
wave train approximately expressed by an Airy function with amplitude decaying in
time as tµ−1, where µ = 2/3 if the seafloor rises or falls vertically (line source)
and µ = 1/3 if the seafloor tilts along the fault line (line dipole). For analytical
convenience, we take

I (t)= Atµ−1 sinωt, t > 0, (4.34)

to model roughly the leading tsunami approaching the edge of the forest. The Laplace
transform of (4.34) is obtained as (see Bateman 1954, p. 152, equation (15))

Î (s)= iA
2
0 (µ)

[
1

(s+ iω)µ
− 1
(s− iω)µ

]
, (4.35)

in which 0(·) denotes the Gamma function.
Assuming (4.30) for K , the Laplace transform of K is

ˆK =
∫ ∞

0
dt e−stK0e−b t = K0

s+ b
. (4.36)
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Consequently, the Laplace transform of the free-surface displacement in the forest is

η̂ =
(

2

1+√sK0/(s+ b)

)
i
2

A0 (µ)

[
1

(s+ iω)µ
− 1
(s− iω)µ

]
× exp

(
−x
√

s(s+ b)/K0

)
. (4.37)

The free-surface elevation can be obtained by inverse Laplace transform,

η = 1
2πi

∫
γ

estη̂ ds, (4.38)

where γ is the path parallel to the imaginary axis in the s-plane and to the right of all
singularities.

It is known (Carslaw & Jaeger 1963, §126) that the asymptotic behaviour of η(x, t)
at large t can be found from its Laplace transform near the singular points with the
largest real part in the complex plane of s. Leaving the details to appendix A, we only
cite the results here:

η ≈ 2A

t1−µ
(1+ δ cosψ ′′) sin (ωt − ξ cosψ ′)− δ sinψ ′′ cos (ωt − ξ sinψ ′)

1+ 2δ cosψ ′′ + δ2
e−ξ cosψ ′,(4.39)

where

ξ = x
√√

ω2 + b2
ω

K0
, δ =

√
ωK0√
ω2 + b2

, ψ ′ = π+ 2ψ
4

, ψ ′′ = π− 2ψ
4

, (4.40)

and ψ = tan−1(ω/b). Solution (4.39) represents a spatially damped progressive wave.
The temporal attenuation follows the pattern of the leading wave before entering the
forest.

As for the behaviour at small time, the asymptotic approximation is found from
η̂(x, s) for large s (Carslaw & Jaeger 1963, §124), with the result

η(x, t)≈
0, if x/

√
K0 > t

2

1+√K0
Aω
(

t − x/
√

K0

)µ
, if x/

√
K0 < t

(4.41)

as derived in appendix B. Thus the head of the tsunami enters the forest with the
dimensionless speed of

√
K0. Since K0 is small when the porosity, n, is small, a

dense forest slows the invasion of an incoming tsunami.
These approximate results are compared with the numerical solution of (4.18) by

an implicit finite-difference scheme where the time derivative is approximated by
the first-order backward difference and the spatial derivative by the second-order
difference. A simple trapezoidal rule is used for the convolution time integral. We
take the incident wave of the form (4.34) with A = ω = 1 and µ = 2/3 (vertical rise
or fall of the seafloor). The cell geometry and controlling parameters are the same
as the example of n = 0.9 in figure 11. For this geometry the parameter b in (4.30)
is calculated to be 3.677. The asymptotic solutions for large times (4.39) and small
times (4.41) are compared with discrete computation with (1x,1t) = (10−3, 10−4) in
figures 13(a) and 13(b), respectively. Other input parameters are those listed in the
third row in table 1 (i.e. h0 = 5 m). In figure 13(a), which shows η at different stations
for all t, the attenuation of the tsunami by the forest is clearly seen. In addition,
the asymptotic approximation for large time according to (4.39) is accurate for t > 5.
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FIGURE 13. Leading waves of a tsunami entering a deep forest in a sea of constant depth:
(a) time histories of free-surface elevation, η, at different stations; (b) snapshots of leading
waves at initial instants of entry. Lines: asymptotic approximations. Dots: numerical solution
by finite differences.

On the other hand, figure 13(b) shows that the small-time approximation according
to (4.41) predicts reasonably well the leading waves entering the forest for roughly
x, t 6 0.1. Beyond that the discrepancy becomes more significant.

