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Abstract 

This study examines the role of rainfall variability on the spatial scaling structure of 24 

peak flows using the Whitewater River basin in Kansas as an illustration.  Specifically, 

we investigate the effect of rainfall on the scatter, the scale break and the power law 26 

(peak flows vs. upstream areas) regression exponent.  We illustrate why considering 

individual hydrographs at the outlet of a basin can lead to misleading interpretations of 28 

the effects of rainfall variability.  We begin with the simple scenario of a basin receiving 

spatially uniform rainfall of varying intensities and durations and subsequently 30 

investigate the role of storm advection velocity, storm variability characterized by 

variance, spatial correlation and intermittency.  Finally, we use a realistic space-time 32 

rainfall field obtained from a popular rainfall model that combines the aforementioned 

features.  For each of these scenarios, we employ a recent formulation of flow velocity 34 

for a network of channels, assume idealized conditions of runoff generation and flow 

dynamics and calculate peak flow scaling exponents, which are then compared to the 36 

scaling exponent of the width function maxima.  Our results show that the peak flow 

scaling exponent is always larger than the width function scaling exponent.  The 38 

simulation scenarios are used to identify the smaller scale basins, whose response is 

dominated by the rainfall variability and the larger scale basins, which are driven by 40 

rainfall volume, river network aggregation and flow dynamics.  The rainfall variability 

has a greater impact on peak flows at smaller scales.  The effect of rainfall variability is 42 

reduced for larger scale basins as the river network aggregates and smoothes out the 

storm variability.  The results obtained from simple scenarios are used to make rigorous 44 

interpretations of the peak flow scaling structure that is obtained from rainfall generated 



 3

with the space-time rainfall model and realistic rainfall fields derived from NEXRAD 46 

radar data. 

48 
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1. Introduction 

Peak flows in a basin are difficult to predict because they result from a complex 50 

interaction among rainfall and various processes in the landscape.  Hydrology literature is 

rife with models developed to predict hydrographs at the outlet or at specific locations 52 

(e.g., Beven [3]; Singh and Frevert [40]; Singh and Frevert [41]).  Several studies have 

examined the sensitivity of the hydrologic response of a basin to the spatio-temporal 54 

variability of rainfall (e.g., Krajewski et al. [22]; Ogden and Julien, [35]; Nicótina et al. 

[32]).  However, as we illustrate with a simple simulation experiment in Section 4, 56 

examining the basin response in terms of outlet hydrograph can be misleading.  On the 

other hand, studies have also revealed that the peak flows from a basin display power-law 58 

behavior (or scaling or scale-invariance) with respect to the drainage areas (e.g., Smith 

[43]; Gupta et al., [17]; Goodrich et al. [11]; Ogden and Dawdy [34]; Furey and Gupta 60 

[8]; Furey and Gupta [9]).  The exponent of such a power law is widely known as the 

scaling exponent.  Gupta et al. [19] have demonstrated that a physical understanding of 62 

the scaling behavior of the peak flows is crucial for building a unified geophysical theory 

of flood peaks.  Such a theory would be invaluable for the prediction of peak flows, 64 

particularly in ungauged basins (e.g., Sivapalan et al., [42]). 

In the past two decades, numerous simulation and data-based studies were conducted 66 

to determine the physical basis of scale-invariance (e.g., Gupta and Dawdy [15], 

Robinson et al. [38], Gupta et al. [18], Bloschl and Sivapalan [4] Robinson and Sivapalan 68 

[37] Menabde et al. [29], Menabde and Sivapalan [28], Ogden and Dawdy [34], Furey 

and Gupta [8], Furey and Gupta [9]).  A general consensus emerging from these studies is 70 
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that the rainfall and the channel network topology, both shown to be scale-invariant, play 

key roles in determining the scaling exponents of the power laws in peak flows.  While 72 

most of the aforementioned research is focused on annual peak flows, there has been a 

recent shift toward investigating single-event peak flows (e.g., Gupta et al. [18], Ogden 74 

and Dawdy [34], Furey and Gupta [8], Mantilla et al. [26], Furey and Gupta [9]).  The 

physical mechanisms responsible for scale invariance can be identified in a much better 76 

manner for individual rainfall-runoff events and can be extended to annual time scales by 

considering multiple events in a year (e.g., Gupta et al. [19]).  Also, recent studies 78 

suggest that the scaling exponents of annual peak flows are related to those of single-

event peak flows (e.g., Ogden and Dawdy [34], Gupta et al. [19]).  Gupta [14] and Gupta 80 

et al. [19] offer a comprehensive overview of the research pertaining to the scaling of 

flood peaks. 82 

The goal of our study is to clarify the role of rainfall variability on the scaling 

structure of peak flows.  It is well known that rainfall is highly variable in space and time 84 

and that our observational capabilities result in rainfall estimates subject to considerable 

uncertainties (e.g. Bras and Rodriguez-Iturbe [5]; Ciach et al. [6]).  This study is limited 86 

to the effects of rainfall variability, and the effect of rainfall estimation uncertainty is 

therefore outside of the scope of this paper.  We separate the rainfall variability into 88 

various components and study, via simulation experiments, the sensitivity of peak flow 

scaling structure to each of them.  We then apply those results in order to understand the 90 

statistical structure of peak flows obtained using rainfall from a space-time model capable 

of simulating realistic rainfall events.  Rigorous understanding of the role of rainfall on 92 
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the scaling structure of peak flows provides the basis for the scaling based framework to 

predict the peak flows from real basins. 94 

Following the introduction, Section 2 offers definitions of some basic concepts and 

provides a short description of the literature related to the single-event peak flow scaling 96 

structure.  In Section 3, we describe the study area, the simulation framework and 

relevant assumptions.  Section 4 compares the hydrograph-oriented and scaling-based 98 

approaches to studying the hydrologic response of a basin.  In Section 5, we show the 

scaling structure of peak flows obtained from an actual rainfall event measured by 100 

NEXRAD weather radar in Wichita, Kansas.  Section 6 includes the presentation of the 

results for the basic simulation scenarios that we considered.  The Peak flow scaling 102 

structure obtained using the rainfall from the space-time model is discussed in Section 7.  

In Section 8, we present an analysis of scatter seen in the scaling structure of peak flows, 104 

followed by additional remarks in Section 9.  Section 10 summarizes and concludes the 

study. 106 

2. Background 

In this section, we briefly discuss key results in the literature related to the statistical 108 

structure of single event peak flows.  We first provide definitions of some basic concepts 

and then proceed to a discussion of simulation-based and data-based studies in the 110 

literature. 
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2.1. Basic Concepts 112 

The Horton ratio RX is defined as a ratio of the averages E[Xω+1]/E[Xω], where Xω is a 

generic random field indexed by Horton order ω, a stream ordering system developed by 114 

Horton [20] and later modified by Strahler [44,45].  For instance, the field X can be the 

upstream areas or width function maxima or peak flows.  For more details on the Horton 116 

order and the Horton ratios, please see Rodriguez-Iturbe and Rinaldo [39] and Peckham 

and Gupta [36]. 118 

The width function of a river network is a measure of the river network branching 

structure.  There are basically two types of width functions: topologic and geometric.  120 

Throughout this study, we employ the topologic width function, which is defined as the 

number of links which are s links upstream of the outlet of the basin as a function of s 122 

(e.g., Veitzer and Gupta [47]).  Under idealized conditions of runoff generation and 

constant flow velocity, the width function represents the response of the river network to 124 

spatially uniform instantaneous rainfall.  The statistical structure of the width function 

and its relation to the hydrologic response of the basin has been the object of several 126 

recent studies (e.g., Veitzer and Gupta [47]; Moussa [31]; Lashermes and Foufoula-

Georgiou [23]).  Veitzer and Gupta [47] showed that the width function maxima of the 128 

simulated random self-similar channel networks follow distributional simple scaling.  

That is, the generalized Horton law in terms of probability distributions (e.g., Peckham 130 

and Gupta [36]) holds for the width function maxima, and the Horton ratios of width 

function maxima ΘR  and upstream areas AR  are related by a power law of the form. 132 
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RΘ = RA
β  (1) 134 

 

where β  is the scaling exponent of the width function maxima.  Similarly, the Horton 136 

ratios for the peak flow RQ and upstream areas RA are related by a power law 

 138 

RQ = RA
φ

 (2) 

 140 

when peak flow distributions exhibit statistical self-similarity, which has been shown to 

be the case under certain conditions of flow and rainfall (e.g., Mantilla [26]).  The 142 

exponent Ф in equation 2 is referred to as the peak flow scaling exponent. 

