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Exposing Postprocessed Copy-Paste Forgeries
through Transform-Invariant Features

Pravin Kakar, Student Member, IEEE and N. Sudha, Senior Member, IEEE

Abstract—Image manipulation has become commonplace with
growing easy access to powerful computing abilities. One of the
most common types of image forgeries is the copy-paste forgery,
wherein a region from an image is replaced with another region
from the same image. Most prior approaches to finding identical
regions suffer from their inability to detect the cloned region
when it has been subjected to a geometric transformation. In this
paper, we propose a novel technique based on transform-invariant
features. These are obtained by using the features from the
MPEG-7 image signature tools. Results are provided which show
the efficacy of this technique in detecting copy-paste forgeries,
with translation, scaling, rotation, flipping, lossy compression,
noise addition and blurring. We obtain a feature matching
accuracy in excess of 90% across postprocessing operations, and
are able to detect the cloned regions with a high true positive
rate and lower false positive rate than the state of the art.

Index Terms—Copy-paste forgeries, MPEG-7, image forensics

I. INTRODUCTION

TAMPERING images has become extremely easy due to
the easy accessibility of advanced image editing software

and powerful computing hardware. Various types of forgeries
can be created and in recent years, image forgery detection
using passive techniques has become a hot area of research
[1], [2].

One of the most common types of image forgeries is the
copy-paste (or copy-move or cloning) forgery, where a region
from one part of an image is copied and pasted onto another
part, thereby concealing the image content in the latter region.
Such concealment can be used to hide an undesired object
or increase the number of objects apparently present in the
image. Although a simple translation may be sufficient in
many cases, additional operations are often performed in order
to better hide the tampering. These include scaling, rotation,
lossy compression, noise addition, blurring, among others.
Hence, in order to be able to reliably detect such forgeries,
a few techniques have been recently proposed which try to
be robust to some of these transformations. As copy-paste
forgeries become more convincing, it is necessary to devise
techniques which can still detect transformed regions and
expose such tampering. Our proposed technique is an attempt
to do this.

The key contributions of our technique are listed below:
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Fig. 1: Proposed technique for postprocessed copy-paste forgery
detection

• Adapting the MPEG-7 image signature tools for use in
the new application of image forgery detection

• Developing an alternative feature matching approach to
the one used by the MPEG-7 standard for image signature
tools in order to deal with a different problem context

• Employing matching feature constraints to improve
cloned region detection via clustering

• Evaluating our novel technique on a variety of images
subjected to a significant number of postprocessing op-
erations

The rest of this paper is organized as follows. In Section
II, we discuss the existing work concerning the detection of
copy-move forgeries. In Section III, we discuss our proposed
technique and provide results in Section IV.

II. PRIOR WORK IN COPY-MOVE FORGERY DETECTION

As discussed earlier, copy-move forgeries involve conceal-
ing one region in an image by overlaying another region
from the same image. The most seemingly obvious way of
detecting copied and pasted regions in the same image would
be to verify small clusters or blocks of pixels for matches
all across the image. However, there are two major issues
with this approach. Firstly, this would be a computationally
intensive approach, as matching blocks (or other shapes) of
pixels would become infeasible with increasing size of the
image. Secondly, such an approach would fail in case of
minor changes such as addition of noise or multiple image
compression. In order to circumvent these drawbacks of this
direct approach, researchers have developed various techniques
which can be classified into two main categories: block-based
and feature-based.
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A. Block-based Techniques

Some techniques use representations for dimensionality
reduction [3], [4] such as PCA or frequency representation
[5] such as DCT in order to efficiently find matching re-
gions. However, they assume that the copied region has not
undergone any postprocessing, which is not always the case.
Nevertheless, these techniques are invariant to slight noise
addition and lossy compression. The work of [6] discusses
improved robustness using DCT to noise addition, global blur-
ring and lossy compression, but does not deal with geometrical
transformations of the tampered region. The technique of [7]
reduces the time complexity of the PCA-based approach by
using a Discrete Wavelet Transform (DWT), but again does
not address geometrical transformations. In [8], the authors
propose using a set of moment invariants, PCA and a kd-tree
in order to efficiently detect copied regions. The authors of [9]
use log-polar block descriptors to detect rotated, reflected and
scaled regions. However, the method is susceptible to noise
addition and compression as it uses the pixels directly. The
work presented in [10] uses Zernike moments of blocks in
order to detect copy-move forgeries with possible rotation, but
does not address scaling, and presents results only on a small
number of forgeries created with stringent constraints. The au-
thors of [11] proposed a technique based on the Fourier-Mellin
Transform which is invariant to small rotation and resizing of
the copied regions as well. However, this technique fails when
the rotation and/or resizing is significant. This technique was
improved upon in [12] where significant rotation invariance
was achieved by taking projections along angular directions.
However, the scale invariance seems to be valid only over a
small range, and the number of false positives yielded is quite
high.

B. Feature-based Techniques

Block-based techniques essentially compare blocks in an ef-
ficient manner, and provide invariance to some transformations
through an appropriate choice of the method of representation.
It is seen, however, that this often results in significant false
positives, and invariance to other transformations like flipping,
brightness changes and blurring is hard to establish. Therefore,
recently, interest in feature-based approaches has been spurred,
as forgeries have become more convincing with a number
of transformations being employed. Feature-based techniques
try to avoid these problems by choosing to match features
in the image, instead of blocks. By an appropriate selection
of features, invariance to a number of transformations can
be established. The rationale for this lies in the fact that the
features of interest were developed for the purposes of object
detection and/or content-based image retrieval, and so needed
to be invariant to a large number of transformations. Our
proposed technique is an example of this class of copy-move
forgery detection techniques as well.

