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Abstract

This study examines the role of rainfall variability on the spatial scaling structure of
peak flows using the Whitewater River basin in Kansas as an illustration. Specificaly,
we investigate the effect of rainfall on the scatter, the scale break and the power law
(peak flows vs. upstream areas) regression exponent. We illustrate why considering
individual hydrographs at the outlet of a basin can lead to misleading interpretations of
the effects of rainfall variability. We begin with the ssimple scenario of a basin receiving
gpatially uniform rainfall of varying intensities and durations and subsequently
investigate the role of storm advection velocity, storm variability characterized by
variance, spatial correlation and intermittency. Finally, we use a realistic space-time
rainfall field obtained from a popular rainfall model that combines the aforementioned
features. For each of these scenarios, we employ a recent formulation of flow velocity
for a network of channels, assume idealized conditions of runoff generation and flow
dynamics and calculate peak flow scaling exponents, which are then compared to the
scaling exponent of the width function maxima. Our results show that the peak flow
scaling exponent is aways larger than the width function scaling exponent. The
simulation scenarios are used to identify the smaller scale basins, whose response is
dominated by the rainfall variability and the larger scale basins, which are driven by
rainfall volume, river network aggregation and flow dynamics. The rainfall variability
has a greater impact on peak flows at smaller scales. The effect of rainfall variability is
reduced for larger scale basins as the river network aggregates and smoothes out the
storm variability. The results obtained from simple scenarios are used to make rigorous

interpretations of the peak flow scaling structure that is obtained from rainfall generated



with the space-time rainfall model and readlistic rainfall fields derived from NEXRAD

radar data



1. Introduction

Peak flows in a basin are difficult to predict because they result from a complex
interaction among rainfall and various processes in the landscape. Hydrology literatureis
rife with models developed to predict hydrographs at the outlet or at specific locations
(e.g., Beven [3]; Singh and Frevert [40]; Singh and Frevert [41]). Severa studies have
examined the sensitivity of the hydrologic response of a basin to the spatio-temporal
variability of rainfall (e.g., Krgewski et al. [22]; Ogden and Julien, [35]; Nicétina et al.
[32]). However, as we illustrate with a ssimple simulation experiment in Section 4,
examining the basin response in terms of outlet hydrograph can be miseading. On the
other hand, studies have also reveaed that the peak flows from a basin display power-law
behavior (or scaling or scale-invariance) with respect to the drainage areas (e.g., Smith
[43]; Gupta et al., [17]; Goodrich et al. [11]; Ogden and Dawdy [34]; Furey and Gupta
[8]; Furey and Gupta [9]). The exponent of such a power law is widely known as the
scaling exponent. Gupta et a. [19] have demonstrated that a physical understanding of
the scaling behavior of the peak flows s crucia for building a unified geophysical theory
of flood peaks. Such a theory would be invaluable for the prediction of peak flows,
particularly in ungauged basins (e.g., Sivapalan et al., [42]).

In the past two decades, numerous simulation and data-based studies were conducted
to determine the physical basis of scale-invariance (e.g., Gupta and Dawdy [19],
Robinson et al. [38], Guptaet al. [18], Bloschl and Sivapalan [4] Robinson and Sivapalan
[37] Menabde et a. [29], Menabde and Sivapalan [28], Ogden and Dawdy [34], Furey

and Gupta [8], Furey and Gupta[9]). A genera consensus emerging from these studiesis



that the rainfall and the channel network topology, both shown to be scale-invariant, play
key roles in determining the scaling exponents of the power laws in peak flows. While
most of the aforementioned research is focused on annual peak flows, there has been a
recent shift toward investigating single-event peak flows (e.g., Gupta et a. [18], Ogden
and Dawdy [34], Furey and Gupta [8], Mantilla et al. [26], Furey and Gupta [9]). The
physical mechanisms responsible for scale invariance can be identified in a much better
manner for individual rainfall-runoff events and can be extended to annual time scales by
considering multiple events in a year (e.g., Gupta et a. [19]). Also, recent studies
suggest that the scaling exponents of annual peak flows are related to those of single-
event peak flows (e.g., Ogden and Dawdy [34], Gupta et a. [19]). Gupta[14] and Gupta
et al. [19] offer a comprehensive overview of the research pertaining to the scaling of
flood peaks.

The goa of our study is to clarify the role of rainfall variability on the scaling
structure of peak flows. Itiswell known that rainfall is highly variable in space and time
and that our observational capabilities result in rainfall estimates subject to considerable
uncertainties (e.g. Bras and Rodriguez-lturbe [5]; Ciach et a. [6]). This study is limited
to the effects of rainfall variability, and the effect of rainfall estimation uncertainty is
therefore outside of the scope of this paper. We separate the rainfall variability into
various components and study, via simulation experiments, the sensitivity of peak flow
scaling structure to each of them. We then apply those results in order to understand the
statistical structure of peak flows obtained using rainfall from a space-time model capable

of simulating realistic rainfall events. Rigorous understanding of the role of rainfall on



the scaling structure of peak flows provides the basis for the scaling based framework to
predict the peak flows from real basins.

Following the introduction, Section 2 offers definitions of some basic concepts and
provides a short description of the literature related to the single-event peak flow scaling
structure. In Section 3, we describe the study area, the simulation framework and
relevant assumptions. Section 4 compares the hydrograph-oriented and scaling-based
approaches to studying the hydrologic response of a basin. In Section 5, we show the
scaling structure of peak flows obtained from an actual rainfall event measured by
NEXRAD weather radar in Wichita, Kansas. Section 6 includes the presentation of the
results for the basic ssimulation scenarios that we considered. The Peak flow scaling
structure obtained using the rainfall from the space-time model is discussed in Section 7.
In Section 8, we present an analysis of scatter seen in the scaling structure of peak flows,
followed by additional remarks in Section 9. Section 10 summarizes and concludes the

study.

2. Background

In this section, we briefly discuss key results in the literature related to the statistical
structure of single event peak flows. We first provide definitions of some basic concepts
and then proceed to a discussion of simulation-based and data-based studies in the

literature.



2.1. Basic Concepts

The Horton ratio Ry is defined as aratio of the averages E[ Xy+1]/E[ Xo] , Where X, isa
generic random field indexed by Horton order w, a stream ordering system developed by
Horton [20] and later modified by Strahler [44,45]. For instance, the field X can be the
upstream areas or width function maxima or peak flows. For more details on the Horton
order and the Horton ratios, please see Rodriguez-1turbe and Rinaldo [39] and Peckham
and Gupta [36].

The width function of a river network is a measure of the river network branching
structure. There are basically two types of width functions. topologic and geometric.
Throughout this study, we employ the topologic width function, which is defined as the
number of links which are s links upstream of the outlet of the basin as a function of s
(e.g., Veitzer and Gupta [47]). Under idealized conditions of runoff generation and
constant flow velocity, the width function represents the response of the river network to
gpatially uniform instantaneous rainfall. The statistical structure of the width function
and its relation to the hydrologic response of the basin has been the object of several
recent studies (e.g., Veitzer and Gupta [47]; Moussa [31]; Lashermes and Foufoula-
Georgiou [23]). Veitzer and Gupta [47] showed that the width function maxima of the
simulated random self-similar channel networks follow distributional simple scaling.
That is, the generalized Horton law in terms of probability distributions (e.g., Peckham

and Gupta [36]) holds for the width function maxima, and the Horton ratios of width

function maxima R, and upstream areas R, arerelated by a power law of the form.



R, =RY (1)

where S is the scaling exponent of the width function maxima. Similarly, the Horton

ratios for the peak flow Rq and upstream areas R, are related by a power law

R, =R} )

when peak flow distributions exhibit statistical self-similarity, which has been shown to
be the case under certain conditions of flow and rainfal (e.g., Mantilla [26]). The
exponent @ in equation 2 isreferred to as the peak flow scaling exponent.

