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ABSTRACT 

 

A highly hydrophilic ordered mesoporous carbon has been synthesized by a microwave assisted 

method from a mixture containing glucose and poly(vinyl alcohol) and with a silica template to 

have high hydrophilicity, low charge transfer resistance and large specific surface area. The new 

carbon material is further used as an electrode material to fabricate an anode-limited glucose/O2 

biofuel cell, which gives an output power density of 110  W cm
−2

 with cell voltage of 0.72 V, a 

performance much higher than the reported anodes made from SWNT, bi-polymer layer and 

carbon black at the same or even higher glucose concentration. This work provides a universal 

approach to synthesize functional carbon nanomaterials with desired architectures and properties 

for various important applications in energy conversion systems such as fuel cells and solar cells. 
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1. Introduction 

 

Enzymatic biofuel cells (BFCs) as a renewable energy system employ enzymes to harvest electrical 

energy from biofuels [1–4]. Distinctly from the conventional H2/O2 fuel cells, BFCs can use biofuels 

while working under moderate conditions, such as mild medium and ambient temperature, thus 

becoming a very attractive green energy system [5,6]. Moreover, since fuels consumed by BFCs, 

such as glucose and oxygen, are generally rich in a biological system, BFCs can be used as the 

required energy systems for implantable drug delivery and autonomous health monitoring systems 

[7–9]. These amazing properties and important potential applications have attracted great interest in 

the fundamental study and development of BFCs. Recently, one of the significant advances of BFCs 

is development of biocathodes and/or bioanodes with direct electron transfer ability of enzymes [10–

12]. Direct electron transfer, a direct electrochemistry process can significantly improve the energy 

conversion efficiency of a bioenergy system. It can also eliminate the use of additional electron 

transfer mediators, which suffer from fast loss thus resulting in high operation expense and large 

overpotential. Unfortunately, direct electron transfer of enzymes with bare electrode is very difficult 

[13–15]. It is mainly caused by the deeply buried redox centers of enzymes in their insulating shell 

and also by denature of the enzymes on electrode surfaces. 
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Functional nanomaterials could provide an electron-mediating function to facilitate the direct 

electron transfer of enzymes by reducing the electron tunneling distance between their active sites 

and electrode surface [2,16–20]. Recently, carbon nanomaterials, such as multi-walled carbon 

nanotubes (MWNT), single-walled carbon nanotubes (SWNT), graphene, C60, carbon black and 

hollow carbon spheres, have been attracted increasing attentions because of their good conductivity, 

chemical inertness, and relatively wide potential window. Some of these well-known carbon 

materials have also shown their capability to facilitate direct electron transfer of proteins with 

electrodes such as MWNT for hemoglobin [21], SWNT for microperoxidase MP-11 [22], and 

graphene for glucose oxidase (GOD) [23]. However, it still remains a great challenge to further 

enhance the direct electron transfer rate of enzymes, eventually resulting in high-performance biofuel 

cells. 

 

Ordered mesoporous carbons (OMCs) have been recently developed as a new class of carbon 

nanomaterials with high specific surface area, uniform pore distribution, high thermal/mechanical 

stability and flexible framework composition [24–26]. OMCs could also be a good candidate to 

achieve fast direct electron transfer of enzymes, but they exhibit rather unreactive surface and 

hydrophobic property due to lack of oxygen-containing functional groups caused by the high 

carbonization temperature during synthesis [26,27]. The poor surface reactivity and hydrophobicity 

not only make it difficult for immobilization of enzymes, but also seriously prohibits the reactant 

from solution to access the active sites of the enzymes on the electrode surface [28]. Clearly, this 

drawback is one of the main barricades for the direct electron transfer at an enzyme/electrode 

interface and high-performance bioufuel cells.To make their surface active, a number of methods 

have been explored by using super strong oxidation agents such as nitric acids and ozone for 

producing some oxygenated functionalities. Unfortunately, these functional methods always 

result in damage of pore and surface structure to deteriorate the electrocatalytic performance 

[29,30]. 