Recently, the authors of [13], [14], [15] proposed techniques
to handle various transformations using SIFT features, which
are extensively used in the field of computer vision. These
features are, however, not robust to many postprocessing
operations such as blurring and flipping. The features our

technique uses have been adopted from those which have been
shown to be robust to far more operations, and therefore, we
expect better performance from our technique.

III. PROPOSED TECHNIQUE

We propose a novel technique for detecting copy-paste
forgeries with possible postprocessing. It is based on the
MPEG-7 image signature tools [16], which form a part of the
MPEG-7 standard. This set of tools was designed for robust
and fast image and video retrieval. The main issue in directly
applying these tools to image forgery detection is that these
tools were designed to find duplicate but separate, images,
whereas we are trying to find identical regions in the same
image. We perform modifications in the feature extraction and
matching processes to efficiently detect copy-paste forgeries.

Our major modification is in the feature matching process.
We have dispensed with the process described in [17] as it
is only suitable for separate images and fairly large cloned
areas. In the context of CBIR, this may occur when the original
version of a cropped image needs to be found. Instead, we have
adopted a two-step approach matching features in feature and
image spaces. Additionally, we have also modified the feature
extraction process to extract a larger number of features with
better resolution of components, as compared to [16]. The
outline of our proposed method is shown in Fig 1. The various
steps in our feature extraction process are described below.

A. Feature Extraction
1) Feature Point Detection: First, the given image is repre-

sented in scale-space by repeatedly smoothing with a Gaussian
filter of increasing size. 12 levels in scale space are extracted.
Then, the features’ locations and scales are decided by using
scale-adapted Laplacian of Gaussian (LoG) and Harris filters,
which can indicate gradient changes and corners in the image.
For the LoG filter, the output of the standard LoG filter is
convolved with a scale-adapted Gaussian filter, whereas a
similar approach is adopted for the Harris filter by using a
multi-scale Harris operator. A Scharr operator is used as the
gradient operator (as it provides more accurate gradient angle
estimates than other operators like the Sobel operator) for these
filters and is defined as:

hx =

 3 0 −3
10 0 −10
3 0 −3

 and hy =

 3 10 3
0 0 0
−3 −10 −3


(1)

2) Feature Point Selection: Likely candidates for feature
points are selected based on having certain values resulting
from the LoG and Harris filters. For points having a Harris
filter response greater than a prespecified threshold, we sort
the points in decreasing order of LoG filter response. The
N points with the maximum responses (subject to meeting
exclusion zone criteria) are selected for signature extraction.
An exclusion zone of M pixels is used around each feature
to maintain a minimum spatial distance between two features.
This is important because it is quite likely that points showing
the highest response to the filters tend to come from the same
objects or regions, and we wish to avoid clustering of features
in certain areas of the image.
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Fig. 2: Parameterization used in computing the trace transform

3) Signature Extraction: A circular region around each
feature point (with a radius dependent on the scale) is scaled to
a radius of 32 pixels, allowing for robustness to scale changes.
This region is then subjected to the trace transform [18], which
is a generalization of the Radon transform. It generalizes
the Radon transform by allowing for various functionals (in
addition to the integral used in the Radon transform) to be
applied over straight lines in the circular region. By a proper
choice of a functional, invariance to rotation and scaling can be
achieved. The trace transform T (d, θ) is computed by drawing
samples (indexed by t) along lines parameterized by distance
d (64 values from −31.5√

2
to 31.5√

2
) and angle θ (100 values

from 0 to π) as shown in Fig 2, and applying a functional
(in our case, a summation) over t. Various identifiers are then
extracted from each transformed region. These include:

max (ξ(x)) (2)

and ∫
|ξ(x)′| dx (3)

where ξ(·) is some function of parameter x. In the discrete
domain, (3) is replaced by a sum-of-differences operation. The
functionals in the above two equations are known as invariant
functionals, as they are invariant to translation of x, and scale
along with x or ξ(x). By considering the application of (2)
and (3), along the d-dimension of T , we obtain functions over
θ known as circus functions, which are used as identifiers.
Further identifiers are extracted by applying (2) and (3)
to versions of T subsampled along d (decomposition). By
considering a 3-D representation of d, θ and t known as a trace
cube, identifiers along θ (trace-annulus) and t (trace-circular)
are also extracted. These correspond to circular regions and
bands in the image respectively, and contribute to rotational
invariance of the features. Details of the extracted identifiers
may be found in [16].

For an extracted identifier s, its Fourier transform S(ω) is
computed and the differences between neighboring compo-
nents are calculated. ω is the index of the discrete frequency
components of S.

c(ω) = |S(ω)| − |S(ω + 1)| (4)

The deviation of each component of c(ω) from its mean c̄ is
then computed:

b(ω) = c(ω)− c̄ (5)

Finally, b(ωi), ωi = 2, . . . , 6 for each identifier are concate-
nated to form a descriptor fi of the feature point i. A maximum
of N feature descriptors are extracted from the image in this
manner.