A scale break is defined in our study as a transition point in the log-log plot of peak 144 

flows vs drainage areas.  As discussed in Sections 6 and 7, the scale break separates the 

smaller scale basin response dominated by the rainfall intensity from the larger scale 146 

basins, whose response is dominated by river network characteristics and flow dynamics 

and is therefore rainfall volume driven. 148 

2.2. Simulation-based studies 

Gupta et al. [18] was the first study to focus on the effect of rainfall and channel 150 

network on the scale-invariance of single-event peak flows from a deterministic Peano 

network.  Using a numerical simulation framework, they showed that peak flows exhibit 152 

simple scaling for uniform rainfall, with the scaling exponent dependent on the fractal 

dimension of the channel network width function maxima.  For spatially variable rainfall, 154 

they reported that the peak flows display multi-scaling, with the exponent being a 
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function of the channel network and the spatial variability of the rainfall.  Troutman and 156 

Over [46] derived analytical expressions for channel networks and rainfall mass 

exponents for the general class of recursive replacement trees and instantaneous 158 

multifractal rainfall.  Menabde et al. [29] focused on the attenuation due to storage in 

channel networks and its effect on the scaling exponents of peak flows from deterministic 160 

(Mandelbrot-Viscek and Peano networks) and random self-similar networks with linear 

routing and for spatially uniform rainfall.  For the deterministic self-similar networks 162 

(SSNs), the scaling exponent of peak flows is smaller than the one predicted for the width 

function maxima (i.e., ignoring the attenuation due to storage in channel networks).  164 

Menabde et al. [29] also showed that for random SSN with smaller bifurcation ratios, the 

peak flows scale asymptotically. 166 

To better understand and predict the scaling behavior of peak flows, Menabde and 

Sivapalan [28] introduced a dynamic and spatially distributed hillslope-link rainfall-168 

runoff model based on representative elementary watershed (REW) consisting of three 

main components: a space-time model of rainfall, a hillslope model and a channel 170 

network model.  The rainfall model can generate storms whose spatial structure is 

characterized by a discrete random cascade.  The hillslope model partitions the rainfall 172 

into Hortonian runoff, subsurface flow and evaporation, which are assumed to be zero 

during periods of rainfall.  They further assumed that all of the surface runoff reaches the 174 

channel instantaneously.  The channel network is a deterministic Mandelbrot-Viscek 

network in which the hydraulic geometry properties at every link are obtained from 176 

observed empirical relationships.  They investigated the effect of rainfall on the scaling 

structure of the peak flows, starting from a spatially uniform rainfall scenario and moving 178 
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to the individual storms based on discrete random cascade.  They also extended the study 

to include continuous rainfall and annual flood peaks.  The results from event-based 180 

simulations with spatially uniform rainfall and the rainfall based on the random cascade 

model demonstrated that the interplay between the catchment response time and the 182 

storm duration controls the scaling exponent of peak flows.   

Mantilla et al. [26] discussed the difficulties in generalizing the scaling theory to the 184 

real networks and tested whether the random spatial variability of the real channel 

networks and their hydraulic geometry properties, coupled with flow dynamics, produce 186 

Hortonian scaling in peak flows.  Based on the results from Veitzer and Gupta [47], the 

value of the scaling exponent of the network width function was computed for the 149 188 

km2 Walnut Gulch basin in Arizona (e.g., Goodrich et al. [12]).  The runoff rates were 

estimated from two very small gauged sub-basins within the Walnut Gulch, assuming 190 

that rainfall was spatially uniform.  For an instantaneously applied runoff rate, the system 

of ordinary differential equations describing the runoff dynamics was solved for three 192 

different scenarios: (a) constant velocity (b) constant Chezy and (c) spatially varying 

Chezy constant.  They showed that the scaling exponent of peak flows is larger than the 194 

exponent of the width function maxima, which contradicted the results from the studies 

performed on the idealized basins, where the flow scaling exponent is always smaller 196 

than the exponent of the width function maxima.  The contradiction is explained in terms 

of the relative roles of flow attenuation and flow aggregation in the river networks that 198 

were considered. 
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2.3. Data-based studies 200 

Ogden and Dawdy [34] investigated the single-event and annual peak flows from the 

21.2 km2 Goodwin Creek watershed in Mississippi (e.g., Alonso and Bingner [1]), where 202 

the Hortonian mechanism of runoff generation is dominant.  They considered 279 events 

for which flows were recorded at several interior gauging stations.  The results showed 204 

that the peak flows follow simple scaling but the exponents vary from event to event and 

depend on the runoff production efficiency.  The mean of scaling exponents is 0.831 with 206 

a standard deviation of 0.10.  Some events are then filtered out with a threshold on the 

correlation coefficient (0.93) between the logarithm of peak flows and the upstream 208 

areas.  The mean of scaling exponents from the 226 remaining events is equal to 0.826, 

with a standard deviation of 0.047 and a mean correlation coefficient of 0.98. 210 

Furey and Gupta [8] explained this event-to-event variability in the peak flow power 

laws in Goodwin Creek watershed in terms of variability in the rainfall’s excess depth 212 

and the duration.  To understand the physical origin of the observed peak flow scaling, 

Furey and Gupta [9] proposed and applied a 5-step framework to the Goodwin Creek 214 

watershed.  Gupta et al. [19] provided further observational evidence on scaling in single-

event peak flows for the Walnut Gulch basin, Arizona.  They reported two different sets 216 

of scaling exponents for smaller and larger scales with a scale break at around 1 km2.  

They also noticed that for the events that cover almost the entire basin, the single-event 218 

scaling exponents are quite close to the scaling exponents of the annual flood quantiles.  

All the studies discussed in this section focused on the fundamental question, “How is 220 

the peak flow scaling exponent linked to the channel network characteristics such as 

width function maxima and variability in the rainfall?”  In the studies that addressed this 222 
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question using numerical simulations under idealized conditions, the complexity in the 

simulations increased from Gupta et al. [18] to Mantilla et al. [26].  The rainfall varied 224 

from spatially uniform to the complex cascade-based case, and the networks ranged from 

deterministic self-similar to random self-similar and actual river networks with linear and 226 

nonlinear routing mechanisms (e.g., Gupta et al. [18]; Veitzer and Gupta [47]; Troutman 

and Over [46]; Menabde et al. [29]; Menabde and Sivapalan [28]; Mantilla et al. [26]).  In 228 

the data-based analyses (e.g., Ogden and Dawdy [34]; Furey and Gupta [8]; Gupta et al. 

[19], Furey and Gupta [9]), the variability in the scaling exponents was explained in 230 

terms of variability in antecedent conditions and storm characteristics.  However, the 

smaller size of the basins (21.2 km2 Goodwin Creek and the 149 km2 Walnut Gulch 232 

basins) limited the range of scales available to explore the effect of rainfall variability on 

the peak flow scaling structure.  Regardless of the approach followed, these studies 234 

enhanced our understanding of the relationship between the statistical structure of flood 

peaks and the characteristics of rainfall and channel network.  However, we need to 236 

further understand and generalize the role that rainfall plays in the statistical structure of 

peak flows from actual river basins across a range of scales. 238 

In this study, we perform a series of simulation experiments starting from a simple 

scenario of spatially uniform rainfall for a fixed duration and moving to a complex 240 

scenario in which the rainfall is obtained from a space-time rainfall model.  We also 

investigate the sensitivity of the scaling behavior to linear and nonlinear channel routing 242 

mechanisms.  We selected the simulation framework instead of a data-based analysis 

since it allows complete freedom to systematically explore various aspects of scale-244 

invariance.  Also, there are very few basins in the United States where streamflow data 
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necessary for rigorous scaling analyses are available.  Our simulation covers a range of 246 

scales from ~0.1-1000 km2, thus addressing the peak flow scaling for basin response 

times ranging from minutes to days.  248 

3. Simulation Framework 

3.1. Study Area 250 

The Whitewater River basin (Figure 1), with an area of 1100 km2, stretches between 

latitudes 37° 46’E and 38° 09’E and longitudes 96° 51’W and 97° 18’W.  The river 252 

network extraction was based on the maximum gradient method, also known as the D8 

algorithm (e.g., O’Callaghan and Mark [33]).  Mantilla and Gupta [25] compared the 254 

network extracted from CUENCAS with those extracted from popular GIS software such 

as ArcInfo, GRASS and RiverTools and found no major differences when high resolution 256 

DEMs were used.  They showed that a 30m resolution DEM is sufficient to extract the 

drainage network that is close to the terrain’s actual network.  We use the one arc-second 258 

resolution (~30m) digital elevation model (DEM) from USGS to extract the channel 

network.  This results in some 20,000 hillslopes and, thus, channel links for this basin.  In 260 

Figure 1, we show the extracted channel network with links of Horton orders 4 to 7. 