 

Microwave irradiation with superior capability in providing a high reaction rate and increased 

yield of products, is a noninvasive and clean process to synthesize a variety of materials [31,32], 

and has been recently applied to make carbon related nanomaterials including carbon nanotubes, 

hollow carbon nanospheres and core/shell metal/carbon nanoparticles [33,34], demonstrating its 

great potential to tailor carbon nanomaterials with unique physicochemical properties and 

structures. In this work, we report a microwave assisted approach to prepare highly hydrophilic 

OMC material by incorporating a suitable polymer in the synthesis. Meanwhile, direct electron 

transfer of an enzyme on the carbon material was investigated. Furthermore, an anode-limited 

glucose/O2 biofuel cell was developed and its performance was explored. 

 

2. Experimental 

 

2.1. Synthesis of carbon materials 

 

In preparation of the carbon material, 1 g of molecular sieve SBA-15 (Jilin University High-Tech. 

Co. Ltd., Changchun, China) was immersed in a solution containing 1.25 g of glucose, 0.14 g of 

sulphuric acid and 5 g water. The mixture was drying by placing in an oven for 6 h at 373 K, 

followed by increasing the temperature to 433 K and maintaining for 6 h. The carbonization was 



conducted with different times in a microwave oven (LG, MS-2744B, 1000W) using graphite as the 

heat-conducting layer, which has been widely used in carbonizations [35,36]. The heating procedure 

was 2 min on and 2 min off, since it resulted in uniform due to eliminating the overheating. It was 

observed that during the on-off pulse heating the on-cycle was longer than 2 min or the off-cycle 

less than 2 min, sparks of the samples occurred due to overheating, resulting in extremely non-

uniform products with dark color on the heat-contacting layer while very light color in the center 

part. The carbonization was further optimized for the cycle times. With one cycle of 2 min on and 2 

min off, the product exhibited mixed grey and white colors, indicating an uncompleted 

carbonization. After two-cycle heating, a uniformly black sample was obtained, showing a 

completed carbonization. However, when 3 heating cycle was implemented, the product turned to 

partially white color, clearly indicating burned carbon. The carbon/silica composite produced by the 

microwave oven was washed with 5 wt% hydrofluoric acid at room temperature to remove the silica 

template. The silica-free product was finally obtained by filtering followed by washing with ethanol 

and drying at 393 
◦
K. To synthesize the polymer-added carbon material, the same procedure was 

used but with the precursor solution containing 0.9 g of glucose and 0.35 g of poly(vinyl alcohol) 

(PVA, Mw 13,000–23,000, Sigma) from the beginning. For comparison, regular mesoporous carbon 

was also synthesized by the conventional method at 900
◦
C under N2 flow for 3 h. 

 

2.2. Preparation of enzyme electrodes 

 

Glassy carbon electrodes (GCE, 3mm in diameter, CH Instruments Inc., USA) were polished to 

a mirror-like finish sequentially with 1.0, 0.3, and 0.05  m alumina slurry followed by rinsing with 

deionized water. The electrodes were successively sonicated in 1:1 nitric acid, acetone and 

deionized water, and then were dried at room temperature. Enzyme (glucose oxidase), from 

Aspergillus niger, Sigma–Aldrich) immobilization was achieved by immersing 25mg of the 

material in 2.5 mL of glucose oxidase solution (10mg mL
−1

, pH 7.0, 0.01 M phosphate buffered 

saline (PBS)) under ambient conditions and shaking for half an hour, and then stored at 4
◦
C 

overnight. The maximum protein loadings on as-prepared carbons with and without PVA 

determined by Ultraviolet–visible (UV–vis) spectra at 280nm were 38wt% and 32wt% 

respectively. The mixture was then centrifuged and 2 mL of 0.01 M, pH 7.0, PBS was added. The 

glucose oxidase-immobilized carbons were reshaken and 5  L of this suspension was deposited on 

the centre of the pretreated GCE, which was then left to dry at room temperature. Then 3  L of 

0.5% nafion aqueous solution (to fix the protein-impregnated material) were applied on electrode 

surface, which was covered with a plastic tube and left to dry overnight. For electrodes without 

glucose oxidase, the same procedures were used except the solution used is pure 0.01 M PBS. 

