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Abstract—Multiple Input Double Output (MIDO) asymmetric
space-time codes for4 transmit antennas and2 receive antennas
can be employed in the downlink from base stations to portable
devices. Previous MIDO code constructions with low Maximum
Likelihood (ML) decoding complexity, full diversity and the non-
vanishing determinant (NVD) property are mostly based on cyclic
division algebras.
In this paper, a new family of MIDO codes with the NVD
property based oncrossed-product algebras over Q is introduced.
Fast decodability follows naturally from the structure of the
codewords which consist of four generalized Alamouti blocks.
The associated ML complexity order is the lowest known for
full-rate MIDO codes (O(M10) instead of O(M16) with respect
to the real constellation sizeM ). Numerical simulations show
that these codes have a performance from comparable up to 1dB
gain compared to the best known MIDO code with the same
complexity.

I. I NTRODUCTION

There are many wireless channel scenarios where the
number of antennas is asymmetric, in particular, where the
transmitter has many antennas, while the receiver, for example
being a portable device, has few of them. MIDO channels,
which stands for Multiple Inputs Double Outputs, refer to such
systems. The model we will consider in this paper is a MIDO
coherent Rayleigh fading channel, with4 antennas at the
transmitter and2 antennas at the receiver, which furthermore
has perfect channel state information at the receiver.
Since the computing power available at the receiver is typically
very limited, the design of MIDO codes must take into account
the decoding complexity order. A code is calledfast-decodable
if the research tree in the sphere decoding algorithm [10]
can be simplified. In general, the complexity order of the
real sphere decoding algorithm for a system withm transmit
antennas andn receive antennas employing a space-time code
and real signal constellations of sizeM is O(M2mn).

A. Related work

The first low ML complexity MIDO code was proposed
in [2]. This code has complexity orderO(M12) instead of
O(M16); it is not full-rank but still achieves good performance
for moderate values of SNR. A full-rank MIDO code with
O(M10) complexity and high coding gain which is conjec-
tured to have the non-vanishing determinant (NVD) property
was presented in [9]. Recently, MIDO codes with the NVD

property based on cyclic division algebras with decoding
complexity order up toO(M10) were also constructed in
[7, 6, 11].
In this paper, we consider an alternative approach and intro-
duce a new family ofO(M10) decoding complexity MIDO
codes with the NVD property based oncrossed-product alge-
bras over Q. Crossed-product algebras were already used to
construct one example of fast-decodable MIDO code in [7];
however, this example is based on puncturing a4×4 full-rate
space-time code and its performance is not very good. The
constructions presented here are tailored for the4 × 2 case
and do not require any puncturing.

B. Alamouti-like structures

Let ( )∗ denote the complex conjugation for a scalar, and
the Hermitian transpose for a vector or a matrix. Recall that
an Alamouti block code is given by

(

y1 −y∗2
y2 y∗1

)

,

with y1, y2 ∈ C. It has the property that its columns are
orthonormal. This property allows fast decoding, and con-
sequently many of the attempts to construct fast decodable
space-time codes have tried to mimic it. In this paper we will
consider generalized Alamouti codewords of the form

(

y1 −αy∗2
α∗y2 y∗1

)

, α ∈ C (1)

which will make the columns orthogonal (furthermore or-
thonormal if |α| = 1). Note that this definition is different
from the one in [2]. Note also that if we have a matrix of the
form

(

y1 −αy∗2
y2 y∗1

)

, α ∈ R, α > 0, (2)

then by multiplying the second column by1/
√
α, and the

second row by
√
α, we get, without changing the matrix

determinant,
(

y1 −√
αy∗2√

αy2 y∗1

)

, (3)

a particular case of (1) whenα is real. As far as decoding
is concerned, it is enough to ask for the columns to be
orthogonal; the orthonormality does not improve the decoding



complexity, but rather the performance by ensuring that the
energy is balanced across time and antennas.

Our goal in this paper is to construct a code carrying 8
complex information symbols of the form

(

A C
B D

)

, (4)

where the2 × 2 blocks A and D are generalized Alamouti
codes of the form (1) (it will be discussed in Section IV why
the focus is on the blocksA andD), preferably with columns
as close to orthonormal as possible. This means that the energy
of the symbols might not be balanced, as in (3).