Section 2 indicated that the width function maxima play an important role in 262 

understanding the scaling structure of the peak flows.  Figures 2(a) and 2(c) show the 

Horton plots for drainage areas and width function maxima of links of various orders for 264 

the Whitewater River basin, Kansas.  If the channel network is self-similar, the averages 

of drainage areas and width function maxima display linearity with respect to the 266 

corresponding Horton orders in the log-linear domain (e.g., Strahler [45]; Peckham and 
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Gupta [36]; Furey and Troutman [10]).  The log-linearity in Figures 2(a) and 2(c) confirm 268 

the statistical self-similarity of the upstream areas and the width function maxima.  In the 

regression analysis, we use the areas and width function maxima corresponding to the 270 

Horton orders 2 to 6.  The order 7 stream is not used in the Horton regression due to 

sampling reasons: we have only one point corresponding to the order 7.  Although, 272 

averages corresponding to order 1 streams do not suffer from sampling issues, they are 

usually not considered in the regression (e.g., Peckham and Gupta [36]; Mantilla and 274 

Gupta [25]) as they represent the finest detail in a stream network, and therefore the 

corresponding basins do not contain a “network”.  The Horton ratios for the areas and 276 

width function maxima are then obtained by exponentiation of the slopes from the 

regression analysis.  The scaling exponent of width function maxima obtained through 278 

Horton ratios in (1) is 0.49.  

If the upstream areas and width function maxima display log-linearity, as shown in 280 

Figures 2(a) and 2(c), then E[Xω] = E[X1]·(RX)ω-1, where X is either the upstream area or 

the width function maxima and RX is the corresponding Horton ratio.  The rescaled 282 

upstream areas and width function maxima are obtained by dividing each value of Xω by 

E[X1]·(RX)ω-1.  The probability distribution of the quantity Xω/[E[X1]·(RX)ω-1] is called the 284 

rescaled probability distribution.  In Figures 2(b) and 2(d), we show the statistical self-

similarity of areas and width function maxima in terms of their rescaled probability 286 

distributions for orders 1 to 5.  Although order 1 basins were not considered in the 

regression analysis, it can be seen that their rescaled probability distribution collapses 288 

onto those of orders 2 to 5. 
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3.2. Hydrologic Model 290 

Because of the fundamental effect of the river network structure on peak flows, it is 

necessary to have a distributed hydrologic model that can calculate hydrographs for all 292 

river network links in order to carry out a systematic investigation.  In this study, we used 

the CUENCAS model, developed by Mantilla and Gupta [25], which is based on 294 

hillslope-link decomposition of the landscape and mass conservation equations (e.g., 

Gupta and Waymire [16]).  The model can be run with linear routing with constant flow 296 

velocity throughout the channel network or nonlinear routing with velocity that depends 

on the discharge in each link and the corresponding upstream area.  For the nonlinear 298 

case, the velocities are estimated using (Mantilla [24])  

 300 
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 302 

where Vc(t) is the velocity in the channel and A is the upstream area of the corresponding 

channel.  The coefficients λ1 and λ2 are the velocity scaling exponents for discharge and 304 

upstream area, respectively, and vR, QR and AR, are reference velocity, discharge and area, 

whose values are taken in this study to be 1.0 m/s, 200 m3/s and 1100 km2.  These values 306 

are obtained from measurements during the rainfall-runoff events in the Whitewater 

River basin.  The above equation gives the instantaneous velocity as a function of 308 

discharge q(t) in the channel link, which in turn gives rise to a non-linear ordinary 

differential equation that represents fluxes coming out of the channel link.  Please see 310 

equations (6) and (9) – (11) in Mantilla et al. [26] for more details. 
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Although the nonlinear routing mechanism is closer to reality, we also included the 312 

linear routing analysis in this study as it is a good starting point to investigate the effect 

of rainfall variability on the peak flow scaling structure.  Throughout this study, we use a 314 

value of 0.5 m/s for the Vc for the linear routing scenario and λ1 and λ2 of 0.3 and -0.1 for 

the nonlinear routing scenario, obtained based on field data from the region.  In Figure 3, 316 

we show the velocity obtained using (3) for the link that corresponds to the largest 

upstream area of each Horton order for the Whitewater River basin.  Throughout the 318 

study, we employed a rainfall grid of size 40 × 40 km2 with a spatial resolution of 1 km.  

The temporal resolution and the duration of the event (simulated as well as radar data) are 320 

different for different events, as mentioned in the corresponding sections. 

3.3. Assumptions 322 

In all of our simulation scenarios, we assume (1) negligible evaporation; (2) purely 

surface runoff (i.e. no infiltration and no subsurface runoff); and (3) instantaneous flow 324 

of runoff into the channel.  Evaporation rate is often an order of magnitude lower than 

storm rainfall rate, and Hortonian runoff generation is one of the main flood producing 326 

mechanisms.  From the brief review of literature presented in Section 2, one can infer that 

the complexity in the simulation-based studies that were carried out to understand the 328 

scaling behavior of peak flows have steadily increased since the early nineties.  For 

instance, one of the first studies was based on the deterministic Peano network and 330 

uniform rainfall (e.g., Gupta et al. [18]).  Some recent studies have used random self-

similar networks to mimic the river network behavior (e.g., Veitzer and Gupta [47], 332 

Mantilla [24]).  We continue on this trajectory by introducing complexity one step at a 
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time.  Therefore, in this study, the complexity is in terms of rainfall variability and the 334 

river network structure, which is why we limited our analysis to the Hortonian runoff 

generation mechanism.  We understand that in reality, other runoff producing 336 

mechanisms are also possible in the selected study area.  The hydrologic model we used 

can account for the saturation excess mechanism, for instance.  However, including it in 338 

the study would only add additional variability, and it is difficult to separate the role of 

rainfall variability and the variability introduced by the saturation excess mechanism.  340 

The third assumption regarding the instantaneous flow to the channel plays a key role in 

shaping the hydrologic response.  For smaller basins (< ~ 10 km2), it leads to 342 

overestimation of the peak flows as the hillslope travel times are comparable to the time 

spent in the channel network (e.g., D'Odorico and Rigon [7]).  But the error is smoothed 344 

out for larger basins. 

Therefore, the assumptions are reasonable in the context of exploring the roles of 346 

rainfall and channel network on the scaling exponents of peak flows, i.e., floods, for 

individual rainfall-runoff events.  Relaxing these assumptions and including other details 348 

such as saturation excess flood production, hillslope travel times and channel hydraulic 

geometry will be part of our future communications. 350 

4. Hydrographs vs. a Scaling-based Framework 

This section illustrates via simple simulation experiments the advantages of the 352 

scaling-based analysis of hydrologic response.  The hydrologic model CUENCAS is 

forced with two simple rainfall scenarios of changing intensity (60 mm/h and 10 minutes) 354 

and duration (5 mm/h and 120 minutes), while keeping the total rainfall volume constant 
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(1.1×107 m3).  The simulated rainfall is spatially uniform over the basin for the given 356 

duration.  We also assumed that the runoff is Hortonian and reaches the channel 

instantaneously.  The discharges are normalized with respect to the peak flow 358 

corresponding to the rainfall scenario of 60 mm/h for 10 minutes.  The time of occurrence 

is then normalized with the time at which the normalized discharge corresponding to the 360 

scenario of 60 mm/h and 10 minutes reaches 0.01.  In Figure 4, we show the normalized 

hydrographs at six different locations in the Whitewater River basin.  Although we show 362 

the normalized hydrographs at only six locations, we simulated hydrographs for all the 

interior sub-basins as well as for the outlet of the Whitewater River basin (Figure 1) by 364 

solving the mass and momentum equations throughout the river network.  Figure 4 

demonstrates that at smaller scales, the values of flow peaks differ greatly from each 366 

other and occur at different instances.  However, the flow hydrographs are 

indistinguishable as we move to the larger scales. 368 

We then relax the spatial uniformity assumption and assume that the rainfall is 

randomly distributed in space over the hillslopes of that same basin.  We obtained ten 370 

realizations of the rainfall following a uniform distribution over the range of 20 to 100 

mm/h with the average intensity equal to 60 mm/h and the duration kept at 10 min.  That 372 

is, for each rainfall field of size 40 × 40 km2, we generated 1600 random numbers 

following a uniform distribution with a range of [20,100] and a mean of 60 mm/h.  It 374 

should be noted that these fields do not possess any spatial correlation.  In Figure 5, we 

compare the normalized hydrographs obtained with these ten rainfall fields with the one 376 

obtained for the spatially uniform case of Figure 4.  It is clear from Figure 5 that for 

spatially random rainfall, the variability in the hydrographs at smaller scales is higher 378 
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compared to those of larger scales.  Therefore, to develop a comprehensive understanding 

of river basin response, it is imperative that we study the hydrographs throughout the 380 

basin across multiple scales. 

