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Abstract 

 

The study presents a theoretical framework for estimating the radar-rainfall error 

spatial correlation (ESC) using data from relatively dense rain gauge networks.  The error 

is defined as the difference between the radar estimate and the corresponding true areal 

rainfall.  The method is analogous to the error variance separation that corrects the error 

variance of a radar-rainfall product for gauge representativeness errors.  The study 

demonstrates the necessity to consider the area-point uncertainties while estimating the 

spatial correlation structure in the radar-rainfall errors.  To validate the method, the 

authors conduct a Monte Carlo simulation experiment with synthetic fields with known 

error spatial correlation structure.  These tests reveal that the proposed method, which 

accounts for the area-point distortions in the estimation of radar-rainfall ESC, performs 

very effectively.  The authors then apply the method to estimate the ESC of the National 

Weather Service’s standard hourly radar-rainfall products, known as digital precipitation 

arrays (DPA).  Data from the Oklahoma Micronet rain gauge network (with the grid step 

of about 5 km) are used as the ground reference for the DPAs.  This application shows 

that the radar-rainfall errors are spatially correlated with a correlation distance of about 

20 km.  The results also demonstrate that the spatial correlations of radar-gauge 

differences are considerably underestimated, especially at small distances, as the area-

point uncertainties are ignored. 
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1. Introduction 

It is widely acknowledged that radar-rainfall estimates, which serve as an input to 

hydrometeorological and water resource applications, are corrupted by high uncertainties 

that originate from many sources (e.g., Zawadzki [54], Austin [5]; Fabry et al. [20], 

Kitchen and Jackson [32], Hunter [29], Smith et al. [44], Steiner et al. [45], Young et al. 

[51], Young et al. [52], Krajewski and Smith [34], Borga [6]).  Given the current state of 

technology, it is practically impossible to accurately measure the true area-averaged 

rainfall.  Therefore, the quantification of radar-rainfall uncertainties (including their 

spatiotemporal structure) must be executed by approximating the true areal rainfall with 

point rainfall measurements from rain gauges.  The problems associated with this 

approximation are well recognized (e.g., Zawadzki [53]; Austin [5]; Kitchen and Blackall 

[31]; Ciach and Krajewski [11] and [12]; Villarini and Krajewski [48]; Villarini et al. 

[49]), but are difficult to overcome (e.g., Ciach et al. [14]; Habib et al. [26]; Ciach and 

Krajewski [15]).  A reliable methodology for the comprehensive characterization of the 

radar-rainfall uncertainties must start with the identification and estimation of the joint 

probability distribution of radar-estimated rainfall and the corresponding true rainfall 

over a broad range of conditions (Ciach et al. [16]).  These conditions include different 

space and time scales, different distances from radar and rainfall regimes, and different 

radar systems and rainfall estimation algorithms.  From the joint distribution, one can 

derive different synthetic characteristics of the radar rainfall errors, from the simple 

performance criteria (such as the root mean squared error) to the error distributional 

properties and its spatiotemporal dependences.  Clearly, establishing such a 
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comprehensive methodology poses a challenge.  We are confident that this challenge is 

surmountable, though only through many years of collaborative research.  The present 

study constitutes another small but significant step in this direction. 

A complete statistical characterization of radar-rainfall uncertainties must include the 

biases (e.g., Smith and Krajewski [43], Anagnostou et al. [4], Seo et al. [41], Ciach et al. 

[13], Borga and Tonelli [7]), the error variance (e.g., Ciach and Krajewski [11], 

Anagnostou et al. [3], Chumchean et al. [10]), conditional distributions of the errors 

(Ciach et al. [16]), and a description of the error dependences in space and time.  Because 

correlation functions are simple expressions of these spatiotemporal error dependences, 

they provide a good starting point. 

In their study on probabilistic quantitative precipitation estimation, Ciach et al. [16] 

developed a model for radar-rainfall errors, in which the relation between true rainfall 

and radar-rainfall is described by two elements, a deterministic distortion function and a 

random component.  In addition to estimating the frequency distribution of the random 

component, they showed empirically that this component is correlated in space and time.  

Other radar-rainfall and satellite-rainfall error models that have been commonly used in 

the error propagation studies assumed either uncorrelated errors (e.g., Sharif et al. [42], 

Georgakakos and Carpenter [24], Carpenter and Georgakakos [8]) or considered arbitrary 

models of the error correlation structure (e.g., Gebremichael and Krajewski [23], Nijssen 

and Lettenmaier [38], Hossain et al. [28], Carpenter and Georgakakos [9], Villarini et al. 