A scale break is defined in our study as a transition point in the log-log plot of peak
flows vs drainage areas. As discussed in Sections 6 and 7, the scale break separates the
smaller scale basin response dominated by the rainfal intensity from the larger scale
basins, whose response is dominated by river network characteristics and flow dynamics

and is therefore rainfall volume driven.

2.2.  Smulation-based studies

Gupta et a. [18] was the first study to focus on the effect of rainfall and channel
network on the scale-invariance of single-event peak flows from a deterministic Peano
network. Using a numerical simulation framework, they showed that peak flows exhibit
simple scaling for uniform rainfall, with the scaling exponent dependent on the fractal
dimension of the channel network width function maxima. For spatially variable rainfall,

they reported that the peak flows display multi-scaling, with the exponent being a



function of the channel network and the spatia variability of the rainfall. Troutman and
Over [46] derived analytical expressions for channel networks and rainfall mass
exponents for the general class of recursive replacement trees and instantaneous
multifractal rainfall. Menabde et a. [29] focused on the attenuation due to storage in
channel networks and its effect on the scaling exponents of peak flows from deterministic
(Mandelbrot-Viscek and Peano networks) and random self-similar networks with linear
routing and for spatially uniform rainfall. For the deterministic self-smilar networks
(SSNs), the scaling exponent of peak flows is smaller than the one predicted for the width
function maxima (i.e., ignoring the attenuation due to storage in channel networks).
Menabde et al. [29] also showed that for random SSN with smaller bifurcation ratios, the
peak flows scale asymptotically.

To better understand and predict the scaling behavior of peak flows, Menabde and
Sivapalan [28] introduced a dynamic and spatially distributed hillslope-link rainfall-
runoff model based on representative elementary watershed (REW) consisting of three
main components. a space-time model of rainfall, a hillslope model and a channel
network model. The rainfall model can generate storms whose spatial structure is
characterized by a discrete random cascade. The hillslope model partitions the rainfall
into Hortonian runoff, subsurface flow and evaporation, which are assumed to be zero
during periods of rainfall. They further assumed that all of the surface runoff reaches the
channel instantaneously. The channel network is a deterministic Mandelbrot-Viscek
network in which the hydraulic geometry properties at every link are obtained from
observed empirical relationships. They investigated the effect of rainfall on the scaling

structure of the peak flows, starting from a spatially uniform rainfall scenario and moving
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to the individual storms based on discrete random cascade. They aso extended the study
to include continuous rainfall and annual flood peaks. The results from event-based
simulations with spatially uniform rainfall and the rainfall based on the random cascade
model demonstrated that the interplay between the catchment response time and the
storm duration controls the scaling exponent of peak flows.

Mantilla et al. [26] discussed the difficulties in generalizing the scaling theory to the
real networks and tested whether the random spatia variability of the real channel
networks and their hydraulic geometry properties, coupled with flow dynamics, produce
Hortonian scaling in peak flows. Based on the results from Veitzer and Gupta [47], the
value of the scaling exponent of the network width function was computed for the 149
km? Walnut Gulch basin in Arizona (e.g., Goodrich et a. [12]). The runoff rates were
estimated from two very small gauged sub-basins within the Walnut Gulch, assuming
that rainfall was spatially uniform. For an instantaneously applied runoff rate, the system
of ordinary differential equations describing the runoff dynamics was solved for three
different scenarios. (@) constant velocity (b) constant Chezy and (c) spatially varying
Chezy constant. They showed that the scaling exponent of peak flows is larger than the
exponent of the width function maxima, which contradicted the results from the studies
performed on the idealized basins, where the flow scaling exponent is always smaller
than the exponent of the width function maxima. The contradiction is explained in terms
of the relative roles of flow attenuation and flow aggregation in the river networks that

were considered.
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2.3. Data-based studies

Ogden and Dawdy [34] investigated the single-event and annual peak flows from the
21.2 km? Goodwin Creek watershed in Mississippi (e.g., Alonso and Bingner [1]), where
the Hortonian mechanism of runoff generation is dominant. They considered 279 events
for which flows were recorded at several interior gauging stations. The results showed
that the peak flows follow simple scaling but the exponents vary from event to event and
depend on the runoff production efficiency. The mean of scaling exponentsis 0.831 with
a standard deviation of 0.10. Some events are then filtered out with a threshold on the
correlation coefficient (0.93) between the logarithm of peak flows and the upstream
areas. The mean of scaling exponents from the 226 remaining events is equal to 0.826,
with a standard deviation of 0.047 and a mean correlation coefficient of 0.98.

Furey and Gupta [8] explained this event-to-event variability in the peak flow power
laws in Goodwin Creek watershed in terms of variability in the rainfall’s excess depth
and the duration. To understand the physical origin of the observed peak flow scaling,
Furey and Gupta [9] proposed and applied a 5-step framework to the Goodwin Creek
watershed. Guptaet al. [19] provided further observational evidence on scaling in single-
event peak flows for the Walnut Gulch basin, Arizona. They reported two different sets
of scaling exponents for smaller and larger scales with a scale break at around 1 km?.
They aso noticed that for the events that cover amost the entire basin, the single-event
scaling exponents are quite close to the scaling exponents of the annual flood quantiles.

All the studies discussed in this section focused on the fundamental question, “How is
the peak flow scaling exponent linked to the channel network characteristics such as

width function maxima and variability in the rainfall?’ In the studies that addressed this
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guestion using numerical ssmulations under idealized conditions, the complexity in the
simulations increased from Gupta et al. [18] to Mantilla et a. [26]. The rainfall varied
from spatially uniform to the complex cascade-based case, and the networks ranged from
deterministic self-similar to random self-similar and actual river networks with linear and
nonlinear routing mechanisms (e.g., Gupta et al. [18]; Veitzer and Gupta [47]; Troutman
and Over [46]; Menabde et al. [29]; Menabde and Sivapalan [28]; Mantillaet a. [26]). In
the data-based analyses (e.g., Ogden and Dawdy [34]; Furey and Gupta [8]; Gupta et a.
[19], Furey and Gupta [9]), the variability in the scaling exponents was explained in
terms of variability in antecedent conditions and storm characteristics. However, the
smaller size of the basins (21.2 km? Goodwin Creek and the 149 km? Walnut Gulch
basins) limited the range of scales available to explore the effect of rainfall variability on
the peak flow scaling structure. Regardless of the approach followed, these studies
enhanced our understanding of the relationship between the statistical structure of flood
peaks and the characteristics of rainfall and channel network. However, we need to
further understand and generalize the role that rainfall playsin the statistical structure of
peak flows from actual river basins across arange of scales.

In this study, we perform a series of simulation experiments starting from a simple
scenario of spatialy uniform rainfall for a fixed duration and moving to a complex
scenario in which the rainfall is obtained from a space-time rainfall model. We also
investigate the sensitivity of the scaling behavior to linear and nonlinear channel routing
mechanisms. We selected the simulation framework instead of a data-based analysis
since it allows complete freedom to systematically explore various aspects of scale-

invariance. Also, there are very few basins in the United States where streamflow data
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necessary for rigorous scaling analyses are available. Our simulation covers a range of
scales from ~0.1-1000 km?, thus addressing the peak flow scaling for basin response

times ranging from minutes to days.

3. Simulation Framework

3.1. SudyArea

The Whitewater River basin (Figure 1), with an area of 1100 km?, stretches between
latitudes 37° 46'E and 38° 09'E and longitudes 96° 51'W and 97° 18'W. The river
network extraction was based on the maximum gradient method, also known as the Dg
algorithm (e.g., O’ Callaghan and Mark [33]). Mantilla and Gupta [25] compared the
network extracted from CUENCAS with those extracted from popular GIS software such
as Arclnfo, GRASS and RiverTools and found no major differences when high resolution
DEMs were used. They showed that a 30m resolution DEM is sufficient to extract the
drainage network that is close to the terrain’s actual network. We use the one arc-second
resolution (~30m) digital elevation model (DEM) from USGS to extract the channel
network. This resultsin some 20,000 hillslopes and, thus, channel links for thisbasin. In
Figure 1, we show the extracted channel network with links of Horton orders4 to 7.