In this context, the results from spatially uniform rainfall (Figure 4) can be 382 

alternatively represented in the form of Figures 6(a) and 6(b).  Similarly, the results from 

spatially variable rainfall (Figure 5) for two of the simulated realizations are shown in 384 

Figures 6(c) and 6(d).  This framework allows us to study the basin response across 

multiple scales.  Figure 6 illustrates that our simulated peak flows display scaling 386 

structure with respect to the drainage area, and the scaling regime depends on the 

intensity, duration and variability of the rainfall.  Figure 6 also demonstrates that the 388 

effect of rainfall variability on the basin response is scale-dependent.  While peak flows 

are sensitive to the intensity, duration and spatial distribution of rainfall at small scales 390 

(~10 km2), the variability in rainfall is dampened at larger scales (~1000 km2) by the river 

network via aggregation of flows. 392 

5. Basin response to the radar-rainfall data 

To investigate the statistical structure of peak flows for a range of scales, it is 394 

necessary to have information on the spatial-temporal distribution of rainfall events.  

Such information can be conveniently provided by the ground-based weather radar 396 

network.  We obtained radar estimates of three rainfall events that occurred in 2007 over 

Whitewater River basin, Kansas.  The spatial resolution of the data is 1 km, and the 398 

temporal resolution is 15 minutes.  We forced the hydrologic model CUENCAS with 

radar-rainfall estimates and obtained the hydrographs for all the interior sub-basins and 400 
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the outlet of the Whitewater River basin.  We assumed a linear routing mechanism with 

constant flow velocity throughout the river network.  Figure 7 shows the peak flow 402 

structure for the 6th of May 2007 event that lasted for approximately 25 hours.  Figure 7 

reveals that peak flows display scaling with a scaling exponent of 0.70.  We obtained 404 

ordinary least squares fit to the peak flows, though in the Hortonian regression 

framework, similar to the width function analysis presented in the previous section.  That 406 

is, instead of obtaining the scaling exponent by regression of peak flows with upstream 

areas, we used (2) to obtain the scaling exponent. 408 

The scaling exponent of 0.70 is larger than the scaling exponent of the width function 

maxima.  For the other two 2007 events that we analyzed, the scaling exponents were 410 

0.68 and 0.77.  From the studies discussed in Section 2, we know that when a spatially 

uniform rainfall is applied instantaneously, the peak flow scaling exponent is very close 412 

to that of the width function maxima.  A real rainfall event is far from being spatially 

uniform and lasts for a certain duration.  Therefore, the scaling exponent is different from 414 

that of the width function maxima.  Figure 7 shows that the scatter at small scales is 

different from that of the spatially uniform or spatially random case presented in Figure 416 

3.  Another conspicuous feature in Figure 7 is that the scale break is poorly defined, 

possibly because of the inherent space-time variability of the rainfall event such as zero-418 

rain intermittency and its spatio-temporal correlation structure. 

The studies discussed in Section 2, which were carried out under idealized conditions, 420 

cannot clearly explain the effect of various characteristics of rainfall that resulted in 

Figure 7.  It is also well known that remotely sensed rainfall products suffer from large 422 

uncertainties (e.g., Krajewski and Smith [21], Ciach et al. [6]) that propagate through the 



 21

hydrologic models and contribute to the variability of the predicted peak flows across 424 

scales.  Consequently, it becomes necessary to separate the effects of uncertainties from 

the effects of variability of rainfall on the peak flow scaling structure.  The natural 426 

variability of rainfall itself has a great impact on the statistical structure of peak flows, 

and understanding its role is the main goal of this study.  Hereafter, we avoid using 428 

rainfall data and follow a systematic simulation framework to explore the effect of 

rainfall variability on the peak flows. 430 

6. Simulation Scenarios and Results 

We start our experiments with simple but less realistic models of rainfall and proceed 432 

to complex space-time models that yield more plausible rainfall.  We obtain parameters 

of these models from analyzing real rainfall events. 434 

6.1. Sensitivity to the Intensity and Duration of Spatially Uniform Rainfall 

We start with the simple scenario of a basin receiving spatially uniform rainfall of a 436 

certain intensity and duration.  Figure 8 shows the peak flows versus drainage areas for 

different rainfall intensities and durations with a linear channel routing mechanism.  438 

Three important features of the peak flow scaling structure that are apparent in the plots 

are the scatter, the scale break and the scaling exponent.  For a fixed rainfall intensity, the 440 

scatter decreases as the duration of the event increases.  For each link, there is an upper 

limit for the peak flow that is not exceeded.  This upper limit corresponds to the 442 

equilibrium discharge reached when the rainfall duration is larger than the concentration 

time.  With an increase in the duration of rainfall, more hillslopes reach saturation, 444 
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thereby decreasing the scatter.  The peak flows for the links that reached steady-state 

correspond to the well known rational method Q = c I A, where c is the runoff 446 

coefficient, I is the rainfall intensity and A is the upstream drainage area.  In this study, 

since the infiltration is assumed to be zero, the value of c is equal to 1.0.  We obtain the 448 

scale break by comparing the peak flows obtained from our simulations to those from the 

above rational method equation.  A window of fixed size in the logarithmic domain is 450 

moved along the upstream area axis of each panel in Figure 8.  Within such a window, 

we compute the following ratio 452 
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where ratipratip QQQI ≤≤= ,, 9.0 if 1 , Qp,i is the peak flow for the link i, Qrat is the 456 

corresponding peak flow obtained from the rational method and np is the total number of 

links in the network.  If the ratio χ  is less than 0.75, the scale break is considered to be 458 

at the average of the upstream areas within that window.  We realize that this definition 

of scale break is subjective.  However, it serves the purpose of a qualitative comparison 460 

only.  The scale break is indicated by a red line in Figure 8.  As the duration of the 

rainfall increases, more links reach saturation and the scale break moves towards the 462 

larger areas.  Because of the large scatter, we do not estimate the scale break for the 

shortest duration of 5 minutes. 464 
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Figure 8 shows that for a fixed duration, the scale break and scatter in the peak flow 

scaling structure remain unchanged with intensity.  As in Section 5, we fit these peak 466 

flows in the Hortonian framework using (2).  In Figure 9, we show the Horton plots of 

peak flows for all of the intensities and durations.  The Horton ratio of peak flows is 468 

estimated considering only the orders that lie on the higher side of the scale break.  Since 

the scale break is not obvious in the Horton plots, we select the orders for regression 470 

based on Figure 8.  The Horton ratio of peak flows obtained by exponentiation of the 

regression slope is shown in each panel of Figure 9.  The Horton ratio of peak flows and 472 

the upstream area are plugged into equation 2 to obtain the scaling exponent of the peak 

flows.  The coefficient of the power law is obtained so that the regression line passes 474 

through the average of the peak flows corresponding to the top three orders (Figure 8).  

The regression equations in Figure 8 allow us to conclude that, for a fixed duration, the 476 

peak flows are linearly related to the rainfall intensities when the routing mechanism in 

the channels is linear.  This result is similar to the one observed by Furey and Gupta [8] 478 

over the Goodwin Creek Watershed.  For a fixed intensity, the scaling exponents range 

from 0.50 to 0.56 as the duration changes from 5 to 360 minutes.  We have also noticed 480 

that the peak flow at the outlet of the basin changes linearly with the duration.  The 

scaling exponents for all of the cases are larger than the width function scaling exponent 482 

of 0.49, which confirms the result of Mantilla et al. [26] for the Walnut Gulch watershed. 

Figure 10 shows the effect of the intensity and duration of spatially uniform rainfall 484 

when the channel routing mechanism is nonlinear.  The parameters selected in this study 

for the nonlinear routing mechanism result in different velocities in different links, and a 486 

straightforward panel to panel comparison between Figures 8 and 10 is therefore not 
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meaningful.  We do not obtain the scale break for the shortest duration simulations for the 488 

same reason mentioned in the linear routing case.  Regression is not performed for the 

longest duration of 360 minutes, as most of the links have reached saturation and the 490 

scale break is poorly defined.  For the 120 minute duration, the fitted regression equations 

reveal that the scaling exponent decreases as the rainfall intensity decreases.  It is also 492 

clear from Figure 10 that the relationship between flow peaks and rainfall intensities is 

nonlinear.  The peak flow scaling exponents for all the cases of nonlinear routing are 494 

larger than the exponent of the width function maxima.  They range from 0.55 for the 

shortest duration of 5 minutes to 0.66 when the rainfall intensity is 50 mm/h and the 496 

duration is 120 minutes.  For the longest duration of 360 minutes, the scaling exponent is 

close to 1.0. 498 

6.2. Sensitivity to the Advection Velocity 

A spatially uniform rainfall of intensity 30 mm/h and covering approximately half the 500 

size of the basin (40×20 km2) is moved from west to east at five different velocities (4, 8, 

16, 32 and 64 km/h).  It should be noted that the spatial uniformity is only within the 502 

40×20 km2 area; the rainfall actually received by the basin cannot be considered as 

uniform.  The peak flows are fitted in the Hortonian framework, and the regression 504 

equations are obtained.  Figure 11 plots the scaling exponents versus advection velocities 

for linear and nonlinear routing mechanisms.  As expected from the results shown in 506 

Figure 10, there is no scale break for the smallest advection velocity of 4 km/h for the 

nonlinear routing mechanism, and therefore we did not perform any regression analysis.  508 

For both channel routing mechanisms, the scaling exponent decreases with an increase in 
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advection velocity.  Our motive for plotting linear and nonlinear routing mechanisms in 510 

the same figure is not to compare them point-to-point but to compare how the exponents 

decrease with advection velocity.  Figure 11 also shows the power law fit for both routing 512 

mechanisms.  The fitted equations reveal that the trend is the same for both routing 

mechanisms.  The decreasing trend can be explained in terms of the effect of duration 514 

discussed in the previous subsection.  With the increase in advection velocity, the 

duration for which the block of rainfall stays over the basin decreases, and therefore the 516 

scaling exponent also decreases.   