4) Signature Representation: Although the original tools
threshold the components of the feature descriptors to 0 or 1,
we found that this caused an unacceptable loss of information
for our purpose. Hence, we retain the real-valued components
of the descriptors, instead of thresholding them to binary
values. This also necessitated a change in the feature-matching
process, as explained in the next section. In addition to the
descriptors, the pixel coordinates of the feature point are also
stored. Fig 1 shows an example of selected feature points after
the feature extraction step.

B. Feature Matching

As the descriptor components are no longer binary, we do
not employ a Hamming distance measure, as in the original
tools. Instead, the Euclidean distance between the components
of each pair of features (denoted by d(·, ·)) is calculated, and
the feature pairs below a threshold, TA, are chosen for further
analysis. This threshold is set sufficiently high to remove only
the unlikeliest matching feature pairs, without eliminating any
true matches. Additionally, feature pairs where the constituent
features have a spatial Euclidean distance of less than 20
pixels are ignored. This is important because features which
are located close to each other tend to be similar due to the
smoothness constraints of natural images, without being part
of cloned regions.

One of the persistent problems in the direct application
of the matching process from [17] is that we do not know
which region each feature point is a part of. A feature pair
is unordered and so, directly considering the “first” feature of
each pair as belonging to the same region can give erroneous
results. On the other hand, in the context of the original
problem, the image of origin for each feature was known.
Therefore, we employ a different approach and improve the
matching methods used in [14], [15] for use with our features.
In particular, we match features by selecting pairs of likely
matching features and then performing clustering in a modified
spatial domain.

1) Matching in Feature Space: Likely matching features are
selected by applying the Best-Bin-First method [19], which is
the same as for SIFT features. The distance in feature space
between a feature fi and a possible match fj , d(fi, fj) is
compared against the distances d(fi, fk) between fi and other
possible matches fk, k = 1, . . . , |K|, k 6= i, j, where K =
{(fi, fk) : d(fi, fk) < TA} and | · | denotes cardinality. The
condition tested is

d(fi, fj)

d(fi, fk)
< TB ∀k 6= i, j and d(fi, fk) < TA (6)

If this condition is true, then the pair of features (fi, fj)
is declared to be a matching pair. This ratio should ideally
be very low for matching features and close to 1 for non-
matching features. However, due to factors such as poor
compression, small cloned regions, etc. this is not always
true. As a compromise, we set TB to 0.75 in order to avoid
eliminating matching features due to a low threshold. Instead,
we eliminate false matches by using an improved clustering
procedure as described in the next subsection. If the number
of matching feature pairs is greater than 100, we select the 100
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pairs having the lowest values of the above ratio. This helps
avoid false matches in the subsequent clustering process.

2) Matching in Image Space: We observe that matching
features are likely to cluster in regions of the image if
they originate from actually copied regions within the image,
whereas spuriously matched features generally do not follow
a specific spatial distribution. This indicates that clustering the
features in the image space offers a natural way to reject false
positives in matching features.

Additionally, we observe that if a feature pair (fi, fj) is
found to be matching, then the features comprising the pair,
fi and fj , belong to different regions and hence should belong
to different clusters. In other words, fi and fj should not be
assigned to the same cluster. Therefore, instead of clustering
directly in the image space, we modify the image space as
follows:

g(fi, fj) =

{
∞ if (fi, fj) is a matching pair
‖fi, fj‖ if (fi, fj) is not a matching pair

(7)
where ‖·, ·‖ denotes the spatial Euclidean distance between
the locations of two feature points. The measure g(·, ·) used
in clustering is no longer a distance measure, but reduces to a
dissimilarity measure. Alternatively, this may be viewed as the
image space being transformed to a semimetric space, where
the distance measure no longer needs to obey the triangle
inequality. Allowing g(·, ·) to be ∞ for a matching pair of
feature points helps maximize the value of the dissimilarity
measure between possible clusters and improves the clustering
accuracy. Experimental results are provided in Section IV.

The dissimilarities between feature points are then used
to perform clustering by using an agglomerative hierarchical
clustering algorithm. Note that the above transformation of the
image space into a semimetric space adds constraints to the
clustering process. Therefore, we are performing constrained
hierarchical clustering [20].

In agglomerative hierarchical clustering, clusters are ar-
ranged in a hierarchical tree by merging feature points. The
number of clusters can be determined by cutting the tree at
an appropriate level through various dissimilarity thresholds
such as inconsistency threshold, distance threshold, etc. The
inconsistency threshold uses an inconsistency coefficient to
characterize the dissimilarity of a cluster with respect to other
clusters at the same level of the hierarchy, whereas the distance
threshold uses a distance measure to quantify the dissimilarity
between clusters. These thresholds are used to decide the
merging of two different clusters into one. Such merging is
known as linkage and can be decided by various methods. For
example, single linkage considers the inter-cluster dissimilarity
between two clusters, say I and J to be that of the closest
(most similar) pair.

gsingle(I, J) = min
fi∈I,fj∈J

g(fi, fj) (8)

Similarly, complete linkage considers the inter-cluster dissim-
ilarity to be that of the least similar pair:

gcomplete(I, J) = max
fi∈I,fj∈J

g(fi, fj) (9)

Average linkage considers the inter-cluster dissimilarity to be

the average of the two clusters:

gaverage(I, J) =
1

|I||J |
∑
fi∈I

∑
fj∈J

g(fi, fj) (10)

We compare the performance of our technique with these
linkage methods with various distance thresholds (Section
IV-A). Based on the results obtained, we use a distance
threshold which is a multiple of the image size on the modified
image space with single linkage gsingle(·, ·). The two largest
detected clusters, denoted by i and j, are selected and the
matched feature points in the clusters are stored in a set
with each pair (fi, fj) being stored as an element of the set
{(fik, fjk)} with the subscript k indicating the kth pair in the
set.