Section 2 indicated that the width function maxima play an important role in
understanding the scaling structure of the peak flows. Figures 2(a) and 2(c) show the
Horton plots for drainage areas and width function maxima of links of various orders for
the Whitewater River basin, Kansas. If the channel network is self-similar, the averages
of drainage areas and width function maxima display linearity with respect to the

corresponding Horton orders in the log-linear domain (e.g., Strahler [45]; Peckham and
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Gupta[36]; Furey and Troutman [10]). Thelog-linearity in Figures 2(a) and 2(c) confirm
the statistical self-similarity of the upstream areas and the width function maxima. In the
regression analysis, we use the areas and width function maxima corresponding to the
Horton orders 2 to 6. The order 7 stream is not used in the Horton regression due to
sampling reasons. we have only one point corresponding to the order 7. Although,
averages corresponding to order 1 streams do not suffer from sampling issues, they are
usually not considered in the regression (e.g., Peckham and Gupta [36]; Mantilla and
Gupta [25]) as they represent the finest detall in a stream network, and therefore the
corresponding basins do not contain a “network”. The Horton ratios for the areas and
width function maxima are then obtained by exponentiation of the slopes from the
regression analysis. The scaling exponent of width function maxima obtained through
Horton ratiosin (1) is0.49.

If the upstream areas and width function maxima display log-linearity, as shown in
Figures 2(a) and 2(c), then E[X,,] = E[X41] -(R)**, where X is either the upstream area or
the width function maxima and Ry is the corresponding Horton ratio. The rescaled
upstream areas and width function maxima are obtained by dividing each value of X, by
E[X1] (R)“™. The probability distribution of the quantity X,/[E[X1] (Rq)“™] is called the
rescaled probability distribution. In Figures 2(b) and 2(d), we show the statistical self-
similarity of areas and width function maxima in terms of their rescaled probability
distributions for orders 1 to 5. Although order 1 basins were not considered in the
regression analysis, it can be seen that their rescaled probability distribution collapses

onto those of orders2 to 5.
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3.2. Hydrologic Model

Because of the fundamental effect of the river network structure on peak flows, it is
necessary to have a distributed hydrologic model that can calculate hydrographs for all
river network links in order to carry out a systematic investigation. In this study, we used
the CUENCAS model, developed by Mantilla and Gupta [25], which is based on
hillslope-link decomposition of the landscape and mass conservation equations (e.g.,
Gupta and Waymire [16]). The model can be run with linear routing with constant flow
velocity throughout the channel network or nonlinear routing with velocity that depends
on the discharge in each link and the corresponding upstream area. For the nonlinear

case, the velocities are estimated using (Mantilla[24])

Z e
v () (£
Qr A

where V((t) is the velocity in the channel and A is the upstream area of the corresponding
channel. The coefficients A; and A, are the velocity scaling exponents for discharge and
upstream area, respectively, and vg, Qr and Ag, are reference velocity, discharge and area,
whose values are taken in this study to be 1.0 m/s, 200 m*/s and 1100 km?®. These values
are obtained from measurements during the rainfall-runoff events in the Whitewater
River basin. The above equation gives the instantaneous velocity as a function of
discharge q(t) in the channel link, which in turn gives rise to a non-linear ordinary

differential equation that represents fluxes coming out of the channel link. Please see

equations (6) and (9) — (11) in Mantillaet a. [26] for more details.
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Although the nonlinear routing mechanism is closer to reality, we also included the
linear routing analysis in this study as it is a good starting point to investigate the effect
of rainfall variability on the peak flow scaling structure. Throughout this study, we use a
value of 0.5 m/sfor the V; for the linear routing scenario and A; and A, of 0.3 and -0.1 for
the nonlinear routing scenario, obtained based on field data from the region. In Figure 3,
we show the velocity obtained using (3) for the link that corresponds to the largest
upstream area of each Horton order for the Whitewater River basin. Throughout the
study, we employed a rainfall grid of size 40 x 40 km? with a spatial resolution of 1 km.
The temporal resolution and the duration of the event (ssmulated as well as radar data) are

different for different events, as mentioned in the corresponding sections.

3.3. Assumptions

In al of our simulation scenarios, we assume (1) negligible evaporation; (2) purely
surface runoff (i.e. no infiltration and no subsurface runoff); and (3) instantaneous flow
of runoff into the channel. Evaporation rate is often an order of magnitude lower than
storm rainfall rate, and Hortonian runoff generation is one of the main flood producing
mechanisms. From the brief review of literature presented in Section 2, one can infer that
the complexity in the simulation-based studies that were carried out to understand the
scaling behavior of peak flows have steadily increased since the early nineties. For
instance, one of the first studies was based on the deterministic Peano network and
uniform rainfall (e.g., Gupta et a. [18]). Some recent studies have used random self-
similar networks to mimic the river network behavior (e.g., Veitzer and Gupta [47],

Mantilla[24]). We continue on this trajectory by introducing complexity one step at a
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time. Therefore, in this study, the complexity is in terms of rainfall variability and the
river network structure, which is why we limited our analysis to the Hortonian runoff
generation mechanism. We understand that in reality, other runoff producing
mechanisms are also possible in the selected study area. The hydrologic model we used
can account for the saturation excess mechanism, for instance. However, including it in
the study would only add additional variability, and it is difficult to separate the role of
rainfall variability and the variability introduced by the saturation excess mechanism.
The third assumption regarding the instantaneous flow to the channel plays a key rolein
shaping the hydrologic response. For smaller basins (< ~ 10 km?), it leads to
overestimation of the peak flows as the hillslope travel times are comparable to the time
spent in the channel network (e.g., D'Odorico and Rigon [7]). But the error is smoothed
out for larger basins.

Therefore, the assumptions are reasonable in the context of exploring the roles of
rainfall and channel network on the scaling exponents of peak flows, i.e., floods, for
individual rainfall-runoff events. Relaxing these assumptions and including other details
such as saturation excess flood production, hillslope travel times and channel hydraulic

geometry will be part of our future communications.

4. Hydrographsvs. a Scaling-based Framewor k

This section illustrates via simple simulation experiments the advantages of the
scaling-based analysis of hydrologic response. The hydrologic model CUENCAS is
forced with two simple rainfall scenarios of changing intensity (60 mm/h and 10 minutes)

and duration (5 mm/h and 120 minutes), while keeping the total rainfall volume constant
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(1.1x10° m*). The simulated rainfall is spatially uniform over the basin for the given
duration. We also assumed that the runoff is Hortonian and reaches the channel
instantaneously. The discharges are normalized with respect to the peak flow
corresponding to the rainfall scenario of 60 mm/h for 10 minutes. The time of occurrence
is then normalized with the time at which the normalized discharge corresponding to the
scenario of 60 mm/h and 10 minutes reaches 0.01. In Figure 4, we show the normalized
hydrographs at six different locations in the Whitewater River basin. Although we show
the normalized hydrographs at only six locations, we simulated hydrographs for all the
interior sub-basins as well as for the outlet of the Whitewater River basin (Figure 1) by
solving the mass and momentum equations throughout the river network. Figure 4
demonstrates that at smaller scales, the values of flow peaks differ greatly from each
other and occur at different instances.  However, the flow hydrographs are
indistinguishable as we move to the larger scales.