[47]).  However, many researchers realize that more accurate knowledge of the error 

correlations is crucial to the successful application of any rainfall estimate. 
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For example, Nijssen and Lettenmaier [38] conducted a Monte Carlo simulation 

experiment to assess the effects that spatial sampling errors in precipitation have on 

hydrological predictions.  They perturbed gauge-based interpolated rainfall estimates 

with synthetically generated uncorrelated and correlated error fields.  The perturbed 

rainfall fields were then used as an input to a macroscale hydrologic model.  Nijssen and 

Lettenmaier [38] concluded that spatial correlations in the errors strongly affect 

predictions of hydrological fluxes and states.  Hossain et al. [28], in their study on the 

effect of satellite-rainfall uncertainties on the flood prediction uncertainty, employed a 

simple multiplicative error model with temporal error correlation modeled as a lag-one 

autocorrelation function.  While they showed that the effect of temporal error correlation 

is insignificant for 3-h and 6-h sampling intervals, they indicated that it might be 

significant at the hourly sampling interval.  Carpenter and Georgakakos [9] also studied 

the sensitivity of ensemble flow predictions to input uncertainties.  In their radar-rainfall 

error model, they assumed a linear spatial correlation function for the errors and 

concluded that the radar-rainfall error structure affects the mean areal precipitation 

uncertainties at the sub-catchment and watershed scales.  Villarini et al. [47] studied the 

effects of radar-rainfall errors on the spatial scaling properties estimated from the radar-

based rainfall maps.  They perturbed the radar-rainfall fields with lognormally distributed 

multiplicative errors, assuming different levels of their spatial correlation.  The study 

showed that the error itself has a strong effect on the scaling function of the perturbed 

radar-rainfall fields.  However, they found that increasing the correlation level results in a 

decrease of the distortions in the scaling function.  Based on the aforementioned 

literature, we argue that it is important to verify whether the radar-rainfall uncertainties 
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are correlated in space and, if they are, to quantify this correlation as a function of the 

separation distance.   

The main objective of the current study is to present a practical method for estimating 

the radar-rainfall error spatial correlation (ESC), accounting for the area-point differences 

inherent in any radar-gauge comparisons.  In their preliminary error correlation estimates, 

Ciach et al. [16] simply ignored the gauge representativeness errors.  The method 

discussed here is conceptually analogous to the error variance separation (EVS) method 

proposed by Ciach and Krajewski [11].  In estimating the radar-rainfall error variance, 

use of the EVS procedure can account for the gauge representativeness errors.  Defining 

the radar-rainfall error as the difference between the true areal rainfall and corresponding 

grid-averaged gauge rainfall, the EVS-corrected error variance is obtained by subtracting 

the area-point difference variance from the variance of the difference between the grid-

averaged radar-rainfall and the corresponding rain gauge rainfall.  The EVS method is 

based on the assumption that the radar and gauge errors are uncorrelated.  Although in 

practice this zero-correlation assumption can be not fully satisfied, the EVS-corrected 

radar-rainfall error variance is considerably more accurate than the uncorrected error 

variance obtained directly from the radar-gauge pairs (Ciach et al. [14]).  Many studies 

have employed the EVS method to characterize the variance of the radar and satellite 

derived rainfall products (e.g., Chumchean et al.[10], Krajewski et al. [33], Young et al. 

[51], Habib and Krajewski [25], Seo and Breidenbach [40], Gebremichael et al. [22], 

Gebremichael and Krajewski [23], Zhang et al. [55]).  In the method for radar-rainfall 

ESC estimation presented here, we also account for the area-point differences. 
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The radar-rainfall uncertainties can be represented as either multiplicative or additive 

errors.  The EVS method was originally proposed by Ciach and Krajewski [11] for the 

additive errors only.  For this error representation, the underlying assumptions of the EVS 

scheme are systematically discussed in Ciach et al. [14].  For the multiplicative errors, the 

EVS method can be used in the logarithmic domain (Anagnostou et al. [3]).  However, 

the possible adverse consequences of the logarithmic transformation remain unverified, 

which prompted us to follow the additive definition of radar-rainfall errors as in Ciach 

and Krajewski [11]. 

This paper is organized as follows: in Section 2, we derive the expression for the 

estimation of the radar-rainfall ESC.  Section 3 describes the procedure to estimate 

various terms in the expression for ESC.  In Section 4, we test our method for removing 

the area-point effects from the ESC estimates using a simulation framework.  In Section 

5, we apply the method to estimate ESC in the National Weather Service’s operational 

radar-rainfall products that are provided by the precipitation processing system (PPS) of 

the NEXRAD in the form of the hourly digital precipitation arrays (DPA).  As a ground 

reference for these estimates, we use the data from an experimental rain gauge network in 

Oklahoma known as the ARS Micronet, which is operated by the Agricultural Research 

Service of the United Stated Department of Agriculture.  Section 6 summarizes the 

results and concludes this study. 

2. ESC Derivation 

The formula for error spatial correlation can be derived using an extension of the EVS 

method since we start by partitioning the variogram of the radar-rainfall.  Let the radar 



 8 

estimates over the two pixels 1 and 2 (Figure 1) be R1 and R2, respectively.  The variance 

of the difference R1-R2 can be partitioned to incorporate radar-rainfall error terms as 

follows: 

 

 (1) 

 

where  and  are radar-rainfall estimates and  and  are true area-averaged 

rainfall accumulations over the pixels 1 and 2, and operators  and  are the 

variance and the correlation of the corresponding random variables.  Equation (1) 

contains three variance terms and the three covariance terms.   and 

 are the variances of radar-rainfall errors over pixels 1 and 2, respectively, 

and  is the variogram of the true rainfall.  The three covariance terms are: 

1.  is the covariance between the radar-rainfall errors  

and , i.e., the error spatial covariance.  

2.  is the covariance between the radar-rainfall error over grid 1 

and the difference . 