C. Estimation of Geometric Transformation

The geometric transformation between the two regions is
estimated by using the matching pairs found from the previous
steps. In this case, the MPEG-7 image signature tools use fea-
tures that provide a low number of false positives which allow
us to avoid using empirical threshold-dependent RANSAC for
the transformation estimation, as is prevalent in the state of
the art [14], [15].

Instead, we use the Least Median of Squares (LMedS)
algorithm [21] which does not require a threshold in order
to distinguish between inliers and outliers in the estimation
process, but does require the majority of the data to be inliers.

For a set of matched feature pairs P = {(fik, fjk)}, a
random subset of P is used to estimate the geometric transfor-
mation H which is modeled as a perspective transformation
matrix, having eight degrees of freedom:

H =

 t11 t12 | t13
t21 t22 | t23
t31 t32 | 1

 (11)

The residual errors ‖fjk,Hfik‖ are used to introduce an
ordering r on P such that

‖fjp,Hfip‖ ≤ ‖fjq,Hfiq‖ ↔ r(p) ≤ r(q) (12)

By repeated sampling of random subsets, the H for which
‖fjm,Hfim‖ is lowest, where m is the median of r, is selected
as the correct geometric transformation.

For the various geometric transformations in Section IV-B,
we consider affine transformations, the general matrix for
which can be written as:

H =

 µλ cos(θ) −λ sin(θ) | tx
µλ sin(θ) λ cos(θ) | ty

0 0 | 1

 (13)

In the above equation, [tx, ty] is the translation vector, λ is the
scaling factor, θ is the angle of rotation and µ = ±1 indicates
reflection along the x-axis. Note the correspondence of these
terms to the general geometric transformation matrix (11).

Once the geometric transformation H is estimated, the
image in question is warped according to this transformation.
Such warping is shown in Fig 1.
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D. Image Region Matching

Blockwise correlation is performed between the original
and warped images. The correlation coefficient is used as a
measure of correlation, as it is invariant to intensity change.
The correlation output is smoothed by using a Gaussian
filter to reduce the noise present, and thresholded using a
prespecified threshold TG = 0.4. Only regions greater than a
proportion TH = 0.25% of the area of the image are retained.
This enables us to only get actual matching regions and reject
most regions which only display some correlation due to the
nature of the texture in the image. Any holes inside the region
are filled by using a flood-fill algorithm, and the boundary of
the region is extracted. This boundary is warped by employing
the inverse of the estimated geometric transformation, and
overlaid on the original image to indicate the copied regions,
as in Fig 1. Note that unlike [15], image correlation allows us
to further discard falsely detected clusters of matching features
which do not yield any correlated regions after applying the
geometric transformation.

IV. EXPERIMENTAL RESULTS

In this section, we present the results of our proposed
copy-move forgery detection technique. First, we discuss the
various parameter values used in our algorithm. We then
present quantitative results and examples for the detection
of copy-move forgeries subjected to many image processing
operations.

A. Selection of Parameter Values

The parameter values that we use in our technique are
presented in this section. These values are mostly determined
empirically and the reasons for their usage are explained
below.

We use a maximum of N = 7000 feature points, as
compared to 80 in the original standard [16], in order to
be able to get feature points even from non-salient regions
such as textures like sand and grass, which are often used to
hide objects in copy-paste forgeries [5]. An exclusion zone of
M = 2 or 4 pixels is maintained around each feature point
depending on the texture content of the image. We use the sum
of the absolute gradient values from (1) as a simple measure
of the amount of texture in the image. If this sum is below a
threshold of 5×105, then the lower value of M (2 pixels) is
chosen to extract more features from the relatively few highly
textured regions. The threshold TA is set to be 10, which
allows only the most dissimilar features to be eliminated,
without rejecting most actual matches.

We tested the performance of our technique on the MICC-
F220 database of [15], the results of which are shown in Fig
3. Following [15], the true positive rate (TPRi) and false
positive rate (FPRi) for images are defined as follows:

TPRi =
No. of forged images detected as forged

No. of forged images (14)

FPRi =
No. of original images detected as forged

No. of original images (15)

An image is declared as forged if there are two clusters of
matching features with at least four features in each cluster. We
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Fig. 3: Performance of various linkage methods in constrained
hierarchical clustering. (a) True Positive Rate (b) False Positive Rate.

tested the performance of our technique with single, complete
and average linkages between clusters with varying distance
thresholds. The distance threshold is set to be a fraction of
the largest spatial dimension of the image. We also compared
this performance by using our features with the unconstrained
Ward criterion-based clustering method used in [15] which
defines an inconsistency threshold to perform clustering.

As can be seen from Fig 3(a), TPRi remains relatively
high for a significant range of values of the distance threshold.
However, FPRi (Fig 3(b)) is extremely small for low values
of the distance threshold with single linkage, which also
has relatively high TPRi values over the same range. We
also observed that the inconsistency coefficient employed in
[15] for clustering depends on the number of levels of the
hierarchical tree that are included in its calculation and often
lacks sufficient discrimination between its values for valid
and invalid clusters. This results in lower values of TPRi.
Therefore, we use this constrained version of hierarchical
clustering in our technique.

