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Abstract—Multiple Input Double Output (MIDO) asymmetric ~ property based on cyclic division algebras with decoding

space-time codes forl transmit antennas and2 receive antennas complexity order up toO(M1%) were also constructed in
can be employed in the downlink from base stations to portable [7, 6, 11].

devices. Previous MIDO code constructions with low Maximum In thi id It fi h deint
Likelihood (ML) decoding complexity, full diversity and the non- n this paper, we consider an aiternative approach and-intro

vanishing determinant (NVD) property are mostly based on cyclic duce a new family of0(M'?) decoding complexity MIDO
division algebras. codes with the NVD property based erossed-product alge-

In this paper, a new family of MIDO codes with the NVD pras over Q. Crossed-product algebras were already used to
property based oncrossed-product algebras over Q is introduced.  ~ynstruct one example of fast-decodable MIDO code in [7];

Fast decodability follows naturally from the structure of the h thi le is based turi A full-rat
codewords which consist of four generalized Alamouti blocks. owever, this example Is based on puncturing>a4 full-rate

The associated ML complexity order is the lowest known for Space-time code and its performance is not very good. The
full-rate MIDO codes (O(M'°) instead of O(M'®) with respect constructions presented here are tailored for 4he 2 case

to the real constellation size M). Numerical simulations show and do not require any puncturing.

that these codes have a performance from comparable up to 1dB

gain compared to the best known MIDO code with the same B. Alamouti-like structures

complexity. Let ()* denote the complex conjugation for a scalar, and

I. INTRODUCTION the Hermitian transpose for a vector or a matrix. Recall that

There are many wireless channel scenarios where fieAlamouti block code is given by

number of antennas is asymmetric, in particular, where the Y1~y
transmitter has many antennas, while the receiver, for pl&am Yy yi )’

being a portable device, has few of them. MIDO channels, .
. . with y1,52 € C. It has the property that its columns are
which stands for Multiple Inputs Double Outputs, refer tolsu . :
Brthonormal. This property allows fast decoding, and con-

systems. The model we will consider in this paper is a MID
: ; . Sequently many of the attempts to construct fast decodable
coherent Rayleigh fading channel, with antennas at the . . L : .
space-time codes have tried to mimic it. In this paper we will

transmitter and® antennas at the receiver, which furthermore” " ) .
. X . consider generalized Alamouti codewords of the form

has perfect channel state information at the receiver.

Since the computing power available at the receiver is ajfyic Yy -y weC 1)

very limited, the design of MIDO codes must take into account afys Yy )’

the decoding complexity order. A code is calfedt-decodable | vi-h \will make the columns orthogonal (furthermore or-

if the research tree in the sphere decoding algorithm [1f]o0qrmal if |o| = 1). Note that this definition is different

can be simplified. In general, the complexity order of thg,m the one in [2]. Note also that if we have a matrix of the
real sphere decoding algorithm for a system withtransmit

antennas and receive antennas employing a space-time code o —ay;
and real signal constellations of siaé is O(M?>™™). yo Y

A. Related work then by multiplying the second column hy//a, and the

The first low ML complexity MIDO code was proposedsecond row by,/a, we get, without changing the matrix
in [2]. This code has complexity orded(}/'2) instead of determinant, .
O(M19); itis not full-rank but still achieves good performance ( v _\/?y2> 7 ©)
for moderate values of SNR. A full-rank MIDO code with voy: oy
O(M*?) complexity and high coding gain which is conjeca particular case of (1) whea is real. As far as decoding
tured to have the non-vanishing determinant (NVD) property concerned, it is enough to ask for the columns to be
was presented in [9]. Recently, MIDO codes with the NVrthogonal; the orthonormality does not improve the dengdi

>,0¢€R,o¢>0, (2)



d'

complexity, but rather the performance by ensuring that thel) (%) is a division algebra andio(u) = —1,

energy is balanced across time and antennas. ' 24Ty (wo (@) o
Our goal in this paper is to construct a code carrying 8 2) i is a division algebra and
complex information symbols of the form uo(u) # —1.
(A C>’ 4) There is a similar equivalent formulation depending on
B D whetherur(u) = —1. Since we need complex symbols,

where the2 x 2 blocks A and D are generalized Alamouti it is enough to consider a crossed product algefiraver a
codes of the form (1) (it will be discussed in Section IV whyiquadratic extensiofi of K = Q. Such an algebra is of index
the focus is on the blockd and D), preferably with columns 4, thus we can encods real symbols, that i8 complex ones.
as close to orthonormal as possible. This means that thgyendn order to obtain a matrix of the form (4) from (5),

of the symbols might not be balanced, as in (3).