4.5. Experiments and numerical simulations for transient waves crossing a model forest

Using the same array of vertical cylinders as shown in figure 8, a series of tests
has also been performed to study transient waves through the forest. Two types of
long waves have been considered, namely wave packets and solitary waves. Records
of free-surface elevation were recorded at the gauge stations listed in table 2. Since
in shallow water (h0 = 0.12 m), accurate measurement of long waves of infinitesimal
steepness is difficult, most of our tests were conducted for moderately nonlinear waves.
Numerical simulations were carried out by the algorithm described in § 4.4.

First we present the record of a transient wave packet consisting of a few oscillatory
waves, as shown in figure 14. The packet is led by a prominent trough (depression).
Data were taken at five stations as listed in table 2. Since stations G3 and G4 are
close to the forest, data of incident and reflected waves cannot be easily separated.
We use the record at G4 (0.1 m from the leading edge of the forest) as the boundary
value η(0, t) in our numerical simulations instead of (4.23). At the exit of the forest,
the boundary condition (4.27) is imposed. Bottom friction is ignored (α = 0). The
parameter σ = 0.0085 is calculated from (2.26) for h0 = 0.12 m, The characteristic
wave period is estimated to be 3 s and half the maximum crest-to-trough height is
taken to be the wave amplitude A. Comparison between predictions and measurements
at station G5 which is at the forest centre is shown in figure 14. Spatial attenuation can
be easily seen and the theory fits reasonably well with the recorded data for roughly
the first 20 s. After that, reflection from the sloping beach arrived at station G5 but is
not accounted for in our simulations. Another test was performed for a packet led by
an elevation. Similar agreement between data and numerical simulation is found, hence
no plot is shown here.

In the next set of experiments, we generated long pulses with the profile of a soliton
by displacing the piston wavemaker as a hyperbolic tangent function of time, as in
Huang et al. (2010). Five incident waves of increasing amplitudes were tested in the
same depth. The incident wave conditions are list in table 5. First we checked that the
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FIGURE 14. A transient wave packet crossing a forest. Solid and dashed lines: experimental
data at G4 and G5, respectively. Bold line: numerical prediction at G5.

Set h0 (m) H (cm) 1/k0 (m) k0LB MaxRed σ

1 0.12 0.48 0.693 1.573 217 0.0056
2 0.12 0.93 0.498 2.190 420 0.0078
3 0.12 1.34 0.415 2.629 606 0.0094
4 0.12 1.78 0.360 3.030 850 0.0108
5 0.12 2.26 0.319 3.414 1022 0.0122

TABLE 5. Experimental conditions for solitary waves crossing a 1.08 m thick model forest
with porosity n = 0.913. Records of corresponding free-surface elevation are shown in
figures 15–17.

records at gauge G2 agree essentially with the classical solitary wave,

η(x, t)= Hsech2
[
k0(x−

√
g(h0 + H)t)

]
, k0 =

√
3H

4h3
0

, (4.42)

where H is the maximum wave height and k0 the characteristic wavenumber of the
soliton. Some waviness was found at the tail due to the finite increments of the step
motor, and to the early stoppage of the paddle displacement. For numerical simulations
the recorded time series at G2 is used as the incident wave, I (t), in the boundary
condition (4.23). For instance, data for 0 < t < 4.08 s at G2 is taken as the incident
wave for Set 1 (see figure 15). During this time range reflection from the forest is
not felt at G2, as estimated by using the wave speed of the linearized theory. In all
simulations, the time origin is set at the instant when the incident wave crest reaches
G2. Finally, (4.27) is imposed at the exit of the forest; bottom friction is ignored
(α = 0) to represent the smooth laboratory flume.

Figure 15 compares the measured and predicted free-surface elevations of two
almost linear solitons with H/h0 = 0.04, 0.0775 at stations G4, G5 and G6. Reflection
is computed according to (4.22). Attenuation of the advancing crest is evident at gauge
G5 at the centre of the forest, and G6 near the exit edge. A small reflected wave is
also seen at G2 around t = 6 s. For larger amplitudes (H/h0 = 0.1117, 0.1483), the
agreement is still quite good despite the linearized approximation in the theory, as
seen in figure 16. Note that the measured data show slightly higher phase speed than
the prediction, and the phase difference becomes larger for higher waves. This is of
course the well-known effect of nonlinearity present in the experiment but omitted in
the theory.
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FIGURE 15. Comparison of theory (dashed lines) and measurements (solid lines) at stations:
G4, G5 and G6. Reflection from the forest is also compared at G2. Wave heights (H) of the
incident solitary waves are 0.48 cm for Set 1 and 0.93 cm for Set 2, respectively. See figure 8
and table 2 for the positions of wave gauges.