We then relax the spatial uniformity assumption and assume that the rainfall is
randomly distributed in space over the hillslopes of that same basin. We obtained ten
realizations of the rainfall following a uniform distribution over the range of 20 to 100
mm/h with the average intensity equal to 60 mm/h and the duration kept at 10 min. That
is, for each rainfall field of size 40 x 40 km? we generated 1600 random numbers
following a uniform distribution with a range of [20,100] and a mean of 60 mm/h. It
should be noted that these fields do not possess any spatial correlation. In Figure 5, we
compare the normalized hydrographs obtained with these ten rainfall fields with the one
obtained for the spatially uniform case of Figure 4. It is clear from Figure 5 that for

spatialy random rainfal, the variability in the hydrographs at smaller scales is higher
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compared to those of larger scales. Therefore, to develop a comprehensive understanding
of river basin response, it is imperative that we study the hydrographs throughout the
basin across multiple scales.

In this context, the results from spatialy uniform rainfal (Figure 4) can be
aternatively represented in the form of Figures 6(a) and 6(b). Similarly, the results from
gpatially variable rainfall (Figure 5) for two of the simulated realizations are shown in
Figures 6(c) and 6(d). This framework alows us to study the basin response across
multiple scales. Figure 6 illustrates that our simulated peak flows display scaling
structure with respect to the drainage area, and the scaling regime depends on the
intensity, duration and variability of the rainfall. Figure 6 also demonstrates that the
effect of rainfall variability on the basin response is scale-dependent. While peak flows
are senditive to the intensity, duration and spatial distribution of rainfall at small scales
(~10 km?), the variability in rainfall is dampened at larger scales (~1000 km?) by the river

network via aggregation of flows.

5. Basin responseto theradar-rainfall data

To investigate the statistical structure of peak flows for a range of scales, it is
necessary to have information on the spatial-temporal distribution of rainfall events.
Such information can be conveniently provided by the ground-based weather radar
network. We obtained radar estimates of three rainfall events that occurred in 2007 over
Whitewater River basin, Kansas. The spatia resolution of the data is 1 km, and the
temporal resolution is 15 minutes. We forced the hydrologic model CUENCAS with

radar-rainfall estimates and obtained the hydrographs for all the interior sub-basins and
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the outlet of the Whitewater River basin. We assumed a linear routing mechanism with
constant flow velocity throughout the river network. Figure 7 shows the peak flow
structure for the 6™ of May 2007 event that lasted for approximately 25 hours. Figure 7
reveals that peak flows display scaling with a scaling exponent of 0.70. We obtained
ordinary least squares fit to the peak flows, though in the Hortonian regression
framework, similar to the width function analysis presented in the previous section. That
is, instead of obtaining the scaling exponent by regression of peak flows with upstream
areas, we used (2) to obtain the scaling exponent.

The scaling exponent of 0.70 is larger than the scaling exponent of the width function
maxima. For the other two 2007 events that we anayzed, the scaling exponents were
0.68 and 0.77. From the studies discussed in Section 2, we know that when a spatially
uniform rainfall is applied instantaneously, the peak flow scaling exponent is very close
to that of the width function maxima. A rea rainfal event is far from being spatially
uniform and lasts for a certain duration. Therefore, the scaling exponent is different from
that of the width function maxima. Figure 7 shows that the scatter at small scales is
different from that of the spatially uniform or spatially random case presented in Figure
3. Another conspicuous feature in Figure 7 is that the scale break is poorly defined,
possibly because of the inherent space-time variability of the rainfall event such as zero-
rain intermittency and its spatio-temporal correlation structure.

The studies discussed in Section 2, which were carried out under idealized conditions,
cannot clearly explain the effect of various characteristics of rainfall that resulted in
Figure 7. It is aso well known that remotely sensed rainfall products suffer from large

uncertainties (e.g., Krajewski and Smith [21], Ciach et al. [6]) that propagate through the
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hydrologic models and contribute to the variability of the predicted peak flows across
scales. Consequently, it becomes necessary to separate the effects of uncertainties from
the effects of variability of rainfall on the peak flow scaling structure. The natural
variability of rainfall itself has a great impact on the statistical structure of peak flows,
and understanding its role is the main goal of this study. Hereafter, we avoid using
rainfall data and follow a systematic simulation framework to explore the effect of

rainfall variability on the peak flows.

6. Simulation Scenarios and Results

We start our experiments with simple but less realistic models of rainfall and proceed
to complex space-time models that yield more plausible rainfall. We obtain parameters

of these models from analyzing real rainfall events.

6.1. Sengitivity to the Intensity and Duration of Spatially Uniform Rainfall

We start with the simple scenario of a basin receiving spatially uniform rainfall of a
certain intensity and duration. Figure 8 shows the peak flows versus drainage areas for
different rainfall intensities and durations with a linear channel routing mechanism.
Three important features of the peak flow scaling structure that are apparent in the plots
are the scatter, the scale break and the scaling exponent. For afixed rainfal intensity, the
scatter decreases as the duration of the event increases. For each link, there is an upper
limit for the peak flow that is not exceeded. This upper limit corresponds to the
equilibrium discharge reached when the rainfall duration is larger than the concentration

time. With an increase in the duration of rainfall, more hillslopes reach saturation,
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thereby decreasing the scatter. The peak flows for the links that reached steady-state
correspond to the well known rational method Q = ¢ | A, where c is the runoff
coefficient, | is the rainfall intensity and A is the upstream drainage area. In this study,
since the infiltration is assumed to be zero, the value of c is equal to 1.0. We obtain the
scale break by comparing the peak flows obtained from our simulations to those from the
above rationa method equation. A window of fixed size in the logarithmic domain is
moved along the upstream area axis of each panel in Figure 8. Within such a window,

we compute the following ratio

3

where | ,; =1if 0.9Q, <Q,; <Q., Qp; is the peak flow for the link i, Q. is the

corresponding peak flow obtained from the rational method and n, is the total number of

links in the network. If theratio y islessthan 0.75, the scale break is considered to be

at the average of the upstream areas within that window. We readlize that this definition
of scale break is subjective. However, it serves the purpose of a qualitative comparison
only. The scale break is indicated by a red line in Figure 8. As the duration of the
rainfall increases, more links reach saturation and the scale break moves towards the
larger areas. Because of the large scatter, we do not estimate the scale break for the

shortest duration of 5 minutes.
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Figure 8 shows that for a fixed duration, the scale break and scatter in the peak flow
scaling structure remain unchanged with intensity. As in Section 5, we fit these peak
flows in the Hortonian framework using (2). In Figure 9, we show the Horton plots of
peak flows for al of the intensities and durations. The Horton ratio of peak flows is
estimated considering only the orders that lie on the higher side of the scale break. Since
the scale break is not obvious in the Horton plots, we select the orders for regression
based on Figure 8. The Horton ratio of peak flows obtained by exponentiation of the
regression slope is shown in each panel of Figure 9. The Horton ratio of peak flows and
the upstream area are plugged into equation 2 to obtain the scaling exponent of the peak
flows. The coefficient of the power law is obtained so that the regression line passes
through the average of the peak flows corresponding to the top three orders (Figure 8).
The regression equations in Figure 8 allow us to conclude that, for a fixed duration, the
peak flows are linearly related to the rainfal intensities when the routing mechanism in
the channelsislinear. This result is similar to the one observed by Furey and Gupta [8]
over the Goodwin Creek Watershed. For a fixed intensity, the scaling exponents range
from 0.50 to 0.56 as the duration changes from 5 to 360 minutes. We have also noticed
that the peak flow at the outlet of the basin changes linearly with the duration. The
scaling exponents for all of the cases are larger than the width function scaling exponent
of 0.49, which confirms the result of Mantillaet al. [26] for the Walnut Gulch watershed.