Il. THE FRAMEWORK OF CROSSEDPRODUCT ALGEBRAS A= (ﬁ? a;&?;) , D= (Tg(l)g T(Z)TU(;SI)> (8)
The incentive to consider biquadratic crossed product al-

gebras as underlying algebraic structure to construct f&fould be generalized Alamouti blocks. Alternatively, by

decodable MIDO codes is two-fold: first, we will see belowwWapping the second and third rows and the second and third

that the representation of these algebras naturally giges columns in (5), we get

to codewords of the form (4), and furthermore, as is the case b b

with traditional space-time coding using division algehra A = (xo T(x2)) ., D= (U(xo) T<u)m(m2)> . (9)

codebook with full diversity is obtained from division ceesi r2 7(wo) uo(w2) a7(wo)

product algebras. Finally, by swapping the second and fourth rows and
A. Crossed product algebras of degree 4 columns, we obtain

We will consider as in [1] a crossed product algebta= vo  abr(u)or(zs) (o)  T(a)uo(zs)
(L/K,a,b,u) over the biquadratic extensidy K, whereL = A= (733 o7 (x0) ) , D= (br(a:g,) (o) )
10)

K(Vd, \F) and
— Gal(K(WT)/K), (1) = Gal(K(Vd) /). There are three possible choices fi(v/d) = Q(v/d) and
(0) = Gal(K(Vd')/K), (1) = Gal(K(Vd)/K) K(J/d) = Qv
« both are imaginary quadratic fields,
« both are real quadratic fields,
« One is a real quadratic field, the other is an imaginary
field.

Since typical signal constellations such as QAM are encoded

Such an algebra is of the forod = LdeL® fLdefL, where
2=gec K(Vd), f>=be K(Vd'), ze = ec(z) Yz € L,
xf = fr(x) Vx € L, and fe = efu for v a non-zero element
of L such thatuo(u) = a/7(a), ur(u) = o(b)/b. Elements

of .4 admit the following matrix representation:

vo  ao(z:)  br(ze) abr(u)or(zs) usingQ(i), we will assume that one of the two quadratic fields

1 o (o) br(zs)  br(u)or(wz) ., (5) isQ(i) and will thus not consider the case of two real quadratic

vz T(a)uo(ws) (o)  7(a)oT(z1) fields. Due to the lack of space, we will focus on the case of

z3  uo(za) 7(z1) o7(wo) two imaginary quadratic fields, wheeer acts as the complex
with xg, 1,20, 23 € L. conjugation, and choose codewords of the form (10).

As shown in [1],u is such thatV;, k (u) = 1, and suitable:
andb are determined by the choice ofin the fO”OWing way. B. Crossed product a|gebras over imaginary fields

B kvVd if uo(u) =-1, ke K; ©6) Consider now the case wheidle= —c < 0,d’ = —¢ < 0,
- 1(1 +uo(u)) otherwise | € K. that is L = Q(v/—c¢,v/—¢'). We are mostly interested in the
case whert’ = 1, but nevertheless will show later that the

In the latter case, in order to have a non-degenerate alge%c%strucnon is also possible for other valuescof

uo(u) should belong tak (vd) ~ K. Similarly,

RV ur(u) =1 K e K @ Q(i, v=c)
|\ 15w Otherwise I € K, / AN

. _ Q(2) Q(v=c)
with ur(u) € K(v/d') ~ K. However, checking whether the NP

resulting crossed product algehrais a division algebra only
depends on the choice of

Theorem 1. [1] Let K be a number field, and led = The Galois group ofQ(i)/Q, resp.Q(v/—c)/Q is denoted
(L/K,a,b,u) be a crossed product algebra. The# is a by (o), resp.(r) with o(i) = —i, 7(v/—c) = —/—c. Every
division algebra if and only if element ofL is of the formx = a1 +a2i+ a3/ —c+aqiv/—c,



ai,as,as,ay € Q, and we extendr andr to L so as to get possible values for are listed below, for both/ = 1 and