3.  is the covariance between the radar-rainfall error over grid 

point 2 and the difference .  
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We assume that the covariances (2) and (3) above are equal, and hence the sum 

 in the equation 1 is equal to zero.  With 

this assumption, equation 1 is rearranged to obtain the error spatial covariance as follows: 

 

 (2) 

 
The radar-rainfall error spatial covariance can be obtained by adding the following 

two terms: a) average of error variances at locations 1 and 2 (Figure 1) and b) difference 

of semivariograms of the true areal rainfall and the radar-rainfall.  The error correlation 

can be obtained by normalizing the covariance with the product of the square root of the 

error variances. 

3. ESC estimation 

Once we derived the governing formulae, we needed to estimate the terms in (2).  All 

four terms on the right-hand side of the equation for the ESC can be estimated directly 

from data. 

3.1. Estimation of error variance 

We employed the EVS method proposed by Ciach and Krajewski [11] to estimate the 

terms  and  in equation 2.  According to this method, 
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 (3a) 

 

i.e., the variance of the radar-rainfall error is obtained by separating the gauge-sampling 

error, , from the overall radar-gauge variability, .  The latter can 

be obtained directly from the data: 

 

 (3b) 

 

where  and , respectively, are radar- and gauge-rainfall estimates for the pixel 

i at the time step t.  Equation 3a assumes that the radar-rainfall errors ( ) are 

uncorrelated with the rain gauge errors ( ).  This zero-correlation assumption and 

its validity have been discussed in the Introduction.  In equation 3b, temporal stationarity 

is assumed only to increase the sample size for the estimation of the .  If the 

rain gauge network is dense enough, the proposed method can be slightly modified and 

applied at each time step.  It should also be noted that if there is more than one gauge in a 

pixel, then  represents average rainfall from all the gauges in the pixel i at the time 

step t.  With the current computational resources, simple averaging of gauge 

measurements can be replaced with the block kriging.  However, we used simple 

averages for the reasons laid out in the next paragraph. 

Assuming the second-order stationarity and isotropy within the areal domain and 

following Morrissey et al [36], the gauge-sampling error  is obtained as 
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 (3c) 

 

where  is the variance of the point-rainfall and  is the variance reduction 

factor for the pixel  containing the rain gauge(s), and it is obtained as follows: 

 

 (3d) 

 

The VRF is a statistic that quantifies the spatial sampling error we make in 

approximating an areal value with an average of a specified number of point 

measurements in that area (Morrissey et al. [36]).  Such a theoretical framework does not 

exist if the areal value is estimated from block kriging.  For this reason we used simple 

averages in the equation 3b.  The sampling domain is divided into K grid boxes, over 

which the rainfall is estimated as the arithmetic mean of n gauges.  The Kronecker delta 

function  denotes whether box  contains a rain gauge.  The term  

represents the rainfall spatial correlation, where  is the distance between boxes  and 

.  A detailed description of equation 3d is given in Morrissey et al. [36] and Krajewski 

et al. [33]. 



 12 

3.2. Estimation of variogram of true areal rainfall 

The third term on the right hand side of equation 2 denotes the variogram of the true 

rainfall, and for a second-order stationary process it can be shown that (e.g., Cressie [17]) 

 

 (4) 

 

where  is the covariance of the true areal rainfall over grids  and  separated 

by distance , and  is the variance of the true rainfall.  Vanmarcke [46] (Section 

6.4) gives the following expression to obtain the covariance function of the local averages 

of a homogeneous two-dimensional random field over square areas with sides , from 

the corresponding point variance and covariance function: 

 

 (5a) 

 

where Ti and Tj respectively are true areal rainfall over pixels i and j (of sides L) 

separated by distance lag h.  To achieve lags smaller than the pixel size, the pixels i and j 

need to be overlapping, in which case, the equation 5a can be simplified to: 

 

(5b) 
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In the equations 5a and 5b,  is the distance from the end of the first grid to the 

beginning of the second grid along x (y) direction; is the distance from the 

beginning of the first grid to the beginning of the second grid along x (y) direction; 

 is the distance from the beginning of the first grid to the end of the second grid 

along x (y) direction; and  is the distance from the end of the first grid to the end 

of the second grid along x (y) direction.  The  function in the equation 5a is 

obtained as , where 

 

 (5c) 

 

where lx and ly are the separation distances in and directions, with .  

The variance of the areal values can be obtained from the point variance using the 

relation: 

 

 (5d) 

 

For further information on equations 5a through 5d, the reader is pointed to Section 

6.4 of Vanmarcke [46].  The covariance and the variance of the true areal process are 

then plugged in equation 4 to obtain the variogram of the true areal rainfall.  Equations 
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(3)-(5) demonstrate that the correlation function of the point rainfall ( ) plays an 

important role in estimating the ESC.  In this study, we employ Pearson’s correlation 

coefficient and justify its use in Section 5, where the correlation structure of point rainfall 

is estimated using rain gauges from the Oklahoma Micronet. 

3.3. Estimation of variogram of radar-rainfall 

The fourth term within the brackets on the right hand side of equation 2 denotes 

variogram of the radar-rainfall, which we estimate using the classical method-of-

moments estimator (e.g., Cressie [17]). 