B. Invariance to Transformations

We tested our technique on a number of image forgeries
subjected to various image processing operations as described
below. We explain our detection results on a few example
forgeries, before providing results obtained on a database in
the next subsection.

1) Translation: An example of a copy-paste forgery is
shown in Fig 4. As can be seen, we are able to detect the
forged region very well with no region other than the tampered
one being detected. Block-based techniques, like the ones
described in Section II-A, tend to generate false positives,
especially when faced with such images containing mostly
uniform textures. Our technique did not detect any matching
region, or even matching features, when applied to the original
image in Fig 4(a), which again indicates the low false positives
generated with our technique.

2) Scaling, Rotation and Flipping: Often it is necessary to
scale, rotate and/or flip an object in order to be able to create
convincing forgeries. Our technique is able to detect regions
which have undergone such operations as well, as shown in
Fig 5. Note that many other features, such as SIFT features,
are not invariant to flipping. Therefore, techniques which use
such features require additional processing (like searching for
feature matches in a mirrored version of the image [14]).
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(a) (b) (c)

Fig. 4: Detection of copy-paste forgeries. (a) Original image. (b)
Tampered image. (c) Detection results.

Fig. 5: Detection of geometrical operations (images from [14]). Left
column: Images with scaled and rotated + flipped regions; Right
column: Detection results.

The features used in our technique are, however, invariant to
flipping and so, no additional processing is required.

3) JPEG Compression and Noise: We tested our technique
for robustness to addition of Gaussian noise (in all three color
channels of the image), and JPEG compression. The results
of our technique on a sample image are shown in Fig 6. The
original image was a JPEG image saved at quality factor 80.
A snippet of the image was copied and pasted to generate
a visually convincing forgery. The tampered image was then
compressed with various quality factors and subjected to the
addition of Gaussian noise with different SNRs. It is to
be noted that the compressed tampered image actually has
double compression, as the original image itself was a JPEG
compressed image. Another interesting observation is that we
are able to detect the copied region, even though it constitutes
less than 1% of the total image area.

4) Illumination Change: In order to conceal image tam-
pering, the illumination of the copied region can be changed.
We tested our technique for robustness to such changes by
changing the intensity levels of all pixels of the copied region,
as shown in Fig 7. The detection result is very good, and shows

(a) (b) (c)

Fig. 6: Robustness to noise and JPEG compression (original image
from [22]). (a) Tampered image. (b) Result of resaving with JPEG
quality factor of 70. (c) Result with SNR of 25 dB.

(a) (b)

Fig. 7: Detection output for illumination change. (a) Tampered image.
(b) Detection result.

(a) (b) (c)

Fig. 8: Detection of copy-paste forgeries with blurring. (a) Image with
blurred copied region (b) Matched features. (c) Detected regions.

no significant deviation as compared to what would have been
obtained with a simply copy-paste operation, or as with JPEG
compression and noise addition. This is due to the correlation
measure being the correlation coefficient which is invariant to
differences in intensity between identical regions.

5) Blurring: Fig 8 shows the detection results when the
copied regions are blurred. Such an operation may be applied
to make the forgery harder to perceive or to create an artistic
effect. We illustrate this latter case, where non-central parts
of the image were blurred using a 7×7 Gaussian kernel. We
have used this blurring kernel to illustrate the robustness of
our technique even under heavy blurring. This is a difficult
transform to deal with in general, in copy-paste forgeries, but
our technique is able to give a good result with very low false
positives. This can especially be seen from the fact that there
are no false matches in Fig 8(b).

6) Multiple Cloning: In some cases, it may so happen that
multiple regions are copied and pasted once within the same
image in order to make the forgery difficult to detect. Such an
operation is known as multiple cloning, and often attempts to
obscure the regularity of the copied regions by changing their
relative arrangement upon pasting. As such, a single geometric
transform may prove to be insufficient in detecting all the

(a) (b) (c)

(d) (e) (f)

Fig. 9: Detecting multiple cloning. (a) Original image. (b) Tampered
image. (c) First detected region pair. (d) Feature selection mask. (e)
Second detected region pair. (f) Combined detection result.
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copied regions.
We address this problem by iteratively applying our tech-

nique, masking out the detected region for the feature selection
stage in each iteration. Consider the original image in Fig 9(a).
The tampered version in Fig 9(b) is created by covering one
of the dogs with a patch of grass, and a part of the dog in top
left of the image is pasted onto the bottom right of the image.
Applying our technique to the image in Fig 9(b) detects the
large patch of grass as shown in Fig 9(c).

We use the detected region as a mask (Fig 9(d)) and
repeat the process, thus ignoring the features present within
the already detected regions. The second iteration yields a
matching pair of regions corresponding to the partially copied
dog (Fig 9(e)). The combined detection result is shown in Fig
9(f).

C. Results on a Database

We tested our technique on images obtained from the Kodak
database [23]. The database contains 24 true color lossless
images and is often used for research purposes (in compression
testing, etc.). We created various types of forgeries by carrying
out different operations on copied blocks within the images.

For creating the various forgeries, we began by selecting a
block of a randomly chosen size between 32×32 and 96×96
pixels containing at least 10 feature points. This block was
then processed according to the desired operation, and pasted
at a random location within the image. The requirement of a
minimum number of feature points is necessary as a copied
block with no feature points is likely to be completely uniform,
and thus the detection of its cloning would be impossible
through currently available techniques.