II. T HE FRAMEWORK OF CROSSEDPRODUCT ALGEBRAS

The incentive to consider biquadratic crossed product al-
gebras as underlying algebraic structure to construct fast
decodable MIDO codes is two-fold: first, we will see below
that the representation of these algebras naturally gives rise
to codewords of the form (4), and furthermore, as is the case
with traditional space-time coding using division algebras, a
codebook with full diversity is obtained from division crossed
product algebras.

A. Crossed product algebras of degree 4

We will consider as in [1] a crossed product algebraA =
(L/K, a, b, u) over the biquadratic extensionL/K, whereL =
K(

√
d,
√
d′), and

〈σ〉 = Gal(K(
√
d′)/K), 〈τ〉 = Gal(K(

√
d)/K).

Such an algebra is of the formA = L⊕eL⊕fL⊕efL, where
e2 = a ∈ K(

√
d), f2 = b ∈ K(

√
d′), xe = eσ(x) ∀x ∈ L,

xf = fτ(x) ∀x ∈ L, andfe = efu for u a non-zero element
of L such thatuσ(u) = a/τ(a), uτ(u) = σ(b)/b. Elements
of A admit the following matrix representation:









x0 aσ(x1) bτ(x2) abτ(u)στ(x3)
x1 σ(x0) bτ(x3) bτ(u)στ(x2)
x2 τ(a)uσ(x3) τ(x0) τ(a)στ(x1)
x3 uσ(x2) τ(x1) στ(x0)









, (5)

with x0, x1, x2, x3 ∈ L.
As shown in [1],u is such thatNL/K(u) = 1, and suitablea
andb are determined by the choice ofu in the following way:

a =

{

k
√
d if uσ(u) = −1, k ∈ K;

l(1 + uσ(u)) otherwise, l ∈ K.
(6)

In the latter case, in order to have a non-degenerate algebra,
uσ(u) should belong toK(

√
d)rK. Similarly,

b =

{

k′
√
d′ if uτ(u) = −1; k′ ∈ K
l′

1+uτ(u) otherwise, l′ ∈ K,
(7)

with uτ(u) ∈ K(
√
d′) r K. However, checking whether the

resulting crossed product algebraA is a division algebra only
depends on the choice ofu:

Theorem 1. [1] Let K be a number field, and letA =
(L/K, a, b, u) be a crossed product algebra. ThenA is a
division algebra if and only if

1)
(

−d,d′

K

)

is a division algebra anduσ(u) = −1,

2)

(

d′,2+TrK(
√

d)/K(uσ(u))

K

)

is a division algebra and

uσ(u) 6= −1.

There is a similar equivalent formulation depending on
whetheruτ(u) = −1. Since we need8 complex symbols,
it is enough to consider a crossed product algebraA over a
biquadratic extensionL of K = Q. Such an algebra is of index
4, thus we can encode16 real symbols, that is8 complex ones.
In order to obtain a matrix of the form (4) from (5),

A =

(

x0 aσ(x1)
x1 σ(x0)

)

, D =

(

τ(x0) τ(a)στ(x1)
τ(x1) στ(x0)

)

(8)

should be generalized Alamouti blocks. Alternatively, by
swapping the second and third rows and the second and third
columns in (5), we get

A =

(

x0 bτ(x2)
x2 τ(x0)

)

, D =

(

σ(x0) bτ(u)στ(x2)
uσ(x2) στ(x0)

)

. (9)

Finally, by swapping the second and fourth rows and
columns, we obtain

A =

(

x0 abτ(u)στ(x3)
x3 στ(x0)

)

, D =

(

τ(x0) τ(a)uσ(x3)
bτ(x3) σ(x0)

)

(10)
There are three possible choices forK(

√
d) = Q(

√
d) and

K(
√
d′) = Q(

√
d′):

• both are imaginary quadratic fields,
• both are real quadratic fields,
• one is a real quadratic field, the other is an imaginary

field.

Since typical signal constellations such as QAM are encoded
usingQ(i), we will assume that one of the two quadratic fields
isQ(i) and will thus not consider the case of two real quadratic
fields. Due to the lack of space, we will focus on the case of
two imaginary quadratic fields, whereστ acts as the complex
conjugation, and choose codewords of the form (10).