/S
o(x) = a1 — azi + azv/—c — aqiv/—c, ¢ (_ 2 [5/]) T Gebral | TS —
B . — - ¢, —c ivision algebra] (c, —c ivision algebra
7(@) = ar + azi JlevIeTavEs 2-1) no@=1+1) | (22 nog=0+2)
or(x) = a1 — azi — azgv/—c + agiv/—c = z*. (3,-1) yes (3,-2) no g =1+2)
We need to obtain two properties: (5-1) no6=1+4) | (5-2 yes
« the Alamouti-like block structure for fast-decodability, Egg ;2: Egg no ¢ ;ei +2)
« the algebra should preferably be a division algebra to (10-1) no@0=9+1) | (10,-2) ves

havi high SNR.
guarahtee a gqod behaviour at high S (11.-1) yes (11-2) 1o (1=9+2)
Let us first exploit the propertyr(z) = z* to construct (13-1) no(3=9+4) | (13.-2)
. . . , = , yes

a code with an Alamouti block structure by swapping the — . — _
second and fourth row and the second and fourth column Bite condition whenuo(u) # —1 is a priori less systematic
the representation (5), as already mentioned in (10): to check, since it relies on the trace @f(u), though we can
look for an element: such that the trace afo(u) is ¢ — 2,

o abr(u)or(zs) br(zz)  ao(x) wherec is such that{c, —¢) is a division algebra.

vz or(zo)  7(e1)  uo(z2) We finally discuss briefly how to find with N/ (1) = 1. A
vz 7(a)or(z1)  7(wo) 7(a)uo(zs) natural choice is to start by takinga unit in L. Recall that by
x1  br(u)or(xa) br(ws) a(zg)

Dirichlet’s unit theorem, the units of an algebraic numbeltfi
Since complex conjugation commutes withand 7, we can L are a multiplicative group generated by a sefurfdamental

rewrite it as units The number of fundamental unitsrig+r, —1, wherer;
w0 abr(u)zy  br(zs) ar(z1)* is the number of real embeddings bf andr, is the number
3 o (1) ur(z2)* of pairs of complex embeddings.
v e Tlzo) Ta)ur(zs)* | (11) |n the casel = Q(v=¢,v=¢), we haver; = 0 andr; = 2,
21 br(wzy  br(zs) 7(z0)* therefore there is only one fundamental unit.

We are now left with the choice af, b andu. From (2), we Ill. CoDE CONSTRUCTIONS

have as condition on these parameters that A. A generic construction

abr(u) € R, abr(u) < 0. (12)  Suppose that there existsin L with Ny (u) = 1, and
that the corresponding and b as defined by (13) and (14)

To obtain a suitable crossed product algedrave need to satisfy the following conditions:

choose the element (with Ny, (u) = 1), and takea,b such

that uo(u) = =1, ur(u) =¢ € {—1,1, —i}, (15)
) kV—c, keQ if uo(u) =-1; (13) abr(u) € R, abr(u) < 0.
(1+uo(u)), L€ Q otherwise uo(u) ¢ K, We now set
and a = —abr(u) > 0.
ki, k' e Q if ur(u) = —1; Observe that the first condition implies that= i\/ck, and
b= Ll VeqQ otherwise ur(u) ¢ K. (14) takek = 1. Sinceb € K(v=¢) = Q(i), o(b) = b* and the
T second condition, with’ = 1, implies thate = u7(u) = %-.
For such an algebra to be a division algebra, wheitw) = We then have
—1, we have by Theorem 1 that it is enough to check whether a i
(“61 is. This in turn is equivalent to see whether= br(u) = e e
NQ(@/Q(S) for somes € @(Z) SinCQNQ(i)/Q(S) = S% + g% € cab Ebl\ﬁ ’L\/Eb*
for s = s +1is9, 51,52 € Q, we finally need to check whether U= (u) T T T T Ta T T T a
¢ can be written as a sum of two squares. We also consider cbe b
the case where’ = 2, which is the next smallest’ after T(a)u = —ieu = —— = ——,
L . . « «
¢ = 1. Similarly in this case whemo(u) = —1, we need to here th q it h , ted f
=2 - o . where the second equality uses the expression computed for
check whether( g ) Is a division algebra, that is, whetherT(u) above. Replacing in the expression (11), we find that a

¢ = s1 4 2s3, s1,s2 € Q. Recall thatc can be written as the codeword is of the form
sum of two rational squares if and only if all its odd prime

* . *
factors which are congruent ® (mod 4) occur to an even v —owy  br(za) Zi\/gj;(xl)
exponent; similarlyc can be written in the form? + 253 if T3 ) T(x1) =2 T(22)”
and only if its odd prime factors which are congruent5to xy  —ivexr]  7(xo) —%7(3«“3)*

1o}

or 7 (mod 8) occur to an even exponent. The first smallest xy pwy br(zs) 7(20)”



Dividing the first row by,/« and multiplying the first column a division algebra. Clearly, the case of real quadratic sldsfi
by +/«, and further multiplying the fourth column b% and is also hopeless because they do not contain any non-trivial

dividing the fourth row by%, yields: roots of unity.