For each of the 24 images in the Kodak database, we
generated 5 images per operation. Thus, we had 120 images
to evaluate our method on for each of 7 operations. Then, we
performed lossy compression with 4 different JPEG compres-
sion levels and added noise with 3 different intensity levels
on each of the 120 images. In the end, our synthetic database
consisted of 5880 (24×5×7×7) images.

Below, we discuss how the various forgeries were synthe-
sized for evaluation purposes:
• Translation: The copied block was pasted on a random

location in the image after simple translation, varying
tx and ty in (13), without overlapping with the original
block.

• Scaling and Flipping: The copied block was randomly
scaled by a factor λ in the interval (1, 1.5) and flipped
or left unchanged randomly, according to µ in (13). The
new block was then pasted on a random location in the
image.

• Rotation and Flipping: The angle of rotation θ of the
copied block was randomly selected from the interval
(0, 360) and flipping was performed as above. The ro-
tated block was then pasted randomly in the image.

• Illumination Change: The copied block was pasted in
the same manner as in the case of translation, but it also
had the intensity of its pixels changed by a random factor
in (0.5, 1.5). The synthesized image was then subjected

(a) Scaling with Quality
Factor 70

(b) 90.98/9.23

(c) Rotation + Flipping
with SNR = 30 dB

(d) 83.77/3.80

(e) Illumination change
with Quality Factor 70

(f) 89.60/8.53

(g) Gaussian blur with
7×7 kernel and SNR =
30 dB

(h) 95.10/9.72

Fig. 10: Sample detection results. Left column: Tampered images,
Right column: Detection results. The numbers in the right column
indicate TPRr (16) and FPRr (17) (in %).

to the compression and noise addition operations as
above.

• Blurring: The copied block was blurred by using Gaus-
sian kernels of sizes 3×3, 5×5 and 7×7, and then pasted
at a random location in the image.

Each image was then compressed with JPEG quality factors
of 70, 80, 90 and 100, and subjected to Gaussian noise addition
with SNRs of 30, 35 and 40 dB. Some sample results are
presented in Fig 10. It can be seen that we are able to detect
the copied and pasted regions very well, even when they have
been subjected to many image processing operations.

1) Feature Matching Performance: We tested the perfor-
mance of our feature matching process for forgeries where
the copied regions have been subjected to various geometrical
transformations (translation, scaling, rotation and flipping)
and image processing operations (illumination change and
blurring). Additionally, varying levels of lossy compression
and Gaussian noise addition were performed. The results
of our feature matching process are shown in Table I. The
purpose of this table is to highlight the excellent performance
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Operation JPEG-70 JPEG-80 JPEG-90 JPEG-100 SNR-30 SNR-35 SNR-40
Translation 0.9840 0.9907 0.9930 0.9981 0.9711 0.9852 0.9957

Scale + Flip 0.9553 0.9641 0.9722 0.9756 0.9251 0.9647 0.9705
Rotate + Flip 0.9610 0.9701 0.9837 0.9812 0.9365 0.9653 0.9812
Ill. Change 0.9762 0.9703 0.9875 0.9929 0.9419 0.9833 0.9834
Blur 3×3 0.9718 0.9841 0.9831 0.9905 0.9406 0.9753 0.9887
Blur 5×5 0.9573 0.9516 0.9562 0.9737 0.9297 0.9486 0.9692
Blur 7×7 0.9489 0.9360 0.9225 0.9493 0.9021 0.9545 0.9565

TABLE I: Feature Matching Accuracy of Proposed Technique

of the features that we have employed. The values reported
are the proportions of true positives in the matching feature
pairs determined by our technique. We obtain a true positive
proportion, referred here as matching accuracy, of over 90%
for various image operations, compression levels and noise in-
tensities. Blurring tends to have somewhat lower accuracy than
other operations, especially at low quality factors and SNRs,
because applying the kernel actually removes information, as
opposed to merely transforming it in other cases. Note that
false matches in the feature pairs do not necessarily indicate
a falsely matched region. This is because false matches tend
to generally have a large reprojection error in the geometric
transformation estimation process (Section III-C), and are
discarded from consideration by the LMedS algorithm. The
high accuracy at this stage means that the matched feature
points themselves can easily provide a coarse indication of
the copied region (without performing the geometric transfor-
mation estimation and correlation steps). This is not possible
with existing methods due to the high number of false positives
at equivalent stages.

2) Geometrical Transformation Estimation Performance:
Table II shows the performance of the LMedS geometric
transformation estimation algorithm. For each operation listed,
the statistics were calculated from a set of 300 synthesized
forged images subjected to the particular operation. Each set
contains images with various compression levels and SNRs.
The table then lists the mean and standard deviation of the
errors between the estimated values of each parameter in (11),
and the ground truth values used to generate the synthesized
forgeries, according to (13).

It can be seen that our technique is able to achieve quite
low errors in estimating the geometric transformation in the
forged images. The dark gray cells highlight the cases having
the maximum error in the table. The average error for scaling,
flipping and rotation with respect to the translation of the block
is about a pixel, and the standard deviation is only a few
pixels at most. This is very good performance, because the
above transformations introduce additional inaccuracies due
to the interpolation methods used to align the transformed
blocks on the pixel grids. The light gray cells highlight a slight
increase in the estimation of the translation parameters with
an increase in the blurring kernel size. Lastly, the perspective
transformation parameters t31 and t32 are identified as 0 in
most cases, implying that our technique is able to successfully
identify the applied geometric transformation as affine.