Figure 10 shows the effect of the intensity and duration of spatialy uniform rainfall
when the channel routing mechanism is nonlinear. The parameters selected in this study
for the nonlinear routing mechanism result in different velocities in different links, and a

straightforward panel to panel comparison between Figures 8 and 10 is therefore not
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meaningful. We do not obtain the scale break for the shortest duration simulations for the
same reason mentioned in the linear routing case. Regression is not performed for the
longest duration of 360 minutes, as most of the links have reached saturation and the
scale break is poorly defined. For the 120 minute duration, the fitted regression equations
reveal that the scaling exponent decreases as the rainfall intensity decreases. It is also
clear from Figure 10 that the relationship between flow peaks and rainfall intensities is
nonlinear. The peak flow scaling exponents for all the cases of nonlinear routing are
larger than the exponent of the width function maxima. They range from 0.55 for the
shortest duration of 5 minutes to 0.66 when the rainfall intensity is 50 mm/h and the
duration is 120 minutes. For the longest duration of 360 minutes, the scaling exponent is

closeto 1.0.

6.2. Sengitivity to the Advection Velocity

A spatialy uniform rainfall of intensity 30 mm/h and covering approximately half the
size of the basin (40x20 km?) is moved from west to east at five different velocities (4, 8,
16, 32 and 64 km/h). It should be noted that the spatial uniformity is only within the
40x20 km? area; the rainfall actually received by the basin cannot be considered as
uniform. The peak flows are fitted in the Hortonian framework, and the regression
equations are obtained. Figure 11 plots the scaling exponents versus advection velocities
for linear and nonlinear routing mechanisms. As expected from the results shown in
Figure 10, there is no scale break for the smallest advection velocity of 4 km/h for the
nonlinear routing mechanism, and therefore we did not perform any regression analysis.

For both channel routing mechanisms, the scaling exponent decreases with an increasein
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advection velocity. Our motive for plotting linear and nonlinear routing mechanisms in
the same figure is not to compare them point-to-point but to compare how the exponents
decrease with advection velocity. Figure 11 also shows the power law fit for both routing
mechanisms. The fitted equations revea that the trend is the same for both routing
mechanisms. The decreasing trend can be explained in terms of the effect of duration
discussed in the previous subsection. With the increase in advection velocity, the
duration for which the block of rainfall stays over the basin decreases, and therefore the

scaling exponent also decreases.

6.3. Sengitivity to the Spatial Variability of Rainfall

We have thus far assumed that the rainfall is spatially uniform throughout the basin.
In this subsection, we investigate the effect of spatial variability on the scaling exponents
of peak flows. Though there are many ways in which spatial variability can be
characterized, we explore it in terms of variance, correlation structure and zero-rainfall
intermittency. Our experiments are designed so that we depart from the uniform rainfall
scenarios in a gradual, simple manner to keep from losing the benefits of the recently

gained understanding of the effects of the uniform intensity and duration.

6.3.1 SmpleBlock Sructure

We relax the spatial uniformity of rainfall over the basin by breaking it into two
components. a block of uniform rainfall with an intensity of 25 mm/h for a duration of 30
minutes on the western half of the basin and a rainfall of 50 mm/h for a duration of 120
minutes over the eastern half of the basin. The channel network routing is assumed to be

linear with a velocity of 0.5 m/s throughout the network. Figure 12 shows the scaling
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structure of peak flows for this scenario. The banded structure apparent in Figure 12 isa
direct manifestation of the different rainfal intensities received by the western and
eastern regions of the basin. The scale break for these two bands also occurs at different
locations because of the different rainfall durations over the western and eastern parts of

the basin. We noticed asimilar trend for the nonlinear routing in channels.

6.3.2 Gaussian Uncorrelated Field

In this scenario, we simulate Gaussian random fields with a mean of 25.0 mm/h and
the standard deviation ranging from 0.1 mm/h to 6 mm/h. By gradualy varying the
variance, we gently depart from the well-understood case of uniform intensity. The
duration of the rainfall is fixed at 120 minutes. The peak flow scaling structure for four
different cases of standard deviation and linear routing mechanism is shown in Figure 13.
In the Hortonian regression, we used the orders 3to 7. Table 1 lists the average rainfall,
intercept, scaling exponent and the peak flow at the outlet of the basin for all the cases
and for both routing mechanisms. Figure 13 and Table 1 reveal that the increasing
variance has no significant effect on the fitted regression equations. The main effect of
the variance is to increase the scatter in the peak flow scaling structure. The scatter is
averaged out by the basin at the larger scales, as seen from the peak flow values at the
outlet (Table 1). The dlight variation in the intercepts and outlet peak flows is expected
given that we are using realizations of arandom process. Thisis further evident from the

estimated values of the mean, which are different from the theoretical value of 25 mm/h.
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6.3.3 Gaussian Correlated Field

To investigate the effect of the spatial correlation of the rainfall field on the scaling
exponents, we obtain Gaussian fields with a mean of 25 mm/h and a standard deviation of

2 mm/h and that is characterized by an exponential correlation structure

pld)=6,- eXIO[— (gjzl (@)

where 6, characterizes the nugget effect and the small scale variability, 6, is the

correlation distance defined as the distance at which the correlation dropsto 1/eand 6, is

the shape factor that controls the shape of the correlation function at the origin. We fixed
the nugget parameter and the shape factor at one and generated the random fields with the
correlation distances varying from 5 km to 50 km. Each field is then applied for 120
minutes over the basin, and the peak flows are estimated for linear and nonlinear routing
mechanisms. Figure 14 shows the scaling structure of peak flows for two extreme cases
of correlation distances and a linear routing mechanism. The effect of increasing
correlation is to decrease the scatter in the scaling structure (Figure 14). Table 2 shows
that the larger scale basin response is almost independent of the correlation structure,
although there is some variability in the intercepts and outlet peak flows, which is mainly

due to the fact that we are using realizations of a random process.



28

6.3.4 Spatial Zero-Rain Intermittency: Uncorrelated Random Fields

To investigate the effect of zero-rainfall intermittency, we simulated random rainfall
with varying degrees of zero-rainfall intermittency and a duration of 120 minutes. The
value of rainfal over each pixel was drawn from uniform distribution U[10,30], and
intermittency is introduced randomly but maintains an overall mean fixed at 20 mm/h.
We considered four values of intermittencies: 0.0, 0.05, 0.25 and 0.50 (corresponding
rainy area fractions are 1.0, 0.95, 0.75 and 0.50). These rainfall scenarios were supplied
as input to the CUENCAS model, and the peak flow scaling structure was obtained for
linear routing mechanisms. The sensitivity of the peak flow scaling to the intermittent
random fields is shown in Figure 15. With the increase in intermittency (or decrease in
rainy area), the scatter for the smaller scale basin peak flows increased. However, the
effect of intermittency is reduced for the larger scale basins, as evidenced by the linear
regression equations shown in each panel of Figure 15 and also from the outlet peak flow
values shown in Table 3. The smulations are repeated for the nonlinear routing
mechanism, and we found a similar pattern to the pattern found in linear routing,

although the intercepts and scaling exponents differed (Table 3).