6.3. Sensitivity to the Spatial Variability of Rainfall 518 

We have thus far assumed that the rainfall is spatially uniform throughout the basin.  

In this subsection, we investigate the effect of spatial variability on the scaling exponents 520 

of peak flows.  Though there are many ways in which spatial variability can be 

characterized, we explore it in terms of variance, correlation structure and zero-rainfall 522 

intermittency.  Our experiments are designed so that we depart from the uniform rainfall 

scenarios in a gradual, simple manner to keep from losing the benefits of the recently 524 

gained understanding of the effects of the uniform intensity and duration. 

6.3.1 Simple Block Structure 526 

We relax the spatial uniformity of rainfall over the basin by breaking it into two 

components: a block of uniform rainfall with an intensity of 25 mm/h for a duration of 30 528 

minutes on the western half of the basin and a rainfall of 50 mm/h for a duration of 120 

minutes over the eastern half of the basin.  The channel network routing is assumed to be 530 

linear with a velocity of 0.5 m/s throughout the network.  Figure 12 shows the scaling 
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structure of peak flows for this scenario.  The banded structure apparent in Figure 12 is a 532 

direct manifestation of the different rainfall intensities received by the western and 

eastern regions of the basin.  The scale break for these two bands also occurs at different 534 

locations because of the different rainfall durations over the western and eastern parts of 

the basin.  We noticed a similar trend for the nonlinear routing in channels. 536 

6.3.2 Gaussian Uncorrelated Field 

In this scenario, we simulate Gaussian random fields with a mean of 25.0 mm/h and 538 

the standard deviation ranging from 0.1 mm/h to 6 mm/h.  By gradually varying the 

variance, we gently depart from the well-understood case of uniform intensity.  The 540 

duration of the rainfall is fixed at 120 minutes.  The peak flow scaling structure for four 

different cases of standard deviation and linear routing mechanism is shown in Figure 13.  542 

In the Hortonian regression, we used the orders 3 to 7.  Table 1 lists the average rainfall, 

intercept, scaling exponent and the peak flow at the outlet of the basin for all the cases 544 

and for both routing mechanisms.  Figure 13 and Table 1 reveal that the increasing 

variance has no significant effect on the fitted regression equations.  The main effect of 546 

the variance is to increase the scatter in the peak flow scaling structure.  The scatter is 

averaged out by the basin at the larger scales, as seen from the peak flow values at the 548 

outlet (Table 1).  The slight variation in the intercepts and outlet peak flows is expected 

given that we are using realizations of a random process.  This is further evident from the 550 

estimated values of the mean, which are different from the theoretical value of 25 mm/h. 
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6.3.3 Gaussian Correlated Field 552 

To investigate the effect of the spatial correlation of the rainfall field on the scaling 

exponents, we obtain Gaussian fields with a mean of 25 mm/h and a standard deviation of 554 

2 mm/h and that is characterized by an exponential correlation structure 

 556 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅=

2

1
0 exp

θ

θ
θρ dd  (4) 

 558 

where 0θ  characterizes the nugget effect and the small scale variability, 1θ  is the 

correlation distance defined as the distance at which the correlation drops to 1/e and 2θ  is 560 

the shape factor that controls the shape of the correlation function at the origin.  We fixed 

the nugget parameter and the shape factor at one and generated the random fields with the 562 

correlation distances varying from 5 km to 50 km.  Each field is then applied for 120 

minutes over the basin, and the peak flows are estimated for linear and nonlinear routing 564 

mechanisms.  Figure 14 shows the scaling structure of peak flows for two extreme cases 

of correlation distances and a linear routing mechanism.  The effect of increasing 566 

correlation is to decrease the scatter in the scaling structure (Figure 14).  Table 2 shows 

that the larger scale basin response is almost independent of the correlation structure, 568 

although there is some variability in the intercepts and outlet peak flows, which is mainly 

due to the fact that we are using realizations of a random process. 570 
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6.3.4 Spatial Zero-Rain Intermittency: Uncorrelated Random Fields 

To investigate the effect of zero-rainfall intermittency, we simulated random rainfall 572 

with varying degrees of zero-rainfall intermittency and a duration of 120 minutes.  The 

value of rainfall over each pixel was drawn from uniform distribution U[10,30], and 574 

intermittency is introduced randomly but maintains an overall mean fixed at 20 mm/h.  

We considered four values of intermittencies: 0.0, 0.05, 0.25 and 0.50 (corresponding 576 

rainy area fractions are 1.0, 0.95, 0.75 and 0.50).  These rainfall scenarios were supplied 

as input to the CUENCAS model, and the peak flow scaling structure was obtained for 578 

linear routing mechanisms.  The sensitivity of the peak flow scaling to the intermittent 

random fields is shown in Figure 15.  With the increase in intermittency (or decrease in 580 

rainy area), the scatter for the smaller scale basin peak flows increased.  However, the 

effect of intermittency is reduced for the larger scale basins, as evidenced by the linear 582 

regression equations shown in each panel of Figure 15 and also from the outlet peak flow 

values shown in Table 3.  The simulations are repeated for the nonlinear routing 584 

mechanism, and we found a similar pattern to the pattern found in linear routing, 

although the intercepts and scaling exponents differed (Table 3). 586 

6.3.5 Spatial Zero-Rain Intermittency: Correlated Random fields 

To study the effect of intermittency in a more realistic manner, we selected the spatial 588 

component of the rainfall model developed by Bell [2].  The model belongs to the class 

of meta-Gaussian models (e.g., Mejia and Rodriguez-Iturbe [27]; Bell [2]; Guillot and 590 

Lebel [13]) and generates a two-dimensional isotropic, correlated random field using 

spectral analysis.  A non-linear transformation and an external threshold are then applied 592 
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to obtain a rainfall field with desired intermittency, average intensity and correlation 

structure.  In Bell [2], the use of exponential transformation resulted in lognormally 594 

distributed rainfall.  The parameters for the model are the log-transformed (Gaussian) 

mean and variance of the rainy area, the zero-rainfall intermittency factor and the spatial 596 

correlation structure.  The parameters we selected are 0 and 0.5 for the log-transformed 

mean and variance of the rainy area and exponential correlation structure with a 598 

correlation distance of 20 km.  We observed that the realizations from the model, besides 

having the desired spatial correlation structure, also displayed spatial scaling behavior 600 

(not shown).  The duration of the event is fixed at 120 minutes.  To keep the volume 

constant with changing intermittency, we simulated a single realization with a given 602 

correlation structure on a large (256×256) domain and selected the portion that yielded 

the desired intermittency and volume.  The spatial structure of the field thus obtained will 604 

remain the same as the larger one.  Figure 16 shows the scaling structure of peak flows 

for four different intermittency factors starting from 0 to 0.50 for the linear channel 606 

routing mechanism.  Unlike in Figure 15, significant scatter was observed even for higher 

order basins (particularly for the bottom panels of Figure 16) when the pixels are 608 

correlated.  The large scatter is due to the high probability of concentrated intermittent 

pixels present in correlated intermittent fields.  Whereas, for uncorrelated intermittent 610 

fields, the river network efficiently aggregates the randomness in the fields.  However, 

the overall behavior - of increasing scatter with increasing intermittency - is similar for 612 

both scenarios. 
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7. Simulations from the Space-time Rainfall Model 614 

The scenarios investigated so far have offered insight into the effects of different 

characteristics of rainfall on the spatial scaling structure of peak flows.  We will now 616 

investigate the basin’s response to more realistic space-time rainfall events.  Therefore, 

we have simulated a space-time rainfall event from a model developed by Bell [2] and 618 

applied it over the basin.  The spatial component of the model is described in the previous 

section.  The temporal evolution of the rainfall is modeled as an autoregressive process 620 

with parameters based on the correlation time of area-averaged rainfall.  The parameters 

for the model are obtained by analyzing several storms over the Midwest.  In this study, 622 

we simulate two different storm events with characteristics listed in Table 3.  Storm 2 is 

more variable than storm 1, as seen from the values of the coefficient of variation and 624 

correlation distance.  Another important difference is that storm 1 lasts longer and has 

larger values of mean and rainy fraction compared to storm 2.  The values of the shape 626 

factor suggest that storm 2 is more correlated at very small scales than storm 1. 