3) Cloned Region Matching Performance: Fig 11 presents
some results of our technique on various kinds of image
forgeries, in terms of matched regions. Denoting the sets of
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Fig. 11: Performance of proposed technique subjected to various im-
age processing operations. (a) Translation under JPEG compression.
(b) Scaling+Flipping under JPEG compression. (c) Rotation+Flipping
under noise addition (SNRs in dB). (d) Illumination change under
noise addition (SNRs in dB). (e) Various blurring kernels under
JPEG-70 compression. (f) Various blurring kernels under SNR =
30dB noise addition.

pixels in the ground truth and detected pasted regions by Φ
and Φ respectively, the true positive rate (TPRr) is defined
as

TPRr =

∣∣Φ ∩ Φ
∣∣

|Φ|
(16)

and the false positive rate (FPRr) is defined as

FPRr =

∣∣Φ \ Φ
∣∣∣∣Φ∣∣ (17)

with |·| denoting cardinality. As can be seen, we are able to
attain quite high accuracies at low false positive rates. In the
case of blurring, it can be seen that the performance tends
to suffer with increasing size of the kernel, especially in the
case of noise addition. This is probably due to the greater loss
of information being caused by larger kernels, which along
with the addition of noise, makes it difficult for the correlation
process to work. Nevertheless, TPRr and FPRr are quite
acceptable even with low quality factors and SNRs.

D. Comparisons

A quantitative analysis of various copy-move forgery de-
tection methods has been performed on a database in [22].
Examples of detection of copy-move forgeries by our method
for this database are shown in Fig 12(a)-(c). For the image
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Operation
Error in Parameter (m = mean, s = standard deviation)

t11 t12 t13 t21 t22 t23 t31 t32
m s m s m s m s m s m s m s m s

Translation 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Scale + Flip 0.0 0.1 0.0 0.1 -0.8 5.0 0.0 0.1 0.0 0.1 -0.3 3.6 0.0 0.0 0.0 0.0
Rotate + Flip 0.0 0.1 0.0 0.1 -1.1 5.3 0.0 0.1 0.0 0.1 -1.2 4.0 0.0 0.0 0.0 0.0
Ill. Change 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Blur 3×3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Blur 5×5 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Blur 7×7 0.0 0.0 0.0 0.0 0.1 2.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0

TABLE II: Performance of Geometric Transformation Estimation Technique

in Fig 12(c), the small falsely matched regions along the
shoreline arise because of the geometrical transformation
between the cloned regions resulting in a high correlation
coefficient along the relatively uniform shoreline. However, no
matching features are found in the falsely matched regions by
our proposed technique which indicates that the false positives
are indeed caused by the nature of the image content, and
are unavoidable if the cloned regions are to be indicated.
Since our method specifically addresses copy-move forgeries
that undergo various forms of postprocessing, we compare our
method with various aspects of the state-of-the-art methods
in [14], [15] having the same capabilities. These use SIFT
features to detect copy-move forgeries.

As seen in Table I the feature matching accuracy is consid-
erably high, while SIFT features tend to generate considerable
mismatches (arising from clutter, large transformations, etc.)
as mentioned in [14], though no quantitative data is provided.
Additionally, it is not required to handle pure translation and
flipping in a special manner, unlike [14]. This allows us to
simplify our algorithm without considering certain operations
as special cases. Lastly, we are able to handle additional
operations like blurring, which SIFT features are not invariant
to.

In order to compare the performance of the features and
feature-matching process used by our proposed technique
against the state of the art, we tested the feature matching
accuracy of SIFT features using the Best-Bin-First and un-
constrained agglomerative hierarchical clustering algorithms
as in [15]. This matching process quite similar to that in [14],
although no detailed information about clustering is provided
in the latter. We used the same parameter values reported in
[15] for our experiments, and only tested SIFT features on
the transformations they are designed to be robust to. The
technique of [15] tries to find if a single region has been cloned
multiple times and therefore retains all clusters having more
than 3 points to use for geometric transformation estimation.
In order to ensure a fair comparison, we also considered the
case where only the two largest clusters (corresponding to a
single cloning operation) are retained, similar to our technique.
The feature matching accuracy of SIFT features for both cases
is shown in Table III. The results of Table III are generated on
the same database as used earlier for Table I. It can be seen that
our features and feature-matching process have considerably
higher performance (Table I). Moreover, as the proportion of
true positives is generally below 50% for SIFT, the LMedS
algorithm would be unsuitable. This necessitates the use of

a threshold-dependent RANSAC algorithm for geometrical
transformation estimation instead.

The results presented in Fig 11 were obtained for forgeries
generated from the Kodak database, which was also used by
[14]. Our synthetic forgery database is 20% larger than the
one used by the latter. There are also other differences in
the method of generation of the forgeries, such as a variable
block size with a lower minimum required number of feature
points, larger range of illumination change and consideration
of flipping along with rotation and scaling (Section IV-C).
In general, our method provides comparable or better results
as compared to [14]. For example, consider the ROC curves
presented in Fig 13 (a) and (b). Under JPEG compression, our
method performs significantly better than [14], even though
approximately half the images under consideration have their
forged regions flipped. Although the difference is lower under
noise addition, we get comparable or better performance with
TPRr greater than 80%. As another example, consider Fig
13(c). In [14], the forgeries with illumination changes were
created by modulating the values of pixels in the copied
region of 64×64 pixels to 80% of their original values. In
our case, we allowed for random increments or decrements of
up to 50% in intensity in block sizes ranging from 32×32 to
96×96 pixels, which is a considerable deviation. It can be seen
that our method performs significantly better at lower JPEG
quality factors (around 70) as compared to [14] and provides
comparable performance at relatively high quality factors. The
slightly worse performance for a quality factor of 90 is caused
by the wider range of intensity deviation and the presence of
some smaller copied regions in our case. The reason for the
overall improved performance is partly due to the fact that the
features that we use are also intended to be blur-invariant, and
lossy compression causes a loss of high-frequency information
similar to blurring.