We finally give an example of a crossed product algebra

zo  —vaxs %7(552) ?Z*(l'l)* which is not a division algebra, but provides good shaping:
vaws "o (@) 7b*ﬁT(x2) . (16) Example 5 (L = Q(i,v3)). Let ¢ = 1, ¢ = 3 as in
Vaxy  —iyer 7(z0) —T\fT(l‘B)* Example 1, and choose = ¢ = (2. We haveuo(u) = (5,
Very o iy/axs }:\//EET(I';}) 7(z0)* ur(u) = —1. Thena = 1+ ¢® = ¢! andb = i. We have
_ abt(u) = —1, so the conditions (15) are satisfied. Sincez
We have thus obtained a codeword composed of four gengfid, have complex nornt, this code provides a very good
alized Alamouti blocks: shaping, although unfortunately it is not full-diversity.
2 Z? zz _ng: B. Code optimization
zg —izf oz —2% ' As we have seen in the previous subsection, in order
zZa izy zg 2% to obtain an Alamouti-like structure, the price to pay is to

We now provide examples of such code constructions Witwbalance the energy in the codewords. In this subsectien, w
pro . pes. ' consider the codé€’ in Example 1, and discuss some changes
values ofc which give a division algebra, namety = 1 and

a . . to improve its performance.
¢ = 3,6 and11. In the following, the fundamental units have Choice of the basis of; Recall that an element of,

been computed using the KASH software [4]. is of the forma = ay + asy/—¢ + asy/—¢ + asy/—cV/=s,
Example 1 (L = Q(i,3)). Let ¢ = 1, ¢ = 3. Then ay,as,a3,a4 € Q. Thus Examples 1-3 and 5 allow QAM
L = Q(i,v/3) = Q(¢12). The fundamental unit of. is v = encoding, since:

L) (v/3—1). We will chooseu = 7(v) = (L) (—v/3-1).

\(Né f)‘laveua(u) = —1, ur(u) = —i. Theg; i V=3 and T~ ar+azitazy/—ctazy/—ci = (a1+azi)+v—c(az+ias)

b = i We haveabr(u) = \/g(l}j) < 0, so the where botha; + asi andas + iay are iNQ(i).

conditions (15) are satisfied. In particular, to encode QAM symbols, we can choose any

Example 2(L = Q(i, V6)). Let¢’ — 1, ¢ = 6. We can choose basis of L as a vector space pv@(z'). We will considgr two
o . 3 bases, which may not coincide: the ba#is of the ring of

aswu the fundamental unit = (1 + ) (—ﬁ - 1). We have integersO;, over Z(i), and the basiBs = {1,v/—¢}. B

uo(u) = —1, ur(u) = —i. Thereforea = iv/6, b = 11X As corresponds to a denser lattice, but we will see tHatis

in the previous casebr(u) = —/6 (% - 1) < 0. more convenient for fast decodability, since it is compolsgd

one purely real and one purely imaginary element.

). Letd =1, ¢ = 11. We can Let C, be the version of the cod€ employing the basis
choose as the unitu = (1) (—=3—V/11). We haveus(u) = B, = {1,V/3i}. Its drawback is that the basis vectors have
—1, ur(u) = —i. Thereforea = iv/11, b = 1%, Again, we unbalanced norms. In order to improve the shaping, we also
haveabr(u) = V11 (3—%/ﬁ) < 0. consider the cod€’; with basisB; = {2,/3i}.

Renormalization of the parametetsand b: Sincea and

We conclude by giving an example with = 2 instead of & are only defined up to a rational constant in (6) and (7), we

¢ =1, with ¢ = 5 to get a division algebra. can choose the normalization in such a way that their complex
o . ;L _ norm is close tal, for example we can choose= 1’ = 2 in
Eﬁzr;mgn?al(i nﬁ ,ngéll/g\)/)ﬁu\a/t/ eC hgve%ac(“; 5: tqe Example 1 (codeCy). However, this rgn_ormalizgtion affects
wr(u) = —1, a = iv/5, b = iv/2, andabr(u) = —v/I0(3 + the minimum determlnz_:mt of the C(_)de, |_ndeedl<:|ﬁndl are
V10) < 0. not integers, the code is not contained in the natural oréler o
the crossed-product algebra.