Figure 17 shows the basin response to the two storms for the linear routing 628 

mechanism.  The peak flow scaling structure for this complex scenario can now be 

explained using the results from Section 6.  Figure 17 considers three components: scale 630 

break, scatter and regression equations.  Although the scale break is sharp and evident for 

the simulation scenarios of Section 6 under idealized conditions, it is not clearly seen in 632 

the peak flow scaling structure resulting from the simulated realistic space-time rainfall 

event.  Since the scaling exponent is not close to 1.0, basin saturation (for instance, top 634 

panels of Figure 8) is not the reason for the absence of scale break.  The lack of sharp 



 31

scale break for realistic rainfall scenarios can be best explained by revisiting the idealized 636 

scenarios in Section 6.  For instance, a combination of just two different intensities and 

durations has diffused the scale break in Figure 12.  The space-time rainfall fields are 638 

characterized by different intensities, durations, correlations and intermittencies and 

move with a certain advection velocity.  In a way, these fields are a combination of all of 640 

the scenarios considered in Section 6.  This explains the absence of scale break for storm 

1. 642 

The scatter for storm 1 is smaller than that of storm 2.  Two main factors responsible 

for the reduced scatter are the duration of the storm and zero-rain intermittency.  Results 644 

from Section 6.1 indicate that one consequence of longer duration events is the decreased 

scatter that is most pronounced at smaller scales.  In Section 6.3.4 that pertains to the 646 

effect of zero-rain intermittency, we note that the scatter in the peak flow structure 

increases rapidly as the area of rainfall decreases.  Though the rainy fraction of storm 1 is 648 

46 %, the advection of the storm eventually increases the effective wetted area of the 

basin, thereby decreasing the scatter seen at smaller scales.  For the second storm, the 650 

large scatter is due to the increased intermittency combined with the shorter duration and 

large coefficient of variation. 652 

The regression equation seen for storm 1 is obtained in a Hortonian framework using 

the orders 2 to 7.  For storm 2, peak flows corresponding to the Horton orders of 4 to 7 654 

are used in this storm’s regression.  The scaling exponent for both storms is larger than 

the scaling exponent of the width function maxima.  For the nonlinear routing scenario 656 

(not shown), we noticed a similar pattern with larger scatter and higher values for scaling 

exponents than in the linear routing case. 658 
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8. Analysis of Scatter 

The scatter in the peak flow scaling structure for the lower order basins can be 660 

explained in terms of peak flows reaching equilibrium (basins reaching saturation), while 

the scatter for the higher order basins can be explained in terms of aggregation and 662 

attenuation of flows.  We illustrate this by analyzing the peak flows for two of the rainfall 

scenarios in Section 6.1 and Figure 8.  Specifically, we compare the probability 664 

distributions of the rescaled peak flows corresponding to spatially uniform rainfall of 5 

mm/h and durations of 5 and 120 minutes with the probability distributions of rescaled 666 

areas and width function maxima.  Figure 18(a) illustrates that for a spatially uniform 

rainfall intensity of 5 mm/h and a duration of 120 minutes, the order 1 probability 668 

distributions of rescaled peak flows and areas are indistinguishable (negligible scatter in 

Figure 8), but for a shorter duration of 5 minutes, the probability distributions are very 670 

different (large scatter in Figure 8).  Since the width function maxima have the signature 

of the aggregation of flows in the channel network, we compare the order 5 probability 672 

distributions of rescaled peak flows and width function maxima in Figure 18(b).  We 

intended to compare the probability distribution of peak flows with that of width function 674 

maxima for higher order basins.  However, for orders 6 and 7, there are not enough points 

to obtain the probability distributions.  Therefore, we limit the comparison to order 5 676 

basins.  Unlike the order 1 distribution, the order 5 distribution is not very sensitive to the 

duration of the rainfall event.  For both rainfall scenarios, the distributions of rescaled 678 

peak flows match reasonably well with those of width function maxima (Figure 18b). 
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9. Remarks 680 

While our results are subject to the usual limitations of a simulation study, our 

experiments contain many realistic aspects.  First, our river basin has a substantially 682 

larger size (scale) than many small experimental basins that are the basis for many 

hydrologic studies.  Second, using high-resolution DEM data, we extracted a river 684 

network that closely approximates the actual drainage pattern of the selected basin.  

Third, our rainfall variability cases and range of values, though simple, capture the key 686 

aspects of natural rain systems. 

We modeled rainfall space-time variability in terms of stationary random fields with a 688 

certain intermittency and correlation structure in space and time.  Although the emphasis 

of this approach is more on generation of space-time random fields and lacks a direct link 690 

to the physical aspects of the rainfall process, one can qualitatively relate the statistical 

parameters to the meteorological aspects such as back-building thunderstorms, squall 692 

lines and convective systems.  For instance, the size of the convective system with 

respect to the size of the basin is an important characteristic that controls the basin 694 

response.  This information is embedded in the correlation distance and shape factor in 

equation 4.  There are other ways of characterizing the space-time variability of rainfall 696 

fields such as modeling of rainfall based on spatial cluster processes for rain cells, 

dynamic modeling of rainfall based on partial differential equations for mass and 698 

momentum conservation and scaling-based modeling of rainfall space-time structure.  It 

would be interesting to employ these models and relate the parameters of rainfall models 700 

to the characteristics of peak flow scaling structure. 
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Anthropogenic alteration of the landscape will have an impact on the extracted 702 

drainage network and subsequently on the aggregation of the flows affecting the larger 

scale basin response.  The hydraulic geometry of the channels is another key factor which 704 

is strongly related to the channel-floodplain interactions and influences the storage zones, 

movement of the flood waves and the travel time within the channel.  Therefore, it is 706 

expected to have an influence on the peak flow scaling structure.  The CUENCAS 

framework allows for the inclusion of this feature by modifying the local velocity law.  708 

However, investigation of this factor is beyond the scope of this work, and our strategy is 

to avoid any aspects in the dynamics that can obscure the effect of rainfall variability. 710 

Throughout this study, we have estimated the Horton ratios by ordinary least squares 

regression of logarithms of arithmetic averages with the Horton order (See Figure 2).  712 

Based on a simulation study, Furey and Troutman [10] suggested the use of individual 

quantities (for example, areas or peak flows) instead of arithmetic averages.  Since the 714 

main focus of the study is on the role that rainfall variability plays in the scaling structure 

of peak flows, our use of arithmetic averages instead of individual quantities in the 716 

Horton analysis would not affect the results.  Also, in this study, we have assumed that 

the runoff generation is Hortonian with no infiltration so that we can focus on the role 718 

that rainfall plays in the statistical structure of peak flows.  The key issue is how to 

specify the infiltration threshold for each of 20,000 hillslopes in CUENCAS, which differ 720 

due to spatial variability in soil and vegetation properties.  This problem of “dynamic 

parametric complexity” is a major research problem (e.g., Gupta [14] and Furey and 722 

Gupta [9]) and not addressed in this study. 
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10. Summary and Conclusions 724 

In this study, we carried out a systematic investigation to understand the role that 

rainfall plays in the spatial structure of peak flows.  Due to the lack of adequate field 726 

data, i.e., numerous stream gauges as well as highly accurate rainfall maps, we used 

simulations.  Our simulation experiments consisted of simple scenarios aimed at isolating 728 

the effects of rainfall variability on the peak flow scaling structure.  We demonstrated 

that rainfall variability has a different impact on the magnitude of peak flows for basins 730 

of different scales.  We selected the Whitewater River basin in Kansas for this study and 

a distributed hillslope-link based hydrological model to obtain the peak flows for each 732 

link within the basin.  The channel network that was extracted is characterized in terms of 

width function maxima.  The width function maxima of the Whitewater River basin 734 

displayed scaling behavior with respect to the Horton orders.  The scaling exponent of 

width function maxima was estimated to be 0.49. 736 

We focused on three aspects of the peak flow scaling structure for all the scenarios: 

scatter, scale break and the scaling exponents.  The results showed that the peak flow 738 

scaling exponents for all the scenarios considered in this study are greater than the width 

function scaling exponent.  This result is in agreement with the hypothesis of Mantilla et 740 

al. [26] that in the river networks, the peak flow scaling exponent is governed by the 

competition between the attenuation and aggregation of the flows.  For a fixed intensity, 742 

the scaling exponent increases with an increase in the rainfall duration, and for a fixed 

duration, the scaling exponent does not change with intensity for linear channel routing 744 

and decreases with intensity for nonlinear channel routing.  For the two hour duration, the 
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fitted regression equations reveal that the scaling exponent decreases as the rainfall 746 

intensity decreases.  Based on simulations with spatially uniform rainfall of varying 

depths and a fixed duration of 10 minutes on a deterministic Mandelbrot-Viscek network, 748 

