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Abstract

The problem of replenishing redundancy in era-
sure code based fault-tolerant storage has re-
ceived a great deal of attention recently, leading
to the design of several new coding techniques
[3], aiming at a better repairability. In this
paper, we adopt a different point of view, by
proposing to code across different already en-
coded objects to alleviate the repair problem.
We show that the addition of parity pieces - the
simplest form of coding - significantly boosts
repairability without sacrificing fault-tolerance
for equivalent storage overhead. The simplicity
of our approach as well as its reliance on time-
tested techniques makes it readily deployable.
Keywords: storage, fault-tolerance, repair

1 Introduction

Given the scale of data-centers in terms of the
number of machines and network components,
failures, might they be transient or permanent,
are inevitable. In order to deal with transient
failures, adequate redundancy is introduced to
keep services available, while permanent fail-
ures need to be handled through redundancy
replenishment over time. Erasure codes have
been increasingly embraced as the preferred

redundancy mechanism, because of their low
storage overhead and high fault tolerance. The
shift from replication to erasure coding has
been prompted by the continuously increas-
ing amount of data that data-centers need to
store, together with the associated infrastruc-
tural and operational costs.

While erasure codes have long been stud-
ied for their fault tolerance, the problem of
restoration of lost redundancy for long term
resilience has gained much attention recently
[4, 7, 9, 14, 10]. The notion of better repairabil-
ity encompasses several aspects, most promi-
nently: the amount of data transfer and I/O
per repair, number of nodes involved for a re-
pair and the time to carry out a repair. In-
dividual existing works often addresses only a
subset of these issues - and the presented work
is no exception in that respect. However, in-
stead of addressing the question of designing
erasure codes with better inherent repair ca-
pabilities, this work explores additional coding
across already erasure encoded objects. This
results in disentangling high fault-tolerance re-
alized through erasure coding from efficient re-
pairability achieved by another layer of coding.

More precisely, our proposal is to carry out
erasure coding on individual data objects be-
ing stored, as is currently the case, and then
create parity groups, formed by including one
encoded piece from each object, together with a
parity piece - the simplest form of coding. This
is similar to a RAID-4 type of coding on multi-
ple encoded objects (Fig. 1). This very simple
strategy provides performance benefits in terms
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of repairability, while still retaining comparable
fault-tolerance as could be achieved with the
use of only erasure coding and incurring equiv-
alent storage overhead. We explore the impli-
cations of our design along the various perfor-
mance criterion enumerated above.

2 Background

Erasure codes have long been studied in the
peer-to-peer (P2P) system literature as a way
to achieve low overhead fault-tolerant storage
[1, 4, 13], and have more recently been also em-
braced in data-centers such as Microsoft Azure
[2], Hadoop File System1 and the new version
of Google File System. The essential idea of
erasure coding is to split an object O of size
|O| in k pieces each of size |O|/k, and trans-
form these into n > k encoded pieces. One can
reconstruct the original object using k′ ≥ k of
the encoded pieces, where k′ is a code param-
eter. In the following, the notation (n, k)-code
will imply the optimal choice k′ = k, with rate
defined as k/n. A popular example of such op-
timal codes are the Reed-Solomon codes [12].

In the context of distributed storage systems,
n different encoded pieces for an object O en-
coded with an (n, k)-code are stored in n dif-
ferent nodes, with storage overhead ρ = n/k.
For instance, a (15, 10)-code will have a storage
overhead of ρ = 1.5, which is also referred to as
a 1.5x code. Let f be the failure probability of a
storage node (unless stated otherwise, we will
assume that each storage node fails indepen-
dently of the others). The chance Pobj(n, k, f)
that the stored object survives is then

Pobj(n, k, f) =

n∑
i=k

(
n

i

)
(1− f)ifn−i. (1)

Systems designers often use the notion of num-
bers of nines, denoted by π, to describe the
data availability. If Pobj(n, k, f) ≥ 0.9999, then
at least four 9s of availability is guaranteed,