 

  (6) 

 

where is the number of data pairs separated by lag h.  We realize that there are 

estimators which are more roust to the outliers in the data then the method-of-moments 

estimator.  The estimator proposed by Cressie and Hawkins [18] ( ) is among the 

widely used.  However, we did not use it in this study as it is valid only when the 

distribution of differences, , for a particular lag h is Gaussian (Lark [35]).  

Lark [35] compared the robustness and efficiency of along with two other robust 

estimators, which also assume contaminated normal model, i.e., normal distribution in the 

presence of outliers.  The study concluded that all the three robust estimators are 

influenced by any departure from the assumption of normality of differences (Lark [35]).  
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According to the study, the classical Method-of-Moments estimator is better than any 

robust estimator, when the data is skewed with no outliers. 

3.4. Summary of assumptions in ESC methodology 

Before we apply the method on the simulated fields and on the radar-rainfall data, we 

summarize here, all the assumptions involved. 

a) The rainfall is second-order stationary in space and time. 

b) The rainfall is isotropic.  If the rainfall is anisotropic, the spatial correlation 

function is directional and therefore the proposed methodology has to be applied 

for each direction resulting in different error spatial correlation functions for 

different directions. 

c) Radar-rainfall estimates and the rain gauge measurements are unbiased. 

d) The rain gauge representativeness error is not correlated with radar-rainfall error.  

The assumptions (c) and (d) are required by the EVS method.   

4. ESC testing using Monte Carlo simulation 

We begin with a Monte Carlo simulation experiment to assess the method for the error 

spatial correlation and the estimation procedure discussed in the previous section.  The 

simulation framework provides us with full control over the things that real data cannot.  

In the simulation experiment, we can compare the error correlations retrieved from our 

methodology with the true error correlations known apriori.  A good performance here 

implies that the assumptions in our methodology are reasonable and gives us the 

confidence to apply the ESC methodology on the real radar-rainfall data.  On a square 
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grid of 100×100 (arbitrary units), high resolution (0.4×0.4) two-dimensional, stationary, 

Gaussian and lognormal processes with an exponential correlation function are generated 

using the circulant embedding technique (e.g., Dietrich and Newsam [19], Wood and 

Chan [50]).  The exponential correlation function used in the study is: 

 

, (7) 

 

where is the distance between any two points in the field, is the nugget effect 

that quantifies the measurement error near the origin and the micro scale variability of the 

process,  is the correlation distance defined as the distance at which the correlation 

drops to 1/e, and  is the shape factor that controls the shape of the function near the 

origin. 

A total of 325 stations with inter-station spacing of 4 units in the x-direction and 8 

units in the y-direction (Figure 2) sample the process from the simulated high resolution 

fields, which is similar to the sampling of rainfall process by the rain gauges.  The high 

resolution fields are then averaged to obtain fields at a resolution of 4×4 as it is the most 

commonly used resolution for radar-rainfall data in many hydrological applications.  

These average fields are analogous to the true areal rainfall fields at a particular 

resolution.  Hereafter, the high resolution and corresponding average fields are referred to 

as HR and true areal (TA) processes, respectively. 

We do not interpret the simulated Gaussian and lognormal fields as rainfall fields.  

Our objective in the simulation experiment is to evaluate the methodology on simple case 
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of Gaussian realizations and on a complex case of lognormal fields.  The ESC approach 

can be applied to any remotely sensed physical process that meets the criteria such as 

second-order stationarity and isotropy and where there are inherent area-to-point errors in 

the evaluation.  That’s the reason we labeled the process from where we sample the 

“point data” as high resolution (HR) process and the corresponding area averaged process 

as true areal (TA) process and the error corrupted fields as areal-with-error (AE) process. 

The next step in the simulation framework is to generate the error process at a 

resolution of 4×4, assuming that they are Gaussian with zero mean, unit variance and 

following an exponential correlation function (equation 7) with a correlation distance of 

20 distance units.  Since the method is derived for additive errors, we add the error fields 

to the TA fields to obtain the “areal with error” (AE) process.  Addition of Gaussian 

errors to the Gaussian (or lognormal) process results in some negative values in the AE 

process, which is not realistic for rainfall fields.  However, this would not affect our 

results because our aim in this section is solely to test the method.  The above procedure 

is repeated to obtain multiple realizations of AE fields. 

We then applied the method on the simulated fields to estimate the error spatial 

correlation.  Because the spatial correlation of the errors is known, the accuracy of our 

framework can be assessed by comparing the estimated and true ESC.  We also compare 

them with spatial correlations of the difference between the 325 sampling points and 

corresponding AE pixels (analogous to radar-gauge difference), which we call “radar-

gauge (RG)” error spatial correlation. 
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4.1. Gaussian realizations 

We start by simulating correlated Gaussian realizations with mean zero and variance 

equal to 1 and we consider two correlation distances of 10.0 and 40.0 (arbitrary distance 

units).  For both cases, the correlation functions of HR, TA, error, and the AE fields are 

estimated using the 325 sampled points (Figure 3).  Figure 3 illustrates that the 

correlation structure of the high resolution process and the error process is quite accurate, 

which gives us confidence in the simulated fields.  The variogram of the TA process 

obtained using the procedure described in Section 3 and that of the AE process obtained 

using the classical method of moments estimator are shown in Figure 4 for the two point 

correlation functions considered.  From the TA variograms (particularly for the 

correlation distance of 10), one sees that the variance (half the sill) is smaller than the 

variance of the corresponding HR process (which is equal to 1.0).  This is expected, as 

the TA process is obtained as an average of the HR process.  From Figure 4, it is also 

apparent that an addition of correlated errors to the TA process increases its variance. 