6.3.5 Spatial Zero-Rain Intermittency: Correlated Random fields

To study the effect of intermittency in a more realistic manner, we selected the spatial
component of the rainfall model developed by Bell [2]. The model belongs to the class
of meta-Gaussian models (e.g., Mgjia and Rodriguez-Iturbe [27]; Bell [2]; Guillot and
Lebel [13]) and generates a two-dimensional isotropic, correlated random field using

gpectral analysis. A non-linear transformation and an external threshold are then applied
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to obtain a rainfall field with desired intermittency, average intensity and correlation
structure. In Bell [2], the use of exponential transformation resulted in lognormally
distributed rainfall. The parameters for the model are the log-transformed (Gaussian)
mean and variance of the rainy area, the zero-rainfall intermittency factor and the spatial
correlation structure. The parameters we selected are 0 and 0.5 for the log-transformed
mean and variance of the rainy area and exponential correlation structure with a
correlation distance of 20 km. We observed that the realizations from the model, besides
having the desired spatial correlation structure, also displayed spatial scaling behavior
(not shown). The duration of the event is fixed at 120 minutes. To keep the volume
constant with changing intermittency, we simulated a single realization with a given
correlation structure on a large (256x256) domain and selected the portion that yielded
the desired intermittency and volume. The spatial structure of the field thus obtained will
remain the same as the larger one. Figure 16 shows the scaling structure of peak flows
for four different intermittency factors starting from 0 to 0.50 for the linear channel
routing mechanism. Unlike in Figure 15, significant scatter was observed even for higher
order basins (particularly for the bottom panels of Figure 16) when the pixels are
correlated. The large scatter is due to the high probability of concentrated intermittent
pixels present in correlated intermittent fields. Whereas, for uncorrelated intermittent
fields, the river network efficiently aggregates the randomness in the fields. However,
the overall behavior - of increasing scatter with increasing intermittency - is similar for

both scenarios.
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7. Simulations from the Space-time Rainfall M odel

The scenarios investigated so far have offered insight into the effects of different
characteristics of rainfall on the spatial scaling structure of peak flows. We will now
investigate the basin’s response to more realistic space-time rainfal events. Therefore,
we have simulated a space-time rainfall event from a model developed by Bell [2] and
applied it over the basin. The spatial component of the model is described in the previous
section. The temporal evolution of the rainfall is modeled as an autoregressive process
with parameters based on the correlation time of area-averaged rainfall. The parameters
for the model are obtained by analyzing severa storms over the Midwest. In this study,
we simulate two different storm events with characteristics listed in Table 3. Storm 2 is
more variable than storm 1, as seen from the values of the coefficient of variation and
correlation distance. Another important difference is that storm 1 lasts longer and has
larger values of mean and rainy fraction compared to storm 2. The values of the shape
factor suggest that storm 2 is more correlated at very small scales than storm 1.

Figure 17 shows the basin response to the two storms for the linear routing
mechanism. The peak flow scaling structure for this complex scenario can now be
explained using the results from Section 6. Figure 17 considers three components: scale
break, scatter and regression equations. Although the scale break is sharp and evident for
the simulation scenarios of Section 6 under idealized conditions, it is not clearly seen in
the peak flow scaling structure resulting from the simulated realistic space-time rainfall
event. Since the scaling exponent is not close to 1.0, basin saturation (for instance, top

panels of Figure 8) is not the reason for the absence of scale break. The lack of sharp
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scale break for realistic rainfall scenarios can be best explained by revisiting the idealized
scenarios in Section 6. For instance, a combination of just two different intensities and
durations has diffused the scale break in Figure 12. The space-time rainfall fields are
characterized by different intensities, durations, correlations and intermittencies and
move with a certain advection velocity. In away, these fields are a combination of al of
the scenarios considered in Section 6. This explains the absence of scale break for storm
1

The scatter for storm 1 is smaller than that of storm 2. Two main factors responsible
for the reduced scatter are the duration of the storm and zero-rain intermittency. Results
from Section 6.1 indicate that one consequence of longer duration events is the decreased
scatter that is most pronounced at smaller scales. In Section 6.3.4 that pertains to the
effect of zero-rain intermittency, we note that the scatter in the peak flow structure
increases rapidly as the area of rainfall decreases. Though the rainy fraction of storm 1is
46 %, the advection of the storm eventually increases the effective wetted area of the
basin, thereby decreasing the scatter seen at smaller scales. For the second storm, the
large scatter is due to the increased intermittency combined with the shorter duration and
large coefficient of variation.

The regression equation seen for storm 1 is obtained in a Hortonian framework using
the orders 2 to 7. For storm 2, peak flows corresponding to the Horton orders of 4 to 7
are used in this storm’s regression.  The scaling exponent for both storms is larger than
the scaling exponent of the width function maxima. For the nonlinear routing scenario
(not shown), we noticed a similar pattern with larger scatter and higher values for scaling

exponents than in the linear routing case.
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8. Analysis of Scatter

The scatter in the peak flow scaling structure for the lower order basins can be
explained in terms of peak flows reaching equilibrium (basins reaching saturation), while
the scatter for the higher order basins can be explained in terms of aggregation and
attenuation of flows. Weillustrate this by analyzing the peak flows for two of the rainfall
scenarios in Section 6.1 and Figure 8. Specifically, we compare the probability
distributions of the rescaled peak flows corresponding to spatially uniform rainfal of 5
mm/h and durations of 5 and 120 minutes with the probability distributions of rescaled
areas and width function maxima. Figure 18(a) illustrates that for a spatially uniform
rainfall intensity of 5 mm/h and a duration of 120 minutes, the order 1 probability
distributions of rescaled peak flows and areas are indistinguishable (negligible scatter in
Figure 8), but for a shorter duration of 5 minutes, the probability distributions are very
different (large scatter in Figure 8). Since the width function maxima have the signature
of the aggregation of flows in the channel network, we compare the order 5 probability
distributions of rescaled peak flows and width function maxima in Figure 18(b). We
intended to compare the probability distribution of peak flows with that of width function
maxima for higher order basins. However, for orders 6 and 7, there are not enough points
to obtain the probability distributions. Therefore, we limit the comparison to order 5
basins. Unlike the order 1 distribution, the order 5 distribution is not very sensitive to the
duration of the rainfall event. For both rainfall scenarios, the distributions of rescaled

peak flows match reasonably well with those of width function maxima (Figure 18b).



33

9. Remarks

While our results are subject to the usua limitations of a simulation study, our
experiments contain many realistic aspects. First, our river basin has a substantially
larger size (scale) than many small experimental basins that are the basis for many
hydrologic studies. Second, using high-resolution DEM data, we extracted a river
network that closely approximates the actual drainage pattern of the selected basin.
Third, our rainfall variability cases and range of values, though simple, capture the key
aspects of natural rain systems.

We modeled rainfall space-time variability in terms of stationary random fields with a
certain intermittency and correlation structure in space and time. Although the emphasis
of this approach is more on generation of space-time random fields and lacks a direct link
to the physical aspects of the rainfall process, one can qualitatively relate the statistical
parameters to the meteorological aspects such as back-building thunderstorms, squall
lines and convective systems. For instance, the size of the convective system with
respect to the size of the basin is an important characteristic that controls the basin
response. This information is embedded in the correlation distance and shape factor in
equation 4. There are other ways of characterizing the space-time variability of rainfall
fields such as modeling of rainfall based on spatial cluster processes for rain cells,
dynamic modeling of rainfall based on partial differential equations for mass and
momentum conservation and scaling-based modeling of rainfall space-time structure. It
would be interesting to employ these models and relate the parameters of rainfall models

to the characteristics of peak flow scaling structure.



34

Anthropogenic alteration of the landscape will have an impact on the extracted
drainage network and subsequently on the aggregation of the flows affecting the larger
scale basin response. The hydraulic geometry of the channelsis another key factor which
is strongly related to the channel-floodplain interactions and influences the storage zones,
movement of the flood waves and the travel time within the channel. Therefore, it is
expected to have an influence on the peak flow scaling structure. The CUENCAS
framework allows for the inclusion of this feature by modifying the local velocity law.
However, investigation of this factor is beyond the scope of this work, and our strategy is
to avoid any aspects in the dynamics that can obscure the effect of rainfall variability.