1http://wiki.apache.org/hadoop/HDFS-RAID

which can be calculated by

π = −lg(1− Pobj(n, k, f)). (2)

While erasure codes provide very good fault-
tolerance, they have been criticized for poor
performance in terms of repairability [13]: in
order to create a single encoded piece, data
equivalent to the size of the object is needed,
though deferring repairs is known to reduce the
per-repair cost [1]. This is particularly relevant
in P2P settings, which (1) start with a rela-
tively high amount of redundancy to deal with
the network dynamics, and (2) experience tem-
porary churn, i.e., nodes frequently go offline
but come back online, thus repair is sometimes
not even necessary. If r repairs are carried out
together, a node downloads k available encoded
pieces to recreate the r missing encoded pieces,
and then redistribute them among r − 1 other
nodes, incurring a total traffic (per repair) of

k + r − 1

r
. (3)

The case of data-center environments is differ-
ent. Deferring repairs is not a feasible option:
given that the number of faults is relatively
small (nevertheless non-negligeable) due to the
use of a dedicated infrastructure and of the sta-
bility of the environment, as well as cost con-
siderations, the initial amount of redundancy is
quite low. While procrastinating repairs is not
preferred, the system still needs to be able to
recover from multiple (correlated) failures.

As opposed to the heuristic of deferring re-
pairs to amortize repair costs, there has also
been a significant interest recently in design-
ing new codes with better repair properties.
These include efforts to use traditional erasure
codes in multiple layers such as Pyramid [7]
and Hierarchical codes [4], applying network
coding on top of erasure codes [9, 14] or sac-
rificing the MDS property to introduce depen-
dencies among the encoded pieces [10] (see [3]
for a more detailed exploration of such exist-
ing works). These approaches try to address
the repair problem by considering the encoded
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pieces of individual objects in isolation. In con-
trast, we next propose and study a RAID-4 like
additional layer of coding among the encoded
pieces of multiple objects. DiskReduce [5] also
applies RAID for Hadoop File System, but in
that work RAID is utilized analogous to the use
of erasure codes on individual objects.

3 Parity over encoded objects

Consider m objects O1, . . . , Om to be stored.
For j = 1, . . . ,m, object Oj is erasure encoded
into n encoded pieces ej1, . . . , ejn, all of them to
be stored in m ·n distinct storage nodes. Addi-
tionally, we create parity groups, formed by m
encoded pieces (with one encoded piece chosen
from each of the m objects), together with a
parity piece (or xor). W.l.o.g, a parity group is
of the form e1l, . . . , eml for l = 1, . . . , n, and the
parity piece pl is pl = e1l⊕ . . .⊕eml. The parity
pieces are then stored in other n distinct stor-
age nodes. Such additional redundancy is akin
to RAID-4. The process is depicted in Fig. 1.
While the storage nodes may be placed arbi-
trarily within the data-center, allocating one
parity group per rack as displayed has advan-
tages in terms of repair localization, discussed
in Section 3.3.

Figure 1: Redundantly grouped coding

The above proposal is the simplest form of
coding that can be performed across several
objects. We now discuss how it performs with
respect to repairability and fault-tolerance.

3.1 Repairability

In the event of a single node failure affecting
ejl, repair consists of xoring the remaining ekl

(k �= j) and pl. The data transfer cost is m,
as opposed to k. A suitable choice of m < k
can then achieve significant savings in terms
of data transfer overhead, which is further-
more disentangled from the code parameter k,
allowing more flexibility in choosing larger val-
ues of k. This may be desirable for various
reasons such as faster data access in parallel
from many nodes, since a larger k yields lower
amount of data per encoded piece stored at in-
dividual nodes, whose I/O may be a bottleneck.

The repair time is decreased by pipelining
the data-flow through the live nodes, which xor
their local data with the incoming one on the
fly, and forward the result to the next node.
In contrast, with erasure coding, the node per-
forming the repair needs to receive k encoded
pieces and re-encode. The repair is thus bot-
tlenecked by the bandwidth, I/O and compu-
tation capacities of that node.