The error correlations obtained using our method is fitted with a three-parameter 

exponential function using the Levenberg-Marquardt algorithm and is compared with the 

spatial correlation of RG differences and that of true errors in Figure 5.  It can be seen 

from the Figure 5 that our method can retrieve the error correlation structure quite 

accurately for both of the considered correlation functions.  Though the correlation 

structure of RG differences is close to the true one, there is a consistent bias, which is 

quite evident for a smaller correlation distance of 10.0.  This bias is due to the fact that 

RG differences have inherent area-point errors. 
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4.2. Lognormal realizations 

In testing our method on the simulated lognormal realizations, we considered the same 

correlation functions that are used in the Gaussian case.  In addition to the correlation 

distances, we also varied the coefficient of variation (CV) of the lognormal realizations.  

Therefore, for simulations with lognormal realizations, we have four different 

combinations of variability, as indicated in Table 1.  The number of realizations used for 

each case is also shown in Table 1. 

We obtain the lognormal process by transforming a simulated Gaussian process.  

However, the transformation results in the alteration of the parameters of the lognormal 

realizations.  As our aim is to obtain lognormal process with a certain mean, variance, 

and correlation structure, we selected the parameters of the simulated Gaussian fields 

such that the transformation will lead to lognormal fields with the desired parameters. 

The correlation functions of the HR, TA, error, and AE fields estimated using 325 

sampling locations are plotted in Figure 6.  The HR correlation functions estimated from 

the simulations closely match the theoretical correlation functions.  The figure also 

reveals that as the CV increases and correlation distance decreases, the addition of the 

error field has little impact on the correlation function of the true areal process.  Figure 7 

illustrates the variograms of TA and the AE process for all combinations of correlation 

functions and CVs.  The behavior of the TA and AE variograms for all four cases is 

similar to that of the Gaussian simulations with the variance of the TA process being 

smaller than the corresponding HR process.  The ESC technique is applied on all four 

cases (Table 1) and is shown in Figure 8 along with the fitted three parameter exponential 

correlation function and correlation of RG differences.  Comparing the correlations of 
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RG differences with the true one, a systematic underestimation can be seen from the 

Figure 8.  This bias increases as the lognormal field becomes more variable (a high CV 

and small correlation distance).  As in the Gaussian case, the biased RG correlations 

result from area-point errors.  Unlike in the Gaussian case, the ESC results in a consistent 

bias for a larger CV and smaller correlation distance (Figure 8).  Further investigation 

into case 4 of lognormal simulations revealed that bias in the estimation of variance 

reduction factor is the main reason for the systematic underestimation in ESC and, 

hereafter, all the results in this section are for case 4. 

As mentioned in Section 3, the VRF is a theoretical framework to quantify the spatial 

sampling error involved in approximating an areal value with an average of point 

measurements within the area.  For the VRF to be strictly applicable in the simulation 

framework, the areal values need to be obtained by averaging infinite number of point 

values.  For the Gaussian simulations, this is not an issue as the TA value (4.0×4.0) - 

obtained as an average of 100 pixels of HR process (0.4×0.4) - is reasonably closer to the 

true areal process.  Case 4 in the lognormal simulations, with a high CV and small 

correlation distance, is highly variable, and the 100 HR pixels are inadequate to obtain 

the TA process.  Therefore, the VRF estimated as in equation 3d overcorrects the area-

point discrepancies leading to underestimation of error correlation (Figure 8d).  For the 

lognormal simulations, we repeat case 4 (Table 1 and Figure 8d) with the TA process 

obtained by averaging the HR process simulated on 0.1 0.1 grids and Figure 9 shows 

that the bias in ESC reduces with an increase in the resolution.  Therefore, our method’s 

systematic underestimation of error spatial correlation for lognormal realizations is 
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largely an artifact of the simulation experiment, and the ESC method performs well in a 

simulation framework. 

5. Application to the Oklahoma ARS Micronet Dataset 

After testing the method in the simulation framework, we applied it to estimate the 

ESC of NEXRAD hourly digital product (DPA) from the Oklahoma City NEXRAD 

(KTLX) radar site (Fulton et al. [21]).  We used a high density and high quality rain 

gauge network, the Oklahoma Micronet, established by the Agricultural Research Service 

in Little Washita experimental watershed, Oklahoma (e.g., Allen and Naney [2]; Young 

et al. [52], Ciach et al. [14]).  Figure 10 shows the network and the hydrologic rainfall 

analysis project (HRAP) radar grid, which is a quasi-rectangular grid with the size of the 

cell ranging from 3.5 km in the southern U.S. to 4.5 km in the northern U.S. (Reed and 

Maidment, [39]).  The rain gauge network covering an area of approximately 1200 km2, 

consists of 41 gauges on a fairly regular grid with intergauge distances ranging from 

around 3 to 40 km and the average nearest-neighbor distance of approximately 5 km.  In 

our analysis, we considered a square radar domain with sides of 60 km, covering the rain 

gauge network, for a 36-month period (April-September data for six years 1998-2003), 

thereby reducing any seasonal effects.   