Remark 1. Ideally, the parameters, a and b ought to be A further improvement can be obtained by multiplying the
of complex norml in order to have good energy efficiencyblock C in (4) by Mi and dividing the blockB by the same
[1]. Unfortunately, this does not seem to be possible. Iddeeonstant; this transformation does not affect the deteantin
in the case of two imaginary quadratic subfield$,/—c) and
K(v/—¢), if a andb have complex norm, since the automor- IV. FAST DECODABILITY
phismso and r act as the complex conjugation respectively

2
on K(v/—¢) and K (v'—¢'), we havear(a) = la|” =1 and . mpjexity. Consider a linear dispersion code encodifig

bo(b) = [b]” = 1. As a consequence, the condition in Theorem,,| sympolsa; ..., ax in a constellations such that each
1 cannot hold and the crossed-product algebra is not alivisi.qqeword is of the formX — ™K A;a; with generator
- i=1 ‘1Y

algebra, sincé&/q € Q, the quaternion algebré%) is never matricesAs, ..., Ax. The code is calledonditionallyg-group

Example 3 (L = Q(i,V11)).

In this section we briefly review some facts about decoding



4-QAM

—&- Code A4 (complexity 10)
10l = Code C4
—— Code C2
—©- Code C3
—— Code C5 (not full diversity)

T T i

8 10 12 14 16 18 20
SNR (dB)

Figure 1. Performance comparison of the proposed codes ds®@gM

constellations with the version of thé, code withA/10 decoding complexity.

decodabld8] if there exists a partition of1, ..., K} into g+1
disjoint subsetd'y, ..., T, I'“ such that

bij = || AAL + AnAl'|| . =0 VIeT,,VmeT,,i+#j.

so well at high SNR due to its small minimum determinant.
Due to its excellent shaping, the code from Example

5 performs surprisingly well at low SNR, and in fact it
outperforms thed, code by0.9 dB at the WER ofl0~4, even
though the error rate will eventually be worse in the high SNR
regime since the code is not full rank.

VI. CONCLUSIONS

We proposed a new family of full-rate, non-vanishing deter-
minant4 x4 MIDO codes based on cross-product algebras over
Q with ML decoding complexity orde©(M!?). Simulation
results show a performance from similar up to a 1 dB gain
compared to the best previously known code with the same
complexity order [12]. While the latter requires real PAM
signal constellations, our codes further have the advantég
being suitable for QAM complex modulation.
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MITC maxi<i<alTsl \where M is the size ofS.

For codes of the form (16), using the basig one can check

that the Hurwitz-Radon matri8 = (b;;) [3] has the shape

re ¢ 0 0 0 0 0 O t t t ¢t t t t t 7
t ¢t 0 0 0 0 O O ¢t t ¢t t t t t ¢t
0 0 ¢t t 0 0 0 0 t t t t t t t t
0 0 ¢t t 0 0 0 0 t t ¢t t t t t t
00 0 0 ¢t t 0 0 t t t t t t t t
00 0 0O ¢t t 0 0 t ¢t t t t t t ¢t
00 0 0 0 0 t ¢t t t t t t t t ¢t
00 0 0 0 0 ¢t t t t ¢t t t t t t
t t t t t t t t t t 0 0 0 0 0 0
t t t t t t t t t t 0 0 0 0 0 0
t ¢t t t t t t t 0 O t t 0 0 0 0
t ¢t t t t t t t 0 O t t 0 0 0 0
t t t ¢t t t t t 0 0 0 0 t t 0 0
t t t t t t t t 0 0 0 0 t t 0 0
t t t ¢t t t t t 0 0 0 0 0 0 t ¢t

Lt ¢ ¢ t ¢t t ¢t ¢t 0 0 0 0 0 0 ¢t t |

wheret denotes any possibly nonzero symbol. Clearly, this
code is conditionallyd-group decodable and has complexity 7]
order10. In fact, in order to decode one can list all the possible
., 216} and then minimize
separately the Euclidean distance over the pairs of vasabl [8]

values for the variable$z, 1, . .

{xl,l‘g}, {IL‘3,$4}, {l‘(),l‘g} and{a:7,x8}.

When using the basi#;, one can see that the complexity [9]

order is12 (details are omitted for lack of space).

V. SIMULATIONS

Figure 1 shows the performance of the proposed codes USHS]

4 — QAM, compared to theD(M1°) decoding complexity
version of the A, code” in [12] at the same spectral efficiency.
The codeC; loses about .6 dB with respect to thed, code

at the WER of10~%. Thanks to its more balanced basis,
the codeCs; improves the performance bydB. Finally, the
renormalized versiort’, has better performance than thg
code in the low SNR regime (up to SNR8) but does not work

(12]
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