Finally the records of a relatively large solitary wave (H/h0 = 0.1883) are shown
in figure 17. Strong spatial attenuation of the main crest is evident. The reflected
wave with a wave height roughly 18 % of the incident wave is also reasonably well
predicted, as can be seen in the record at station G2.

5. Conclusions
Starting from a set of linearized equations we have developed a micro-mechanical

theory of the attenuation of long waves by coastal forests. Modelling turbulence and
bottom friction by linear terms, with the eddy viscosity taken from past experiments
for steady flows, we have employed the asymptotic method of homogenization
(multiple scales) to obtain the mean-field equations for the macro-scale motion. The
effective conductivity for the mean-field equation is obtained by numerically solving
certain canonical problems in a micro-scale cell. Analytical solutions of the macro-
scale problems are discussed for sinusoidal waves. Solution of the transient problem
simulating the head of a tsunami is also discussed. A series of laboratory experiments
has also been conducted to study the effects of coastal forests on surface waves. In
these experiments the maximum Reynolds numbers are comparable to those of the past
steady-flow experiments from which the eddy viscosity is extracted. For transient long
waves of finite duration, good agreement is found between numerical simulations and
laboratory records of linear and even moderately nonlinear waves. For steady periodic
waves the agreement is poor for very long waves due probably to beach reflection,
but surprisingly good for shorter waves even when the amplitude is not very small.
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FIGURE 16. Comparison of theory (dashed lines) and measurements (solid lines) at stations
G2, G4, G5 and G6 for both Set 3 (H = 1.34 cm) and Set 4 (H = 1.78 cm). The water depth is
h0 = 12 cm.

These comparisons suggest that the eddy viscosity from steady flow measurements can
be used for long-wave predictions, and demonstrate the robustness of the asymptotic
theory, which avoids laborious numerical computations.

In nature, the near-shore dynamics of a tsunami can of course be highly nonlinear.
More experiments on wave-induced turbulence in high-Reynolds-number flows through
a cylinder array are needed to provide a firmer basis for our assumptions. While it
is fortunate that our linearized theory compares fairly well even for moderately short
and nonlinear waves, extensions to account for nonlinearity and depth variation in
shorter waves are worthwhile. The deformation of submerged plants is important for
better prediction of not only the attenuation of waves but also wave-induced convective
diffusion of particulates in vegetated waters. All these improvements are necessary
for providing technical basis for future considerations of Green Forests for tsunami
protection.

The research work presented here is supported by grants from the National Science
Foundation to Cornell University. For this collaboration C.C.M. was partially funded
by a Mary Upson visiting professorship from Cornell University and by the US Office
of Naval Research under Grant MURI-N00014-06-1-0718.

Appendix A. Asymptotic solution for large time
The asymptotic behaviour of η(x, t) at large t can be obtained from the inverse

Laplace transform near the singularities with the largest real part in the complex
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FIGURE 17. Comparison between theory (dashed lines) and measurements (solid lines)
at selected stations: G2, G4, G5 and G6. Wave height of the incident solitary wave is
H = 2.26 cm and the water depth is h0 = 12 cm.

plane of s (Carslaw & Jaeger 1963, p. 279). For (4.37) we shall only look at three
singularities,

s= 0, s=±iω, (A 1)

all of which have the same real part, 0, and neglect the contribution from the pole at

1+
√

sK0

s+ b
= 0, i.e. s=− b

1−K0
< 0, (A 2)

since K0 < 1. The final solution is the sum of three singularities in (A 1).
Near s= 0, the leading term of (4.37) is

η̂(x, s≈ 0)≈ iA0(µ)
[

1
(iω)µ

− 1
(−iω)µ

]
exp

(
−x
√

sb/K0

)
= 2A0(µ)ω−µ sin

µπ

2
exp

(
−x
√

sb/K0

)
, (A 3)

where 0(·) is the Gamma function. From Bateman (1954) (see p. 245, equation (1)),
the inverse Laplace transform for e−