The probability that a repair can be per-
formed within a parity group is (1 − f)m.
Parity groups being mutually exclusive, fail-
ures occurring in different groups do not affect
each other. Unlike in P2P systems, the typi-
cal chance of random failures f is very low in
data-center environments2, and our design cor-
respondingly disentangles the long term fault-
tolerance achieved via erasure coding, from
the short-term maintenance process, which pre-
dominantly relies on parity.

In case the parity cannot be exploited (for
instance, due to two or more failures within a
group), repair is handled through the erasure
code, by gathering k encoded pieces. Ignoring
mixed strategies where the last repair within
one group is done using the parity, and assum-
ing repair can actually be handled (as deter-
mined by (1)), the expected data (no. of pieces)
transfer per repair is approximated by

Δ = m · (1− f)m + k · (1− (1− f)m). (4)

Fig. 2 shows Δ (measured by the size of one
encoded piece) for one repair using our strat-

2Correlated failures are discussed in Section 3.3.
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egy with a ρ = 1.5x (15, 10)-code, for various
choices of m. The baseline is when no parity is
used, that is 10 pieces need to be transferred.
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Figure 2: Data transfer for one repair

A small m provides a better chance that the
parity can be used for repair, and reduces the
repair cost, though it also means an increase
by a factor of 1 + 1/m (see Section 3.4 for the
derivation) in the effective storage overhead ρ.

3.2 Parity group size tradeoffs

We saw above that onlym < k gives data trans-
fer savings. Consider the optimistic scenario
where r encoded pieces of the same object have
to be repaired, but there are no other failures in
the respective r parity groups (large number of
pieces of one object missing is a general indica-
tor of massive failures, where likely other pieces
from the groups have also failed). Repairs then
require xoring the available data with the par-
ity piece, amounting to the transfer of m · r
pieces. However, r pieces of the same object
can also be repaired using the (n, k) code, by
transferring k + r − 1 pieces. Thus meaningful
choices of m should satisfy m · r ≤ k + r − 1.
For a (15, 10) code, if r = 3, then m ≤ 4.

On the other hand, m = 1 means replicat-
ing/mirroring each encoded piece (as in RAID-
1). Thus, for very low values of f , repairs are
performed by recreating a new mirror, though
at the price of doubling the original storage

overhead ρ = n/k. For a (15, 10) code, this
means 3x. More prudent choices of m are 3 or
4, where ρ becomes 2x and 1.875x respectively,
while the savings in data transfers (see Fig. 2)
are 40 to 50% even when f is as large as 0.1.
Lower values of f imply more savings.

3.3 Potential repair localization

If the data placement is one parity group per
rack (as in Fig. 1), the data transfer does not
incur any bandwidth within the interconnect,
and the pipelined repair time is slightly larger
than essentially the I/O time to read or write
one encoded piece. Also, even if the whole rack
fails or get disconnected from the rest of the
data-center - leading to a ‘correlated failure’ of
all the nodes within the rack, for each object,
only one encoded piece becomes unavailable. In
contrast, if similar localizations of repair traf-
fic were achieved by confining multiple encoded
pieces of the same object in the same rack, then
all these pieces would simultaneously become
unavailable, affecting data availability.

3.4 Storage overhead vs. resilience

While creating the RAID-4 like parity on the
encoded pieces of different objects improves re-
pairability, it obviously also incurs more stor-
age overhead than just the erasure code. It is
thus necessary to quantify and compare the re-
silience of the proposed strategy, with respect
to erasure codes utilizing ‘equivalent’ storage.