Throughout this study, we have estimated the Horton ratios by ordinary least squares
regression of logarithms of arithmetic averages with the Horton order (See Figure 2).
Based on a simulation study, Furey and Troutman [10] suggested the use of individual
guantities (for example, areas or peak flows) instead of arithmetic averages. Since the
main focus of the study is on the role that rainfall variability plays in the scaling structure
of peak flows, our use of arithmetic averages instead of individual quantities in the
Horton analysis would not affect the results. Also, in this study, we have assumed that
the runoff generation is Hortonian with no infiltration so that we can focus on the role
that rainfall plays in the statistical structure of peak flows. The key issue is how to
specify the infiltration threshold for each of 20,000 hillslopesin CUENCAS, which differ
due to spatia variability in soil and vegetation properties. This problem of “dynamic
parametric complexity” is a major research problem (e.g., Gupta [14] and Furey and

Gupta[9]) and not addressed in this study.
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10. Summary and Conclusions

In this study, we carried out a systematic investigation to understand the role that
rainfall plays in the spatial structure of peak flows. Due to the lack of adequate field
data, i.e., numerous stream gauges as well as highly accurate rainfall maps, we used
simulations. Our simulation experiments consisted of simple scenarios aimed at isolating
the effects of rainfall variability on the peak flow scaling structure. We demonstrated
that rainfall variability has a different impact on the magnitude of peak flows for basins
of different scales. We selected the Whitewater River basin in Kansas for this study and
a distributed hillslope-link based hydrological model to obtain the peak flows for each
link within the basin. The channel network that was extracted is characterized in terms of
width function maxima. The width function maxima of the Whitewater River basin
displayed scaling behavior with respect to the Horton orders. The scaling exponent of
width function maxima was estimated to be 0.49.

We focused on three aspects of the peak flow scaling structure for al the scenarios:
scatter, scale break and the scaling exponents. The results showed that the peak flow
scaling exponents for all the scenarios considered in this study are greater than the width
function scaling exponent. This result isin agreement with the hypothesis of Mantilla et
a. [26] that in the river networks, the peak flow scaling exponent is governed by the
competition between the attenuation and aggregation of the flows. For a fixed intensity,
the scaling exponent increases with an increase in the rainfal duration, and for a fixed
duration, the scaling exponent does not change with intensity for linear channel routing

and decreases with intensity for nonlinear channel routing. For the two hour duration, the
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fitted regression equations reveal that the scaling exponent decreases as the rainfall
intensity decreases. Based on simulations with spatially uniform rainfal of varying
depths and a fixed duration of 10 minutes on a deterministic Mandelbrot-Viscek network,
Menabde and Sivapalan [28] reported that the scaling exponent increases as the rainfal
depth decreases. For the Whitewater River basin, and therefore in area river network,
we did not notice such a trend for 30 and 5 minute duration simulations and noticed a
reverse trend when the duration was 120 minutes.

For a constant volume of rainfall, the effect of spatial variability, as characterized by
variance, spatial correlation and the spatial intermittency, is to increase the scatter in the
peak flow scaling structure. At larger scales, the effect of variability decreases, as seen
from the regression equations and peak discharges at the outlet of the basin (Tables 1, 2
and 3). Based on the simulations on a deterministic Mandelbrot-Viscek network,
Menabde and Sivapalan [28] reported that the variability in the rainfall decreases the
scaling exponent of peak flows on both sides of the scale break. We did not observe such
behavior in our simulations. For homogeneous rainfall fields and under idealized
conditions of flow routing on hillslopes and in channels, we observed that the smaller
scale basin response was dominated by the rainfall intensity (and spatial distribution),
while the hydrologic response of larger scale basins was driven by rainfall volume, river
network topology and flow dynamics. We expect that the heterogeneity in rainfall will
have similar behavior, at least for the larger scale basins as the river network aggregates
the heterogeneity. However, heterogeneity in rainfall will have a larger impact for

smaller scale basins.
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The results obtained from the above simple scenarios enhanced our understanding of
the peak flow scaling structure obtained from simulated space-time variable rainfall.
Storm duration and advection are the key factors that control the effective zero-rain
intermittency, which in turn affects the scatter in the peak flows. The peak flow scaling
structure for the redlistic space-time rainfall scenarios did not present a clear and sharp
scale break. The scale break was masked due to the inherent space-time variability in the
realistic rainfall fields.

The results in this study also foster the development of a scaling based predictive
framework for peak flows using remotely sensed rainfall products over basins ranging
from very small to very large scales. A key question is, “What is the scale at which
remote sensing products provide meaningful predictions?” Our results suggest that the
variability contributed by random errors of remote sensing sensors, such as wesather
radars and satellites, are filtered out by the drainage structure of river basins at some
scales. Investigations of the above problem are underway and require models of
uncertainty such as those developed by Ciach et al. [6], Villarini et a. [49] and Villarini

and Krajewski [48].
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Sensitivity of the channel velocity (m/s) to the A, and A, in Eq. (3). The
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Hydrographs at six locations in the Whitewater River basin obtained from a

distributed hydrologic model for a spatially uniform rainfall.

Hydrographs at six locations in the Whitewater River basin obtained from a
distributed hydrologic model. The gray lines are the hydrographs for each of the
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The solid line represents hydrographs for the spatially uniform rainfall of 60

mm/h for 10 min.
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Scaling of peak flows with respect to the upstream areas of all the sub-basins in
the Whitewater River basin. For (a) and (b), the rainfall is spatially uniform with
intensity and duration indicated on the panels. For (c) and (d), the rainfall is
random in space with the intensities following the uniform distribution U [20,

100] mm/h, and the duration is equal to 10 min.

Scaling of peak flows with respect to the upstream areas of all the sub-basins in
the Whitewater River basin, Kansas. The rainfall data is obtained from the KICT
NEXRAD weather radar in Wichita, Kansas. The color scheme indicates the

Horton orders as in Fig. 6.

Sensitivity of peak flow scaling structure to intensity and duration of spatially
uniform rainfall and linear channel routing with a velocity of 0.5 m/s. The solid
black line represents the ordinary least squares fit (equation on each panel)
obtained in the Hortonian framework. The color scheme indicates the Horton

orders as in Fig. 6. The solid red line indicates the scale break.

Horton plots of peak flows for different combinations of intensity and duration of
spatially uniform rainfall applied throughout the basin. The solid line indicates
the ordinary least squares regression fit. The corresponding Horton ratios are

also indicated on each panel.

Figure. 10 Sensitivity of the peak flow scaling structure to intensity and duration of spatially

uniform rainfall and nonlinear channel routing. The solid black line represents

the ordinary least squares fit (equation on each panel) performed in the
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Hortonian framework. The color scheme indicates the Horton orders as in Fig. 6.

The solid red line indicates the scale break.

Figure. 11 Sensitivity of the scaling exponent of peak flows to the advection velocity of
spatially uniform rainfall of intensity 30 mm/h and linear and nonlinear channel

routing mechanisms.

Figure. 12 Effect of space-time variability of rainfall on the peak flow scaling structure.
The rainfall is taken to be spatially uniform with the intensity of 25 mm/h for 30
min over the western half of the basin. For the eastern half of the basin, the
rainfall is 50 mm/h for 120 min. The color scheme indicates the Horton orders as

in Fig. 6.

Figure. 13 Sensitivity of the peak flow scaling structure to the variance of the rainfall field.
The rainfall field is assumed to be Gaussian with a mean of 25 mm/h and the
variance indicated on each panel. The color scheme indicates the Horton orders

as in Fig. 6.

Figure. 14 Sensitivity of the peak flow scaling structure to the spatial correlation of the
rainfall field. The rainfall field is assumed to be Gaussian with a mean of 25
mm/h and a standard deviation of 2.0 mm/h. The spatial structure of the rainfall
field is characterized by an exponential correlation structure with the correlation
distance indicated on each panel. The color scheme indicates the Horton orders

as in Fig. 6.
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Figure. 15 Sensitivity of the peak flow scaling structure to the zero-rainfall intermittency in
rainfall fields. The rainfall fields are distributed randomly in space with the value
ateach pixel drawn from uniform distribution U [10, 30] with a mean of 20 mm/h
and a duration of 120 min. The color scheme indicates the Horton orders as in
Fig. 6.