The first step in applying the ESC method is to estimate the point correlation function 

of rainfall.  Though Pearson’s estimator is widely used to estimate the correlation, it has 

been shown in the literature that for highly skewed distributions, it results in biased 

estimates (e.g., Hutchinson [30], Habib et al. [27]).  Assuming that the data come from 

the mixed lognormal distribution, Habib et al. [27] proposed an alternative unbiased 
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approach to estimate the correlation.  To check if the lognormality assumption is valid for 

the Oklahoma Micronet, the rainfall data measured by the rain gauges is binned into 

intervals of 0.5, and a mixed lognormal distribution is fitted to this binned data.  The 

gauge-rainfall had a lighter tail with respect to a mixed lognormal distribution.  

Therefore, we stick to the Pearson’s estimator to obtain the point correlation function of 

the rainfall.  Figure 11 portrays the correlation function of the rainfall measured by the 

rain gauges and the fitted three-parameter exponential function (Equation 7).  We used 

this parametric form of the correlation structure to obtain the error variance and the 

variogram of the true areal rainfall (Equations 3 through 5).  The radar pixel is nine 

orders of magnitude larger than the sampling area of rain gauge.  Therefore, artifacts 

introduced by equation 3d in the estimation of VRF and subsequently the spatial 

correlation of errors are negligible. 

The next step in the ESC method is the estimation of the variogram of the radar-

rainfall.  Its estimation is performed by using a classical method-of-moments estimator 

(Equation 6) and binning the moments into 4 km distance classes.  All the pixels covering 

60×60 km2 are used in the estimation process.  The size of the estimation domain and 

number of realizations play an important role in the estimation of variance and 

covariance leading to their severe underestimation.  We did a systematic sensitivity study 

on this aspect and found that the bias decreases rapidly with the number of independent 

realizations (Mandapaka et al. [36]).  For example, if the estimation domain is half the 

decorrelation distance, we found that as few as 50 independent fields would suffice to 

give us an unbiased estimate of variance and covariance.  Since we used six years of 

hourly data, underestimation of variance and covariance is not an issue. 
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Before we proceed to use the radar data, we would like to mention that the overall 

mean of the Micronet gauge estimates over 36 months is equal to 0.083 mm and that of 

collocated radar pixels for the same time period is 0.116 mm.  The bias can be treated in 

an additive or multiplicative manner.  The former approach would result in unrealistic 

negative rainfall values for the radar pixels.  When the latter approach is used, the 

variogram of the DPA estimates would be almost the same as the variogram of true areal 

rainfall.  Our methodology (Equation 2) applied in such a situation leads to the error 

covariance being constant and equal to the error variance.  The result is in contrast to the 

RG error correlations estimated from multiplicatively corrected radar fields as they 

decreasing with distance.  Therefore, we applied the error spatial correlation approach 

directly on the uncorrected radar data.  To make sure that the proposed methodology is 

robust to handle such bias we ran a simulation experiment similar to Section 4.1 but with 

uncorrelated errors and a bias of 0.5 to the AE fields.  Despite the bias in the AE fields, 

the proposed methodology correctly identified the zero error correlations. 

Figure 12 shows the estimated and fitted radar estimates along with the variogram of 

the true areal rainfall obtained using equation 4.  The error variances and the variograms 

of the true areal and radar-rainfall are then used in the ESC method (Equation 2) to 

estimate the spatial covariance of errors, which when normalized with error variances, 

results in an error spatial correlation structure (Figure 13).  The spatial correlation of the 

RG differences is also plotted in the same figure for comparison.  From Figure 13, one 

notices that our method results in tighter (less scatter) correlation estimates than those 

obtained directly from the radar-gauge pairs that neglect the area-point errors.  The 

decreased scatter is due to the use of parametric point correlation functions in equations 3 
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through 5.  However, for both cases, we can infer that radar-rainfall errors are 

significantly correlated with a correlation distance of approximately 20 km (Figure 13).  

This is an important result as in most of the error propagation studies, the errors are 

assumed to be uncorrelated. 

Further, one can observe in Figure 13 that ignoring the area-point differences results 

in underestimation of the ESC at the shorter distances.  Though this bias is not significant 

at the daily and, to an extent, hourly scales for stratiform rainfall, it might be significant 

at the sub-hourly time scales and for the tropical regime as the rainfall becomes more 

variable. 

6. Summary and conclusions 

Defining the radar-rainfall error as the difference between the radar-estimated rainfall 

and the corresponding true areal rainfall, we propose a method to estimate the error 

spatial correlation (ESC) that accounts for the rain gauge representativeness errors.  The 

required information on the area-point difference structure was obtained from relatively 

dense rain gauge networks.  Although this study considered only the additive error 

definition, it can be applied to the multiplicative errors by transforming the variables into 

the logarithmic domain.  Conceptually, our ESC estimation method is an extension of the 

error variance separation method proposed by Ciach and Krajewski [11].  After formal 

derivation of the method, it was tested on simulated Gaussian and lognormal fields with 

known ESC.  It performed very well in estimating the ESC for Gaussian fields and for 

lognormal fields with lower coefficients of variation (CV).  However, as the CV of the 

lognormal fields increased, our test results tended to underestimate the ESC.  The fact 
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that this specific underestimation decreases systematically with increasing the resolution 

of the simulated fields shows that this effect is an artifact of the simulation caused by the 

finite resolution of the simulated fields.  The ESC obtained using our method was also 

compared with the ESC obtained directly from the simulated “radar-gauge” differences.  