 

2.3. Construction of biofuel cell 

 

The biofuel cell consisted of two custom-fabricated plastic cabinets with 6.0cm length, 6.0cm 

width and 5.0cm height, which was separated by a Nafion membrane (Aldrich). Electrodes were 

designed by using enzyme/carbon modified GCE electrode (3mm in diameter) as the anode and Pt 

wire (2 mm in diameter and 30 mm length) as the cathode. The anode was placed in one cabinet con-

taining 10mM glucose in 0.1 M PBS (pH 7.0) and the cathode was in the other cabinet containing 0.1 

M PBS (pH 1.0, adjusted by H2SO4). 

 

  



2.4. Material characterizations and biofuel cell measurement 

 

Morphology and microstructure of materials were examined by field emission scanning 

electron microscopy (FESEM, JSM-6700F, Japan). Transmission electron microscopy (TEM) 

images were obtained using JEOL JEM-2100F transmission electron microscope operated at 200 

kV. Nitrogen adsorption/desorption experiments were carried out at 77.3 K by an Autosorb-1 

(Quantachrome Instruments) analyzer. Water contact angle was measured by FTA1000C Class 

(First Ten Angstroms, USA). Fourier transform infrared (FTIR, Bruker EQUINOX 55 

DuroscopeTM ATR) spectra were recorded with a resolution of 1 cm
−1

. Electrochemical 

measurements (cyclic voltammograms and electrochemical impedance spectroscopy) were 

performed in a three-electrode cell using CHI-760B electrochemical station (CH Instruments Inc., 

USA) with the modified GCE electrode, Pt wire and Ag/AgCl as working, counter and reference 

electrodes, respectively. Performance of the biofuel cell was characterized by external resistance 

loads and the output voltage was measured by a multimeter. Before measurement, the biofuel cell 

was allowed to equilibrate for 1 h before data collection. 

 

3. Results and discussions 

 

The synthesis routes of two carbon materials are outlined in Scheme 1. Three steps are required 

for both carbon materials. First, carbon precursor (glucose for OMC-1; glucose and polymer PVA 

for OMC-2) is impregnated into silica template. Second, the silica/carbon precursor composite is 

treated by mild heating. Third, carbonization is completed with intermittent microwave irradiation 

and a unique mesoporous carbon material is obtained by removing the silica template. PVA is 

selected as the added in polymer because of its high water-solubility for an aqueous preparation 

process and abundant hydroxyl groups for high hydrophilicity. The microstructure and morphology 

of as-prepared carbon materials were studied by FESEM as shown in Fig. 1. The low 

magnifications of Fig. 1a and c illustrate that both carbon materials have rod-like morphology with 

a relatively uniform size, similar to the morphology of the silica template SBA-15 reported [26]. 

The high-resolution FESEM images in Fig. 1b and d show that the carbon rods are composed by 

arrayed dense parallel channels. 

 

The detail structures of the two carbon materials were further investigated by TEM. The 

representative TEM images of both carbon materials are illustrated in Fig. 2. The relatively bright 

lines are images of pore structures of carbon, while the black lines are the carbon scaffold. The 

low TEM images of OMC-1 in Fig. 2a and OMC-2 in Fig. 2c display that both carbon materials 

have high porosity. The high-magnification TEM image of OMC-1 in Fig. 2b clearly 

demonstrates the detailed pore structure. The pores of OMC-1 are arranged in an ordered manner 

with diameter around 3.6 nm and the centers of adjacent pores 10 nm apart, which are in agreement 

with the replica structure of the SBA-15 [26]. In comparison of the pore diameter of OMC-1 with 

the wall-thickness of SBA-15 reported, we can find that the pore diameter of the former is a little 

larger than that of the later. It is possibly caused by the carbon materials slightly shrank during the 

microwave treatment, which has been also observed in carbon materials synthesized by 

conventional methods [37]. The detailed pore structure of OMC-2 in Fig. 2d shows similar structure 

as OMC-1, clearly demonstrating that the microwave irradiation approach can produce ordered 

mesoporous carbon materials similar to the conventional high-temperature/vacuum method and 

the incorporated polymer during synthesis does not affect the ordered pore structure. 