Our method also does not generate any false positives on
authentic images containing somewhat repetitive patterns. The
method of [14] declares authentic images similar to those
shown in Fig 14 as tampered, which our method does not.
Moreover, none of the feature points extracted are declared
to be matching which again validates the low false positives
generated by our technique.

The work of [15] also uses SIFT features to detect copy-
paste forgeries but does not address flipping and illumination
change of the cloned regions. Moreover, unlike our method
and [14], only the geometrical transformation between the
cloned regions is estimated, without indicating the cloned
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(a) (b) (c) (d) (e)

Fig. 12: Results of detection on sample images from: (a)-(c) Database of [22]; (d) and (e) Database of [15]. Top row: Tampered images;
Bottom row: Detection results.

Operation JPEG-70 JPEG-80 JPEG-90 JPEG-100 SNR-30 SNR-35 SNR-40
0.2947 0.3145 0.3587 0.3690 0.3089 0.3447 0.3511Translation 0.4177 0.4639 0.4764 0.5154 0.3997 0.4609 0.4859

Scaling 0.2511 0.2659 0.3083 0.3107 0.2662 0.2951 0.3071
(without flipping) 0.3378 0.4131 0.4457 0.4301 0.3728 0.4205 0.4201

Rotation 0.2801 0.2972 0.3343 0.3330 0.3016 0.3175 0.3220
(without flipping) 0.3582 0.4271 0.3972 0.4545 0.4036 0.4187 0.3929

Illumination 0.2873 0.3042 0.3458 0.3567 0.2986 0.3325 0.3575
Change 0.4022 0.4502 0.4632 0.4600 0.3759 0.4562 0.4605

TABLE III: Matching accuracy of SIFT features with unconstrained hierarchical clustering. Gray cells indicate values with two largest
clusters retained; white cells indicate values with all significant clusters retained.
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Fig. 13: Comparison of performance of our method and [14]. (a) Ro-
tation (as well as flipping in our method) with JPEG. (b) Rotation (as
well as flipping in our method) with noise addition. (c) Illumination
change with JPEG compression.

regions themselves. Therefore, we use (14) and (15) in order to
compare our technique with [15] on the MICC-F220 database
of the latter. As seen from Fig 3, we achieve a TPRi of
around 90% and a FPRi of less than 3%. In comparison, the
technique of [15] achieves a TPRi of 100% and a FPRi of
8%. Again, the low false positive rate of our technique while
still maintaining a high true positive rate is evident. Examples
of detection of copy-move forgeries by our method for this

(a) (b) (c)

Fig. 14: Authentic images containing repetitive patterns which are
correctly identified as untampered by our method.

database are shown in Fig 12(d) and (e).
Fig 15 shows cases where our technique partially or com-

pletely fails to detect the cloned regions. For the image in Fig
15(a), we are able to detect the copied region of grass quite
well. However, the cloned bird (located behind the horn) is
not detected as no reliable feature points are extracted from
that region. For the image in Fig 15(c), the extremely repetitive
nature of the image content gives many falsely matched feature
points with no regions detected as cloned by our technique.
Note that the cloned regions are the lion heads in the center
of the image. Although we are not able to detect the cloned
region, our proposed technique does not find any other region
matched either, which again indicates the low false positive
rate of our technique. The techniques of [14] and [15] also
result in similar partial or complete failure in these cases.

V. CONCLUSIONS

Copy-move forgeries are a common type of forgery where
parts of an image are replaced with other parts from the same
image. The copied and pasted regions may be subjected to
various image transformations in order to conceal the tam-
pering better. Conventional techniques of detecting copy-paste
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(a) (b) (c)

Fig. 15: Cases of partial or complete failure for our technique. (a)
Tampered image containing multiple cloned regions. (b) Detection re-
sult for (a). (c) Image containing small cloned region with extremely
repetitive content.

forgeries usually suffer from the problems of false positives
and susceptibility to many image processing operations.

In this paper, we have proposed a technique based on the
MPEG-7 image signature tools, which have been developed
for robust content-based image retrieval, in order to detect
copy-move forgeries. We have modified the tools in many
ways to deal with copied regions in a single image. We
have used a feature matching process that utilizes the inherent
constraints in matched feature pairs to improve the detection
of cloned regions. We have analyzed the performance of this
technique on actual and synthesized forgeries. The results
obtained by using these features display high true positive rates
and extremely low false positives, and are better than the state
of the art, in general. As these descriptors are invariant to a
lot of common image processing operations (scaling, rotation,
flipping, noise addition, JPEG compression, blurring), their use
in dealing with realistic copy-paste forgeries is justified.

In our future work, we will investigate the use of our
technique in detecting regions which have undergone non-
affine transformations and/or are multiply copied.
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