Menabde and Sivapalan [28] reported that the scaling exponent increases as the rainfall 

depth decreases.  For the Whitewater River basin, and therefore in a real river network, 750 

we did not notice such a trend for 30 and 5 minute duration simulations and noticed a 

reverse trend when the duration was 120 minutes. 752 

For a constant volume of rainfall, the effect of spatial variability, as characterized by 

variance, spatial correlation and the spatial intermittency, is to increase the scatter in the 754 

peak flow scaling structure.  At larger scales, the effect of variability decreases, as seen 

from the regression equations and peak discharges at the outlet of the basin (Tables 1, 2 756 

and 3).  Based on the simulations on a deterministic Mandelbrot-Viscek network, 

Menabde and Sivapalan [28] reported that the variability in the rainfall decreases the 758 

scaling exponent of peak flows on both sides of the scale break.  We did not observe such 

behavior in our simulations.  For homogeneous rainfall fields and under idealized 760 

conditions of flow routing on hillslopes and in channels, we observed that the smaller 

scale basin response was dominated by the rainfall intensity (and spatial distribution), 762 

while the hydrologic response of larger scale basins was driven by rainfall volume, river 

network topology and flow dynamics.  We expect that the heterogeneity in rainfall will 764 

have similar behavior, at least for the larger scale basins as the river network aggregates 

the heterogeneity.  However, heterogeneity in rainfall will have a larger impact for 766 

smaller scale basins. 
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The results obtained from the above simple scenarios enhanced our understanding of 768 

the peak flow scaling structure obtained from simulated space-time variable rainfall.  

Storm duration and advection are the key factors that control the effective zero-rain 770 

intermittency, which in turn affects the scatter in the peak flows.  The peak flow scaling 

structure for the realistic space-time rainfall scenarios did not present a clear and sharp 772 

scale break.  The scale break was masked due to the inherent space-time variability in the 

realistic rainfall fields. 774 

The results in this study also foster the development of a scaling based predictive 

framework for peak flows using remotely sensed rainfall products over basins ranging 776 

from very small to very large scales.  A key question is, “What is the scale at which 

remote sensing products provide meaningful predictions?”  Our results suggest that the 778 

variability contributed by random errors of remote sensing sensors, such as weather 

radars and satellites, are filtered out by the drainage structure of river basins at some 780 

scales.  Investigations of the above problem are underway and require models of 

uncertainty such as those developed by Ciach et al. [6], Villarini et al. [49] and Villarini 782 

and Krajewski [48]. 
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Table 1: Sensitivity of intercepts, scaling exponents and outlet peak flows to the variance 926 

of the Gaussian rainfall field with a mean intensity of 25 mm/h. 

 928 

Table 2: Sensitivity of intercepts and scaling exponents to the spatial correlation structure 

of the rainfall field.  The rainfall field is assumed to be Gaussian with a mean intensity of 930 

25 mm/h and variance of 2.0 mm/h and is characterized by an exponential correlation 

function with the correlation distances indicated in the Table. 932 

 

Table 3: Sensitivity of intercepts and scaling exponents to the intermittency in the 934 

uncorrelated random fields.  The value of rainfall over each pixel was drawn from a 

Uniform distribution U[10,30], and the duration of the event is 120 minutes.  The mean 936 

of the field is kept constant for different intermittencies. 

 938 
Table 4: Characteristics of rainfall events simulated from the space-time rainfall model.  

A two parameter exponential correlation function is used to characterize the spatial 940 

dependence. 
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List of Figures 

 

Figure. 1 A shaded relief map of the Whitewater River basin showing the hillslope and 

channel link structure of the CUANCAS model. The channel network with links 

of orders 4–7 is shown. 

Figure. 2 Statistical self-similarity of upstream areas and width function maxima in terms 

of Horton plots (left panels) and rescaled distributions (right panels). The 

ordinary least square regression is used to obtain the corresponding Horton ratios. 

The first order and seventh order links are not considered in fitting. 

Figure. 3 Sensitivity of the channel velocity (m/s) to the λ1 and λ2 in Eq. (3).  The 

velocities are shown only for the channels that correspond to the largest area 

(displayed on each panel) for the Horton orders 2–7. The area units are in km
2
. 

Figure. 4 Hydrographs at six locations in the Whitewater River basin obtained from a 

distributed hydrologic model for a spatially uniform rainfall. 

Figure. 5 Hydrographs at six locations in the Whitewater River basin obtained from a 

distributed hydrologic model. The gray lines are the hydrographs for each of the 

10 rainfall realizations assumed to be random in space with the intensities 

following the uniform distribution U [20, 100] mm/h for a duration of 10 min. 

The solid line represents hydrographs for the spatially uniform rainfall of 60 

mm/h for 10 min. 
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Figure. 6 Scaling of peak flows with respect to the upstream areas of all the sub-basins in 

the Whitewater River basin. For (a) and (b), the rainfall is spatially uniform with 

intensity and duration indicated on the panels. For (c) and (d), the rainfall is 

random in space with the intensities following the uniform distribution U [20, 

100] mm/h, and the duration is equal to 10 min. 

Figure. 7 Scaling of peak flows with respect to the upstream areas of all the sub-basins in 

the Whitewater River basin, Kansas. The rainfall data is obtained from the KICT 

NEXRAD weather radar in Wichita, Kansas. The color scheme indicates the 

Horton orders as in Fig. 6.  

Figure. 8 Sensitivity of peak flow scaling structure to intensity and duration of spatially 

uniform rainfall and linear channel routing with a velocity of 0.5 m/s. The solid 

black line represents the ordinary least squares fit (equation on each panel) 

obtained in the Hortonian framework. The color scheme indicates the Horton 

orders as in Fig. 6. The solid red line indicates the scale break.  

Figure. 9 Horton plots of peak flows for different combinations of intensity and duration of 

spatially uniform rainfall applied throughout the basin. The solid line indicates 

the ordinary least squares regression fit.  The corresponding Horton ratios are 

also indicated on each panel. 

Figure. 10 Sensitivity of the peak flow scaling structure to intensity and duration of spatially 

uniform rainfall and nonlinear channel routing. The solid black line represents 

the ordinary least squares fit (equation on each panel) performed in the 
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Hortonian framework. The color scheme indicates the Horton orders as in Fig.  6. 

The solid red line indicates the scale break. 

Figure. 11 Sensitivity of the scaling exponent of peak flows to the advection velocity of 

spatially uniform rainfall of intensity 30 mm/h and linear and nonlinear channel 

routing mechanisms. 

Figure. 12 Effect of   space–time variability of   rainfall on the peak flow scaling structure. 

The rainfall is taken to be spatially uniform with the intensity of 25 mm/h for 30 

min over the western half of the basin. For the eastern half of the basin, the 

rainfall is 50 mm/h for 120 min. The color scheme indicates the Horton orders as 

in Fig. 6.  

Figure. 13 Sensitivity of the peak flow scaling structure to the variance of the rainfall field. 

The rainfall field is assumed to be Gaussian with a mean of 25 mm/h and the 

variance indicated on each panel. The color scheme indicates the Horton orders 

as in Fig. 6.  

Figure. 14 Sensitivity of the peak flow scaling structure to the spatial correlation of the 

rainfall field. The rainfall field is assumed to be Gaussian with a mean of 25 

mm/h and a standard deviation of 2.0 mm/h. The spatial structure of the rainfall 

field is characterized by an exponential correlation structure with the correlation 

distance indicated on each panel. The color scheme indicates the Horton orders 

as in Fig.  6.  
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Figure. 15 Sensitivity of the peak flow scaling structure to the zero-rainfall intermittency in 

rainfall fields. The rainfall fields are distributed randomly in space with the value 

ateach pixel drawn from uniform distribution U [10, 30] with a mean of 20 mm/h 

and a duration of 120 min. The color scheme indicates the Horton orders as in 

Fig.  6. 

Figure. 16 Sensitivity of the peak flow scaling structure to the spatial intermittency of the 

rainfall field. The rainy portion of the field is assumed to follow lognormal 

distribution. We did not show the regression equations as the peak flow scaling 

structure is too noisy to perform Hortonian regression for the bottom two panels 

of the figure. The color scheme indicates the Horton orders as in Fig. 6. 

Figure. 17 Response of the watershed to the simulated space–time rainfall events. The 

characteristics of the storms are listed in Table 3.  The color scheme indicates the 

Horton orders as in Fig. 6. 