Representative nitrogen adsorption/desorption isotherms of the synthesized carbon materials and 

their corresponding pore-size distributions obtained from analysis of the desorption branch using the 

BJH (Barett–Joyner–Halenda) method are shown in Fig. 3a and c, indicating that both carbon 

materials have the pore-size distribution centered at 3.6 nm. The pore-size distributions are consistent 

with the TEM observations in Fig. 2, which further confirms the formation of a mesoporous 

structure. The Brunauer-Emmett-Teller (BET) area, a specific surface area of OMC-1 and OMC-2 

obtained from the nitrogen adsorption are 475 m
2
g
−1

 (curve 1) and 821.8 m
2
g
−1

 (curve 2) 

respectively. The difference of the specific surface area is likely mainly contributed from micropores, 

which have significant effect on the BET surface area of a porous material [38]. In comparison of the 

pore-size distribution in microporous (less than 2 nm) regions (Fig. 3c) for both materials, it is 

revealed that there is a clear pore-size distribution centered around 1 nm for OMC-2, while not 

obvious for OMC-1. The only difference between the two synthesis routes for both carbon materials 

is the polymer PVA addition in the preparation of OMC-2. A reasonable speculation is that PVA has 

low burning point than that of largely cross-linked glucose [39], and a part of PVA might be burned 

during microwave irradiation, which resulted in micropores centered on 1 nm for OMC-2. Though 

the exact mechanism for OMC-2 with more micropores is still not very clear, these results 

demonstrate that this microwave irradiation method can produce mesoporous carbons with uniform 

pore structure and the addition of a suitable polymer during the synthesis can result in higher 

specific surface area. The nitrogen adsorption–desorption isotherm and corresponding pore size 

distribution of the OMC prepared by the conventional method [24,26] are given in Fig. 3b and d, 

respectively. The pore-size distribution is centered at 4.0 nm, a slightly larger size than that of 

OMC-2 of 3.6 nm. The BET area obtained from the nitrogen adsorption for conventionally 

synthesized OMC is around 820 m
2
 g
−1

, which is similar to that of OMC-2 synthesized by the 

microwave heating. However, the microwave heating needs only 8 min (2 min on and 2 min off, 

two cycles), and thus is significantly more efficient than the conventional method (under N2 flow at 

900
◦
C for 3 h). 

 

The hydrophilicity of the as-prepared carbon materials was evaluated by water contact angle 

measurements. The water contact angle of OMC-1 is 38.4
◦
 (Fig. 4a), which is much smaller than 

79.1
◦
 observed for the ordered mesoporous carbon materials synthesized by the conventional 

method [26]. The water contact angle of OMC-2 shown in Fig. 4b exhibits an angle of 20.6
◦
, 

which is even smaller than that of OMC-1 and quite close to that of PVA [40]. These observations 

could be explained by Fourier transform infrared (FTIR) spectra of both carbon materials shown 

in Fig. 5. The broad absorption bands centered at 3450 and 1620cm
−1

 correspond to the stretching 

and bending modes of the OH group, and the absorption bands at 1234 and 1385 cm
−1

 are 

assigned to the stretching and bending vibrations of C–OH. These bands could be found in both 

OMC-1 and OMC-2, indicating that the hydroxyl group still remains in the two carbon materials. 

Apparently, the hydroxyl group can improve hydrophilicity of the mesoporous carbons. The 

difference of the two carbon materials in the FTIR spectra lies in the relative band peak intensity. 

Clearly, the relative band peak intensity of OMC-2 is larger than that of OMC-1, showing that 

OMC-2 with more hydroxyl groups. This is why OMC-2 is more hydrophilic. These results indicate 

that this microwave irradiation method can synthesize highly hydrophilic carbon s and the 

hydrophilicity can be further improved by impregnation of a suitable polymer during synthesis. 