Figure. 16 Sensitivity of the peak flow scaling structure to the spatial intermittency of the
rainfall field. The rainy portion of the field is assumed to follow lognormal
distribution. We did not show the regression equations as the peak flow scaling
structure is too noisy to perform Hortonian regression for the bottom two panels

of the figure. The color scheme indicates the Horton orders as in Fig. 6.

Figure. 17 Response of the watershed to the simulated space—time rainfall events. The
characteristics of the storms are listed in Table 3. The color scheme indicates the

Horton orders as in Fig. 6.

Figure. 18 Probability distributions of rescaled areas, width function maxima and peak

flows for order 1 and order 5 basins.
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Table 1: Sensitivity of intercepts, scaling exponents and outlet peak flows to the variance

of the Gaussian rainfall field with a mean intensity of 25 mm/h.

N(,u,O'Z) Mean Linear Routing Nonlinear Routing
[mm/h] | Intercept | Slope | Outlet Peak | Intercept | Slope | Outlet Peak
Flow [m/g] Flow [m%q]

N(25,0.1) 24.99 12.02 | 0.54 587.54 1279 | 0.63 1246.87

N(25,1.0) 24.98 1200 | 0.54 587.13 12.73 | 0.63 1245.98

N(25,4.0) 25.02 1200 | 0.54 587.01 12.74 | 0.63 1246.65

N(25,9.0) 24.93 12.08 | 0.54 588.67 1285 | 0.63 1228.01

N(25,16.0) | 25.09 1195 | 0.54 580.44 1270 | 0.64 1249.81

N(25,25.0) | 24.88 1193 | 0.54 587.15 12.70 | 0.63 1243.16

N(25,36.0) | 24.88 1197 | 0.54 589.58 1264 | 0.64 1252.31
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Table 2: Sensitivity of intercepts and scaling exponents to the spatial correlation structure
of therainfall field. Therainfall field is assumed to be Gaussian with a mean intensity of
25 mm/h and a variance of 2.0 mm/h and is characterized by an exponential correlation

function with the correlation distances indicated in the Table.

Correlation | Mean Linear Routing Nonlinear Routing
Di[itﬁ]qce [mm/h] | Intercept | Slope | Outlet Peak | Intercept | Slope | Outlet Peak
Flow [m¥g] Flow [m%]
5.0 25.06 1219 | 0.54 581.92 1299 | 0.63 1232.85

10.0 24.41 1192 | 0.54 566.09 12.67 | 0.63 1192.25
20.0 24.83 11.86 | 0.54 582.06 1262 | 0.64 1222.65
30.0 26.49 1254 | 0.54 619.69 1344 | 0.64 1340.37
40.0 25.48 1233 | 0.54 597.79 13.17 | 0.63 1279.25
50.0 23.46 11.29 | 0.54 545.59 11.88 | 0.63 1120.85
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Table 3: Senditivity of intercepts and scaling exponents to the intermittency in the

uncorrelated random fields. The value of rainfall over each pixel was drawn from a

Uniform distribution U[10,30], and the duration of the event is 120 minutes. The mean

of the field is kept constant for different intermittencies.

Intermittency | Mean Linear Routing Nonlinear Routing
%] [mm/h] | Intercept | Slope | Outlet Peak | Intercept | Slope | Outlet Peak
Flow [m%g] Flow [m¥/g]
0 19.88 1145 | 0.50 464.66 12.26 | 0.58 898.48
5 20.04 11.73 | 0.50 473.95 12.23 | 0.58 907.88
25 20.05 11.23 | 0.50 469.37 11.58 | 0.58 907.24
50 19.84 1191 | 050 485.78 1241 | 0.58 942.22
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Table 4: Characteristics of rainfall events ssimulated from the space-time rainfall model.

A two parameter exponential correlation function is used to characterize the spatial

dependence.
Mean | Standard | Coefficient | Correlation | Shape | Rainy | Duration
[mm/h] | Deviation | of Variation Distance | Factor | Area [hr]
[mnvh] [mnvh] [km] [%]
Storm1l | 3.97 10.37 2.61 15.40 0.73 | 45.84 20
Storm 2 141 5.97 4.23 5.52 092 | 1751 4
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Figures

Figure 1: A shaded relief map of the Whitewater River basin showing the hillslope and
channel link structure of the CUENCAS model. The channel network with links of order

4t0 7 is shown.
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Figure 2: Statistical self-similarity of upstream areas and width function maxima in terms

of Horton plots (left panels) and rescaled distributions (right panels). The ordinary least

square regression is used to obtain the corresponding Horton ratios. The first order and

seventh order links are not considered in fitting.
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Figure 3: Sensitivity of the channel velocity (m/s) to the A; and A, in equation 3. The
velocities are shown only for the channels that correspond to the largest area (displayed

on each panel) for the Horton orders 2 to 7. The areaunits arein km?,
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Figure 4. Hydrographs at six locations in the Whitewater River basin obtained from a

distributed hydrologic model for a spatially uniform rainfall.
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Figure 5. Hydrographs at six locations in the Whitewater River basin obtained from a
distributed hydrologic model. The gray lines are the hydrographs for each of the 10
rainfall realizations assumed to be random in space, with the intensities following the
uniform distribution U[20,100] mm/h for a duration of 10 minutes. The solid line

represents hydrographs for the spatially uniform rainfall of 60 mm/h for 10 minutes.
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Figure 6: Scaling of peak flows with respect to the upstream areas of all the sub-basinsin

the Whitewater River basin. For (@) and (b), the rainfall is spatially uniform with the

intensity and duration indicated on the panels. For (c) and (d), the rainfall is random in

gpace with the intensities following the uniform distribution U[20,100] mm/h, and the

duration is equal to 10 minutes.
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Figure 7. Scaling of the peak flows with respect to the upstream areas of all the sub-
basins in the Whitewater River basin, Kansas. The rainfall data is obtained from the

KICT NEXRAD weather radar in Wichita, Kansas. The color scheme indicates the

Horton orders asin Figure 6.
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Figure 11: Sensitivity of the scaling exponent of peak flows to the advection velocity of

gpatialy uniform rainfall of intensity 30 mm/h and linear and nonlinear channel routing

mechanisms.
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Figure 12: Effect of space-time variability of rainfal on the peak flow scaling structure.
The rainfall is taken to be spatially uniform with an intensity of 25 mm/h for 30 minutes
over the western half of the basin. For the eastern haf of the basin, the rainfal is 50

mm/h for 120 minutes.
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Figure 13: Sensitivity of the peak flow scaling structure to the variance of the rainfall

field. Therainfal field is assumed to be Gaussian with a mean of 25 mm/h and variance

indicated on each panel.
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Figure 14: Sensitivity of the peak flow scaling structure to the spatial correlation of the
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rainfall field. Therainfall field is assumed to be Gaussian with a mean of 25 mm/h and a

standard deviation of 2.0 mm/h. The spatial structure of the rainfal field is characterized

by an exponential correlation structure with the correlation distance indicated on each

panel.
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Figure 15: Sensitivity of the peak flow scaling structure to the zero-rainfall intermittency
in rainfall fields. The rainfall fields are distributed randomly in space with the value at
each pixel drawn from uniform distribution U[10,30] with a mean of 20 mm/h and a

duration of 120 minutes.
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Figure 16: Sensitivity of the peak flow scaling structure to the spatial intermittency of
rainfall field. The rainy portion of the field is assumed to follow a lognormal
distribution. We did not show the regression equations as the peak flow scaling structure

istoo noisy to perform Hortonian regression for the bottom two panels of the Figure.
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Figure 17: Response of the watershed to the simulated space-time rainfall events. The

characteristics of the storms arelisted in Table 3.
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