This comparison showed that ignoring the area-point errors can result in considerable 

underestimation of the error spatial correlation structure, especially at small separation 

distances. 

After the computer simulation tests, the ESC method was applied to the DPA products 

that are the standard outcomes of the PPS in the NEXRAD.  This application was based 

on six years of warm season (April to September) KTLX radar data, and the 

corresponding data from a relatively dense experimental rain gauge network (Oklahoma 

ARS Micronet).  These results show that the radar-rainfall errors are spatially correlated 

and that their correlation distance is approximately 20 km.  Although this application has 

been limited to the central Oklahoma region, it offers insight into the spatial correlation 

of DPA radar-rainfall errors in any region where the rainfall is mostly of stratiform and 

mixed form.  The results in this study can be helpful for new radar-rainfall error 

propagation studies that account for the ESC in the radar-rainfall data.  It is worth 

mentioning that the radar errors are dependent on location and range from the radar.  

However we are applying the ESC method within the 60 × 60 km2 pixel assuming 

stationarity and isotropy.  If we can have dense networks such as Micronet in different 

zones (distances from radar), we can estimate the error spatial correlation for each zone 

and for each direction using the proposed methodology.  We would also like to mention 

that the proposed method is not conditioned on the intensity and type of precipitation. 
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The ESC method presented here can be extended by regarding the ESC as a 

dynamically varying random function for which state estimation procedures are derived.  

The simplest way of implementing such an extension is by treating the correlation 

distance of the radar-rainfall error field as a random process in time.  One can include this 

state variable as an element of the ESC estimation problem where the updating of the 

state is based on the currently observed radar-rainfall fields and the corresponding rain 

gauge data.  This extension would eliminate the need for the data to be stratified into 

several “seasons.”  It would also reflect the fact that even during the peak of the warm 

season, the large extratropical cyclones with prevailing areas of stratiform rainfall regime 

can be mixed with highly variable convective cells embedded within the stratiform 

rainfall fields.  Our future studies will feature such an extension. 
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Table 1: The parameters used in the four simulation scenarios with the lognormal HR 

field.  The error field (Err) is Gaussian with zero mean and standard deviation equal to 

1.0 and with the correlation distance equal to 20.  The distance units are related to the 

size of the simulation area that is assumed to be 100 by 100 arbitrary units.  The number 

of realizations is shown in the last column. 
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Figure 1: A schematic example of radar-rainfall grid with two pixels containing rain 

gauges (the hatched squares).  The gauges are located randomly within the radar pixels. 

 

Figure 2: Example realization of four random fields: high resolution field (HR), true area 

averaged field (TA), error field (Err), and the “areal with error” (AE) field.  The 

correlation distance of HR is dHR=40, and its marginal distribution is lognormal with 

mean equal to 1.65 and coefficient of variation equal to 1.31.  The HR panel also shows 

the sampling gauge network consisting of 325 (25 by 13) gauges.  The error field (Err) is 

Gaussian with zero mean and standard deviation equal to 1.0 and with the correlation 

distance of dErr=20.  The distance units are related to the size of the simulation area that is 

assumed to be 100 by 100 arbitrary units.  The resolution of the HR field is equal to 0.4, 

and it is 4.0 for the remaining fields. 

 

Figure 3: Correlation functions of the simulated high resolution (HR) Gaussian process, 

“true areal” (TA), error (Err), and “areal with error” (AE) processes estimated using the 

sampling network shown in Figure 2.  The distance units and the parameters of the Err 

field are the same as in Figure 2. 

 

Figure 4: True areal (TA) and “areal with errors” (AE) variograms of the simulated 

Gaussian processes.  The AE variogram is estimated using all the pixels available, and 
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the TA variogram is obtained by integrating the variogram of the HR field.  The distance 

units and the parameters of the Err field are the same as in Figure 2. 

 

Figure 5: Comparison of three functions: 1) the estimated error spatial correlation (ESC) 

for Gaussian realizations corrected using our method, 2) the true ESC (with correlation 

distance of 20), and 3) the spatial correlation structure of “radar-gauge” (RG) differences.  

The distance units and the parameters of the Err field are the same as in Figure 2. 

 

Figure 6: Correlation functions of the lognormal HR fields simulated, with the parameters 

given in Table 1 and estimated using the sampling network shown in Figure 2.  The 

distance units and the parameters of the Err field are the same as in Figure 2. 

 

Figure 7: True areal (TA) and “areal with errors” (AE) variograms of the simulated 

lognormal processes of Table 1.  In each panel, upper and lower curves are AE and TA 

variograms, respectively.  The AE variogram is estimated using all the pixels available, 

and the TA variogram is obtained by integrating the point variogram.  The distance units 

and the parameters of the Err field are the same as in Figure 2. 