√
λs is

1
2
√
π

√
λ

t3/2
exp

(
− λ

4t

)
. (A 4)

Thus,

[η(x, t)]0 ≈
2

t3/2

x
√

b/K0

2
√
π

A0(µ)

ωµ
sin

µπ

2
exp

(
− bx2

4K0t

)
, (A 5)

which dies out with t rapidly.
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Next consider the singularity at s= iω. Note first

exp
(
−x
√

s(s+ b)/K0

)
≈ exp

(
−x
√
(iω)(iω + b)/K0

)
, (A 6)

and √
(iω)(iω + b)/K0 = ei(π/4+ψ/2)√ω/K0 (ω

2 + b2)
1/4
, (A 7)

where

tanψ = ω
b
. (A 8)

From Carslaw & Jaeger (1963) (see p. 280), the leading term of the inverse Laplace
transform is

[η(x, t)]iω ≈ C L +
1

t1−µ
−iA

2
exp

(
−xei(π/4+ψ/2)

√√
ω2 + b2ω/K0

)
eiωt, (A 9)

where

C L + = 2

1+√sK0/(s+ b)

∣∣∣∣∣
s=iω

=
(

1+
√
ωK0/

√
ω2 + b2ei(π/4−ψ/2)

)−1

. (A 10)

For the singularity at s = −iω, the approximate inverse Laplace transform is the
complex conjugate of (A 9),

[η(x, t)]−iω ≈ C L −
1

t1−µ
iA
2

exp
(
−xe−i(π/4+ψ/2)

√√
ω2 + b2ω/K0

)
e−iωt, (A 11)

where

C L − =
(

1+
√
ωK0/

√
ω2 + b2e−i(π/4−ψ/2)

)−1

. (A 12)

Since the contribution from s = 0 is relatively small at large time, we obtain
η ≈ [η(x, t)]iω+ [η(x, t)]−iω which represents a spatially damped progressive wave. The
temporal attenuation follows the pattern of the leading wave before entering the forest.
For good protection, the thickness of the forest should be greater than

O

 1√√
ω2 + b2ω/K0

 , (A 13)

which suggests that the thickness must be large for long tsunamis.

Appendix B. Asymptotic solution for small time
From Carslaw & Jaeger (1963) (see p. 274, §124), the small-time behaviour is

dominated by the inverse Laplace transform at large s. For large s, (4.37) becomes

η̂(s)≈ CS

A

2
0 (µ)

i
sµ

[(
1+ iω

s

)−µ
−
(

1− iω
s

)−µ]
e−sx/
√

K0

= CS

A

2
0 (µ)

i
sµ

[(
1− iµω

s

)
−
(

1+ iµω
s

)
+ H.O.T.

]
e−sx/
√

K0

= CS

A

2
0 (µ)

[
2
µω

sµ+1
+ H.O.T.

]
e−sx/
√

K0, (B 1)
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where

CS = lim
s→∞

2

1+√sK0/(s+ b)
= 2

1+√K0
. (B 2)

Hence

η̂(s)≈ CS A0 (µ)µω

{
e−sx/
√

K0

sµ+1

}
. (B 3)

Consider

Ĝ (s)= e−sx/
√

K0

sµ+1
; (B 4)

the inverse Laplace transform is

G (t)= 1
2πi

∫
γ

e−s
(

x/
√

K0−t
)

sµ+1
ds, (B 5)

where γ is the path parallel to the imaginary axis on the s-plane and to the right of
all singularities. For x/

√
K0 − t > 0, we close the contour by a large semi circle in

the right half-plane. By Cauchy’s theorem and Jordan’s lemma, the inverse Laplace
transform is zero. Therefore, there is no disturbance if x/

√
K0 > t.

For x/
√

K0 − t < 0, the inverse Laplace transform is

G (t)= 1
2πi

∫
0

esξ

sµ+1
ds, ξ = t − x/

√
K0 > 0, (B 6)

which can be evaluated as (see Bateman 1954, p. 238, (1))

G (t)= ξµ

0(1+ µ) =
(
t − x/

√
K0

)µ
0(1+ µ) . (B 7)

Hence for small t,

η(x, t)≈
0, if x/

√
K0 > t

2

1+√K0
Aω
(

t − x/
√

K0

)µ
, if x/

√
K0 < t,

(B 8)

where the property 0(1+ µ)= µ0(µ) has been evoked.
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