 

The electrochemical properties of OMC-1 and OMC-2 were characterized by electrochemical 

impedance spectroscopy in 10mM Fe(CN)6
3−

/
4−

 to 1.0 M KCl. The measured impedance result is 



displayed with real part ( Z' ) on the X-axis and the imaginary part ( Z´́ ) on the Y-axis, known as 

Nyquist plot in Fig. 6, in which well-defined frequency-dependent semicircle impedance curves 

are observed at the high frequency range followed by a straight line. Randle equivalent circuit 

(inset of Fig. 6) is often used to model the complex impedance in an electrochemical cell, which 

is composed of the ohmic resistance of the electrolyte solution, Rs in connection in series with 

parallel elements of double layer capacitance, Cdl, and Faraday impedance, Zf, which comprises 

serially connected charge-transfer resistance, Rct and Warburg impedance, Zw. The lower Rct 

indicates the faster charge transfer rate between electrode and reactant species. The values of Rct 

obtained from Fig. 6 are 17.5 and 5.2   cm
2
 for OMC-1 and OMC-2 electrode, respectively, 

indicating that OMC-2 has much lower charge transfer resistance. 

 

These mesoporous carbons were further explored as electrode material for direct electron transfer 

of enzyme. As mentioned in the experiment part, the measured percentage adsorption for glucose 

oxidase by UV–vis spectra at 280 nm is 38 and 32 wt% for OMC-2 and for OMC-1, respectively, 

which is not proportional to the BET area of OMCs (821.8 and 475 m
2
 g
−1

 for OMC-2 and OMC-1, 

respectively). As we know, the dimensional size of proteins such as GOD ranges from 5 to 10 nm 

[41] such that the outside surface and part of pores (>5 nm) of OMCs might be utilized for GOD 

immobilization. However, it is recently reported that the small pores (<2 nm) could be a 

stoichiometric electron acceptor and host for a variety of electron-donating guest species [42,43]. 

Also as discussed above, good surface hydrophilicity is favorable for immobilization of enzymes 

and the reactant from solution to access the active sites of the enzymes on the electrode surface [28]. 

OMC-2 with large amount of micropores and good hydrophilicity might be useful in protein direct 

electron transfer. Cyclic voltammograms (CVs) were employed to study the possibility of direct 

electron transfer of GOD on OMC-2. Fig. 7a shows CVs of different electrodes in a N2-saturated 

PBS buffer solution. Both GOD and OMC-2 modified electrodes alone only exhibit capacitive, 

squared CVs over the potential window caused by their double layer capacitance (curves 1 and 2). 

However, GOD/OMC-2 modified electrode shows a pair of well-defined redox peaks at −535 and 

−476 mV over its capacitive response, which is consistent with the reported redox potentials of 

FAD/FADH2, the active center of GOD at neutral pH [13], thus clearly demonstrating the ability of 

direct electron transfer of GOD on OMC-2 electrode. Electrochemical behavior of GOD on OMC-1 

was also studied and the result is illustrated in Fig. 7 (curve 4), from which a very weak redox peaks 

over its capacitive response can be found. The active enzyme density on the electrode surface (mol 

cm
−2

) can be calculated through integrating the redox peaks at scan rate of 100 mVs
−1

 [13]. The 

calculated active enzyme density on OMC-2 is 3.2 × 10
−10

 mol cm
−2

, which is much higher than that 

on OMC-1 (0.22 × 10
−10

 mol cm
−2

). The measured percentage adsorption of 38 wt% for OMC-2 

and 32 wt% for OMC-1 can be converted into a unit surface adsorption of 1.5 × 10
−9

 mol cm
−2

 for 

OMC-2 and 1.25 × 10
−9

 mol cm
−2

 for OMC-1. Thus, about 21% and 1.8% of the GOD immobilized 

on OMC-2 and OMC-1 retains the electrochemical activity, thus indicating that OMC-2 is a much 

better electrode material for direct electrochemistry of GOD. The effect of scan rate on electron 

transfer behavior of GOD on OMC-2 was also investigated. Both cathodic and anodic peak currents 

of CVs obtained are linearly proportional with scan rates from 50 to 250 mV s
−1

, as shown in Fig. 

7b, indicating that the redox reaction of immobilized GOD is a surface-controlled electrochemical 

process and further proving the direct electron transfer of GOD on OMC-2 material. The Laviron 

model [44] is often used to estimate the electron transfer rate constant Ks, from CV measurements. 