 

Figure 8: Comparison of error spatial correlation (ESC) for lognormal realizations 

retrieved using our correction method with the true ESC and with the spatial correlation 

structure of “radar-gauge” (RG) differences.  The distance units and the parameters of the 

Err field are the same as in Figure 2. 
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Figure 9: Sensitivity of ESC method to the resolution (Res) of the simulation grid.  The 

distance units and the parameters of the Err field are the same as in Figure 2. 

 

Figure 10: Map showing the location of the Oklahoma City NEXRAD (KTLX) radar site, 

Oklahoma Micronet, and regional topography.  The radar distance marks are 50 km apart. 

 

Figure 11: Pearson’s correlation function of gauge-rainfall obtained using six years of 

warm season (April to September) rainfall data from Oklahoma Micronet. 

 

Figure 12: Radar-rainfall variogram for the National Weather Service’s hourly digital 

product over the Oklahoma Micronet.  The variogram of true areal rainfall is obtained by 

integrating the gauge-rainfall correlation function over the 4 km pixel. 

 

Figure 13: Comparison of error spatial correlation of the National Weather Service’s 

hourly digital product with the spatial correlation structure of RG differences. 
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Tables 

 

Table 1: The parameters used in the four simulation scenarios with lognormal HR field.  

The error field (Err) is Gaussian with zero mean and standard deviation equal to 1.0 and 

with the correlation distance equal to 20.  The distance units are related to the size of the 

simulation area that is assumed to be 100 by 100 arbitrary units.  The number of 

realizations is shown in the last column. 

 
Correlation distance 

  40  10  
n 

0.5 1.28    1.07    0.80 CASE 1 CASE 2 5000 
1.0 1.65    4.67    1.31 CASE 3 CASE 4 25000 

 



 39 

Figures 

 

Figure 1: A schematic example of radar-rainfall grid with two pixels containing rain 

gauges (the hatched squares).  The gauges are located randomly within the radar pixels. 

 

          . 

. 
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Figure 2: Example realization of four random fields: high resolution field (HR), true area 

averaged field (TA), error field (Err), and the “areal with error” (AE) field.  The 

correlation distance of HR is dHR=40, and its marginal distribution is lognormal with the 

mean equal to 1.65 and the coefficient of variation equal to 1.31.  The HR panel also 

shows the sampling gauge network consisting of 325 (25 by 13) gauges.  The error field 

(Err) is Gaussian with zero mean and a standard deviation equal to 1.0 and with the 

correlation distance of dErr=20.  The distance units are related to the size of the simulation 

area that is assumed to be 100 by 100 arbitrary units.  The resolution of the HR field is 

equal to 0.4, and it is 4.0 for the remaining fields. 
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Figure 3: Correlation functions of the simulated high resolution (HR) Gaussian process, 

“true areal” (TA), error (Err), and “areal with error” (AE) processes estimated using the 

sampling network shown in Figure 2.  The distance units and the parameters of the Err 

field are the same as in Figure 2. 
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Figure 4: True areal (TA) and “areal with errors” (AE) variograms of the simulated 

Gaussian processes.  The AE variogram is estimated using all the pixels available, and 

the TA variogram is obtained by integrating the variogram of the HR field.  The distance 

units and the parameters of the Err field are the same as in Figure 2. 
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Figure 5: Comparison of three functions: 1) the estimated error spatial correlation (ESC) 

for Gaussian realizations corrected using our method, 2) the true ESC (with a correlation 

distance of 20) and 3) the spatial correlation structure of “radar-gauge” (RG) differences.  

The distance units and the parameters of the Err field are the same as in Figure 2. 
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Figure 6: Correlation functions of the lognormal HR fields simulated with the parameters 

given in Table 1 and estimated using the sampling network shown in Figure 2.  The 

distance units and the parameters of the Err field are the same as in Figure 2. 
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Figure 7: True areal (TA) and “areal with errors” (AE) variograms of the simulated 

lognormal processes of Table 1.  In each panel, upper and lower curves are AE and TA 

variograms, respectively.  The AE variogram is estimated using all the pixels available, 

and the TA variogram is obtained by integrating the point variogram.  The distance units 

and the parameters of the Err field are the same as in Figure 2. 
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Figure 8: Comparison of error spatial correlation (ESC) for lognormal realizations 

retrieved using our correction method with the true ESC and with the spatial correlation 

structure of “radar-gauge” (RG) differences.  The distance units and the parameters of the 

Err field are the same as in Figure 2. 
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Figure 9: Sensitivity of the ESC method to the resolution (Res) of the simulation grid.  

The distance units and the parameters of the Err field are the same as in Figure 2. 
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Figure 10: Map showing the location of the Oklahoma City NEXRAD (KTLX) radar site, 

Oklahoma Micronet, and HRAP grid. 
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Figure 11: Pearson’s correlation function of gauge-rainfall obtained using six years of 

warm season (April to September) rainfall data from Oklahoma Micronet. 
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Figure 12: Radar-rainfall variogram for the National Weather Service’s hourly digital 

product over the Oklahoma Micronet.  The variogram of true areal rainfall is obtained by 

integrating the gauge-rainfall correlation function over the 4 km pixel. 
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Figure 13: Comparison of error spatial correlation of the National Weather Service’s 

hourly digital product with the spatial correlation structure of radar-gauge (RG) 

differences. 