A particular encoded piece is not available
with probability f · (1− (1− f)m), taking into
account that it could be calculated from the xor
of the remaining pieces of the parity group in-
stead. Thus, the probability PRonEC(n, k, f,m)
of data availability while using RAID-like par-
ity on m erasure coded objects (RonEC) is

PRonEC(n, k, f,m) = Pobj(n, k, f ·(1−(1−f)m))
(5)

where Pobj(n, k, f) is as defined in (1).

Consider as data placement a parity group
per rack, and assume that a rack fails with
probability fr, while individual node failures
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happen independently with probability fs,
3

then the object availability probability becomes

PRonECRack
(n, k, fs, fr,m) (6)

= Pobj(n, k, fr + (1− fr)fs(1− (1− fs)
m)).

One interpretation of the proposed scheme is
that m · k pieces are stored in (m + 1) · n en-

coded pieces, for a storage overhead of (m+1)n
mk .

We should compare the proposed strategy to an
(neff , k) code with effective value neff = m+1

m n
corresponding to the same overhead. However,
neff may not be an integer (e.g., for n = 15 and
m = 2, neff = 22.5). For a fair comparison,
we thus consider that some objects are stored
with an neff′ = �m+1

m n� while others are stored
with neff′′ = �m+1

m n	, where the fractions are
chosen such that the weighted average storage
overhead is equivalent. In fact, this is achieved
when the two n-values are used in a 1 : ζ mix,
where neff′ + ζneff′′ = neff , i.e., ζ =

neff−neff′
neff′′ .

The expected object availability is then given
by the weighted average of data availabilities:

PEC−mix(n, k, f,m)

=
Pobj(neff′ , k, f) + ζPobj(neff′′ , k, f)

1 + ζ
. (7)

Fig. 3 shows the number of 9s of availability
π comparing our strategy to the fault-tolerance
that would be achieved via erasure codes only,
but incurring equivalent storage overhead. Not
surprisingly, when m = 1 (replication), an era-
sure code using such extra storage has signif-
icantly better fault tolerance. But for m =
2, 3, 4 we notice that our strategy enjoys com-
parable fault-tolerance, and even marginally
outperforms for very small values of f .

3.5 Summary

Let us summarize the practical advantages of
coding across m erasure encoded objects using

3Elsewhere, since we do not assume a parity group
per rack, we do not distinguish rack from node failure,
and f = fs + fr represents the cumulative effect.
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Figure 3: Number of 9s object availability π (y-axis)
corresponding to parameters n = 15 & k = 10. The
x-axis shows the probability f that individual storage
nodes fail. Determined using (5) & (7) [and also (2)] for
our proposal RonEC RAID-4 on top of erasure coding
and EC-Mix respectively.
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a parity piece: a suitable choice of m (i) low-
ers the cost of data transfer for repair, and (ii)
reduces the expected number of storage nodes
that need to be contacted during repairs. Fur-
thermore, the possibility to localize repair traf-
fic within a rack (iii) avoids the use of the data-
center’s precious bandwidth, (iv) without intro-
ducing correlated failure among encoded pieces
of the same object. While not quantitatively
explored, (v) pipelining data through the live
nodes of a parity group decreases the repair
time, since the repairing node’s I/O or band-
width does not become a bottleneck. These
nice repairability properties are achieved while
(vi) retaining comparable fault-tolerance for
equivalent storage overhead if only erasure cod-
ing per object were to be used.

4 Conclusions

We study the problem of replenishing lost re-
dundancy efficiently in erasure coding based
storage systems, and advocate the use of two
kinds of redundancy - one primarily achieving
fault-tolerance by erasure coding individual ob-
jects, the other achieving cheap repairs by cre-
ating RAID-4 like parity of the erasure encoded
pieces from different objects. Our approach is
very simple, and based on mature techniques
(standard erasure coding and RAID-4), and
hence easy to apply in practice. While the cur-
rent study is based on simple analytical mod-
els, more rigorous experiments based on traces
of fault-patterns observed in practice (such as
[8]), as well as the implications of the redun-
dancy model and placement in terms of data
update, deletion & corruption are outstanding
issues to be further studied.
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