In the GOD/OMC-2 electrode, Ks is about 3.98 s
−1

, which is much larger than Ks of GOD on 

SWNTs (0.3 s
−1

) [45], MWNTs (1.53s
−1

) [46], and gold nanoparticles (1.3s
−1

) [47]. The results 



clearly demonstrate that the enhanced direct electron transfer rate of GOD on the synthesized 

carbon material. 

 

Glucose/O2 biofuel cell was constructed with GOD/OMC-2 modified GCE electrode as the 

anode and Pt as the cathode, and the setup details can be found in the experiment part. The 

electrocatalytic behaviors of the anode and cathode were studied and the results are shown in Fig. 

8. The catalytic electrooxidation of glucose on GOD/OMC-2 anode occurs at −0.6 V vs Ag/AgCl, 

and reaches its plateau of 150  A cm
−2

 near −0.5 V vs Ag/AgCl. Due to GOD possesses direct 

electron transfer on OMC-2, the electrooxidation of the GOD towards glucose in the fuel cell is 

obviously direct electron transfer-based catalysis process. For cathode, catalytic electroreduction 

of O2 was observed at +0.6 V vs Ag/AgCl and reached its 1200  A cm
−2

 near +0.4 V vs 

Ag/AgCl. Compared with the plateau current density of cathode, the smaller anode plateau 

current density indicates that the operation of this biofuel cell is anode-limited, which is essential 

to accurately evaluate the anode electrocatalytic performance. 

 

The performance of the assembled glucose/O2 biofuel cell was investigated. By using external 

resistance loads, the polarization and output power density against current density of the 

assembled biofuel cell are displayed in Fig. 9. The polarization curve shows that the open-circuit 

potential (OCP) was near 1.2 V and the cell voltage could keep around 0.7 V at current density 

from 50 to 150  A cm
−2

 (current density was calculated versus geometric electrode area, giving 

0.07 cm
2
 for GCE with diameter 3mm). The plot of power density versus current density has a 

volcano shape, which is a typical relationship of output power density against the current density 

for fuel cells. The maximum power density is 110 Wcm
−2

, which is obtained at a current density 

of 150  A cm
−2

  with a cell voltage of 0.72 V. This maximum power density achieved at 

physiological glucose concentration (10mM) is much higher than that of glucose/O2 biofuel 

cells with anodes made from OMC-1 (12.5  W cm
−2

 at 0.58 V, 10mM glucose, data not 

shown), regular OMC synthesized by the conventional method (38.7  Wcm
−2

 at 0.54 V, the 

cell voltage around 0.7 V at current density from 45  A cm
−2

, 60mM glucose, reported in 

[48]), and other materials such as SWNT (9.5  Wcm
−2

 at 0.52 V, 30mM glucose) [5], bilayer 

polymer membrane (14.5  Wcm
−2

 at 0.36 V, 10mM glucose) [49], and carbon black (90 

 Wcm
−2

 at 0.4V, 10mM glucose) as well [50]. Since the performance of this biofuel cell is the 

anode-limited, the excellent output power density achieved at the same or even lower glucose 

concentration in this work over the reported works, should be ascribed to the superior 

electrocatalytic activity of the GOD immobilized on as-prepared carbon material. 

 

4. Conclusion 

 

In summary, a highly hydrophilic mesoporous carbon has been synthesized with a microwave 

method by incorporating a polymer during the synthesis. Glucose oxidase immobilized on the 

carbon exhibits fast direct electron transfer rate. An anode-limited glucose/O2 biofuel cell based 

on the glucose oxidase functionalized carbon as the anode and a Pt wire as the cathode delivers 

output power density as high as 110  Wcm
−2

 at a cell voltage of 0.72V in a physiological 

environment, a performance much higher than that of SWNT, bi-polymer layer membrane and 

carbon black as the anode at the same or even higher glucose concentration. Considering its high 

power output, the new carbon-based biofuel cell promoted by the unique carbon material renders 

great potentials for practical applications. The strategy by introduction of a suitable polymer into 



the microwave assisted synthesis can also be used to make other functional nanomaterials with 

desired architecture and specific properties. 
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