Figure. 18 Probability distributions of rescaled areas, width function maxima and peak 

flows for order 1 and order 5 basins. 
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Table 1: Sensitivity of intercepts, scaling exponents and outlet peak flows to the variance 1028 

of the Gaussian rainfall field with a mean intensity of 25 mm/h. 

 1030 

( )2,σμN  Mean 

[mm/h] 

Linear Routing Nonlinear Routing 

Intercept Slope Outlet Peak 

Flow [m3/s]

Intercept Slope Outlet Peak 

Flow [m3/s]

N(25,0.1) 24.99 12.02 0.54 587.54 12.79 0.63 1246.87 

N(25,1.0) 24.98 12.00 0.54 587.13 12.73 0.63 1245.98 

N(25,4.0) 25.02 12.00 0.54 587.01 12.74 0.63 1246.65 

N(25,9.0) 24.93 12.08 0.54 588.67 12.85 0.63 1228.01 

N(25,16.0) 25.09 11.95 0.54 580.44 12.70 0.64 1249.81 

N(25,25.0) 24.88 11.93 0.54 587.15 12.70 0.63 1243.16 

N(25,36.0) 24.88 11.97 0.54 589.58 12.64 0.64 1252.31 

 

1032 



 50

Table 2: Sensitivity of intercepts and scaling exponents to the spatial correlation structure 

of the rainfall field.  The rainfall field is assumed to be Gaussian with a mean intensity of 1034 

25 mm/h and a variance of 2.0 mm/h and is characterized by an exponential correlation 

function with the correlation distances indicated in the Table. 1036 

 

Correlation 
Distance 

[km] 

Mean 

[mm/h] 

Linear Routing Nonlinear Routing 

Intercept Slope Outlet Peak 

Flow [m3/s]

Intercept Slope Outlet Peak 

Flow [m3/s]

5.0 25.06 12.19 0.54 581.92 12.99 0.63 1232.85 

10.0 24.41 11.92 0.54 566.09 12.67 0.63 1192.25 

20.0 24.83 11.86 0.54 582.06 12.62 0.64 1222.65 

30.0 26.49 12.54 0.54 619.69 13.44 0.64 1340.37 

40.0 25.48 12.33 0.54 597.79 13.17 0.63 1279.25 

50.0 23.46 11.29 0.54 545.59 11.88 0.63 1120.85 

 1038 
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Table 3: Sensitivity of intercepts and scaling exponents to the intermittency in the 1040 

uncorrelated random fields.  The value of rainfall over each pixel was drawn from a 

Uniform distribution U[10,30], and the duration of the event is 120 minutes.  The mean 1042 

of the field is kept constant for different intermittencies. 

 1044 

Intermittency 
[%] 

Mean 

[mm/h] 

Linear Routing Nonlinear Routing 

Intercept Slope Outlet Peak 

Flow [m3/s]

Intercept Slope Outlet Peak 

Flow [m3/s]

0 19.88 11.45 0.50 464.66 12.26 0.58 898.48 

5 20.04 11.73 0.50 473.95 12.23 0.58 907.88 

25 20.05 11.23 0.50 469.37 11.58 0.58 907.24 

50 19.84 11.91 0.50 485.78 12.41 0.58 942.22 
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Table 4: Characteristics of rainfall events simulated from the space-time rainfall model.  1046 

A two parameter exponential correlation function is used to characterize the spatial 

dependence. 1048 

 Mean 

[mm/h] 

Standard  

Deviation 

[mm/h] 

Coefficient 

of Variation 

[mm/h] 

Correlation 

Distance 

[km] 

Shape 

Factor 

Rainy 

Area 

[%] 

Duration

[hr] 

Storm 1 3.97 10.37  2.61 15.40 0.73 45.84 20 

Storm 2 1.41 5.97  4.23 5.52 0.92 17.51 4 



 53

Figures 1050 

 

Figure 1: A shaded relief map of the Whitewater River basin showing the hillslope and 1052 

channel link structure of the CUENCAS model.  The channel network with links of order 

4 to 7 is shown. 1054 



 54

 1056 

Figure 2: Statistical self-similarity of upstream areas and width function maxima in terms 

of Horton plots (left panels) and rescaled distributions (right panels).  The ordinary least 1058 

square regression is used to obtain the corresponding Horton ratios.  The first order and 

seventh order links are not considered in fitting. 1060 
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 1062 

Figure 3: Sensitivity of the channel velocity (m/s) to the λ1 and λ2 in equation 3.  The 

velocities are shown only for the channels that correspond to the largest area (displayed 1064 

on each panel) for the Horton orders 2 to 7.  The area units are in km2. 

1066 



 56

 

Figure 4: Hydrographs at six locations in the Whitewater River basin obtained from a 1068 

distributed hydrologic model for a spatially uniform rainfall. 

1070 
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Figure 5: Hydrographs at six locations in the Whitewater River basin obtained from a 1072 

distributed hydrologic model.  The gray lines are the hydrographs for each of the 10 

rainfall realizations assumed to be random in space, with the intensities following the 1074 

uniform distribution U[20,100] mm/h for a duration of 10 minutes.  The solid line 

represents hydrographs for the spatially uniform rainfall of 60 mm/h for 10 minutes. 1076 
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 1078 

Figure 6: Scaling of peak flows with respect to the upstream areas of all the sub-basins in 

the Whitewater River basin.  For (a) and (b), the rainfall is spatially uniform with the 1080 

intensity and duration indicated on the panels.  For (c) and (d), the rainfall is random in 

space with the intensities following the uniform distribution U[20,100] mm/h, and the 1082 

duration is equal to 10 minutes. 

1084 
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Figure 7: Scaling of the peak flows with respect to the upstream areas of all the sub-1086 

basins in the Whitewater River basin, Kansas.  The rainfall data is obtained from the 

KICT NEXRAD weather radar in Wichita, Kansas.  The color scheme indicates the 1088 

Horton orders as in Figure 6. 

1090 
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Figure 8: Sensitivity of the peak flow scaling structure to the intensity and duration of 1092 

spatially uniform rainfall and linear channel routing with a velocity of 0.5 m/s.  The solid 

black line represents the ordinary least squares fit (equation on each panel) obtained in 1094 

the Hortonian framework.  The solid red line indicates the scale break. 

1096 
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Figure 9: Horton plots of the peak flows for different combinations of intensity and 1098 

duration of spatially uniform rainfall applied throughout the basin.  The solid line 

indicates the ordinary least squares regression fit.  The corresponding Horton ratios are 1100 

also indicated on each panel. 

1102 
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Figure 10: Sensitivity of the peak flow scaling structure to the intensity and duration of 1104 

spatially uniform rainfall and nonlinear channel routing.  The solid black line represents 

the ordinary least squares fit (equation on each panel) performed in the Hortonian 1106 

framework.  The solid red line indicates the scale break. 

1108 
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Figure 11: Sensitivity of the scaling exponent of peak flows to the advection velocity of 1110 

spatially uniform rainfall of intensity 30 mm/h and linear and nonlinear channel routing 

mechanisms. 1112 
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 1114 

Figure 12: Effect of space-time variability of rainfall on the peak flow scaling structure.  

The rainfall is taken to be spatially uniform with an intensity of 25 mm/h for 30 minutes 1116 

over the western half of the basin.  For the eastern half of the basin, the rainfall is 50 

mm/h for 120 minutes. 1118 
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 1120 

Figure 13: Sensitivity of the peak flow scaling structure to the variance of the rainfall 

field.  The rainfall field is assumed to be Gaussian with a mean of 25 mm/h and variance 1122 

indicated on each panel. 

1124 
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Figure 14: Sensitivity of the peak flow scaling structure to the spatial correlation of the 1126 

rainfall field.  The rainfall field is assumed to be Gaussian with a mean of 25 mm/h and a 

standard deviation of 2.0 mm/h.  The spatial structure of the rainfall field is characterized 1128 

by an exponential correlation structure with the correlation distance indicated on each 

panel. 1130 
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 1132 

Figure 15: Sensitivity of the peak flow scaling structure to the zero-rainfall intermittency 

in rainfall fields.  The rainfall fields are distributed randomly in space with the value at 1134 

each pixel drawn from uniform distribution U[10,30] with a mean of 20 mm/h and a 

duration of 120 minutes. 1136 
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 1138 

Figure 16: Sensitivity of the peak flow scaling structure to the spatial intermittency of 

rainfall field.  The rainy portion of the field is assumed to follow a lognormal 1140 

distribution.  We did not show the regression equations as the peak flow scaling structure 

is too noisy to perform Hortonian regression for the bottom two panels of the Figure. 1142 
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 1144 

Figure 17: Response of the watershed to the simulated space-time rainfall events.  The 

characteristics of the storms are listed in Table 3. 1146 
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 1148 

Figure 18: Probability distributions of rescaled areas, width function maxima and peak 

flows for order 1 and order 5 basins. 1150 