B. Crossed product algebras over imaginary fields

Consider now the case whered = −c < 0, d′ = −c′ < 0,
that isL = Q(

√
−c,

√
−c′). We are mostly interested in the

case whenc′ = 1, but nevertheless will show later that the
construction is also possible for other values ofc′.

σ τ
Q

Q(i) Q(
√
−c)

Q(i,
√
−c)

The Galois group ofQ(i)/Q, resp.Q(
√
−c)/Q is denoted

by 〈σ〉, resp.〈τ〉 with σ(i) = −i, τ(
√
−c) = −

√
−c. Every

element ofL is of the formx = a1+a2i+a3
√
−c+a4i

√
−c,



a1, a2, a3, a4 ∈ Q, and we extendσ andτ to L so as to get

σ(x) = a1 − a2i+ a3
√
−c− a4i

√
−c,

τ(x) = a1 + a2i− a3
√
−c− a4i

√
−c,

στ(x) = a1 − a2i− a3
√
−c+ a4i

√
−c = x∗.

We need to obtain two properties:

• the Alamouti-like block structure for fast-decodability,
• the algebra should preferably be a division algebra to

guarantee a good behaviour at high SNR.

Let us first exploit the propertyστ(x) = x∗ to construct
a code with an Alamouti block structure by swapping the
second and fourth row and the second and fourth column of
the representation (5), as already mentioned in (10):









x0 abτ(u)στ(x3) bτ(x2) aσ(x1)
x3 στ(x0) τ(x1) uσ(x2)
x2 τ(a)στ(x1) τ(x0) τ(a)uσ(x3)
x1 bτ(u)στ(x2) bτ(x3) σ(x0)









.

Since complex conjugation commutes withσ and τ , we can
rewrite it as









x0 abτ(u)x∗
3 bτ(x2) aτ(x1)

∗

x3 x∗
0 τ(x1) uτ(x2)

∗

x2 τ(a)x∗
1 τ(x0) τ(a)uτ(x3)

∗

x1 bτ(u)x∗
2 bτ(x3) τ(x0)

∗









. (11)

We are now left with the choice ofa, b andu. From (2), we
have as condition on these parameters that

abτ(u) ∈ R, abτ(u) < 0. (12)

To obtain a suitable crossed product algebraA, we need to
choose the elementu (with NL/K(u) = 1), and takea,b such
that

a =

{

k
√
−c, k ∈ Q if uσ(u) = −1;

l(1 + uσ(u)), l ∈ Q otherwise, uσ(u) 6∈ K,
(13)

and

b =

{

k′i, k′ ∈ Q if uτ(u) = −1;
l′

1+uτ(u) , l′ ∈ Q otherwise, uτ(u) 6∈ K.
(14)

For such an algebra to be a division algebra, whenuσ(u) =
−1, we have by Theorem 1 that it is enough to check whether
(

c,−1
Q

)

is. This in turn is equivalent to see whetherc =

NQ(i)/Q(s) for somes ∈ Q(i). SinceNQ(i)/Q(s) = s21 + s22
for s = s1+ is2, s1, s2 ∈ Q, we finally need to check whether
c can be written as a sum of two squares. We also consider
the case wherec′ = 2, which is the next smallestc′ after
c′ = 1. Similarly in this case whenuσ(u) = −1, we need to

check whether
(

c,−2
Q

)

is a division algebra, that is, whether

c = s21 + 2s22, s1, s2 ∈ Q. Recall thatc can be written as the
sum of two rational squares if and only if all its odd prime
factors which are congruent to3 (mod 4) occur to an even
exponent; similarly,c can be written in the forms21 + 2s22 if
and only if its odd prime factors which are congruent to5
or 7 (mod 8) occur to an even exponent. The first smallest

possible values forc are listed below, for bothc′ = 1 and
c′ = 2 [5].

(c,−c′) division algebra (c,−c′) division algebra
(2,-1) no (2 = 1 + 1) (2,-2) no (2 = 0 + 2)
(3,-1) yes (3,-2) no (3 = 1 + 2)
(5,-1) no (5 = 1 + 4) (5,-2) yes
(6,-1) yes (6,-2) no (6 = 4 + 2)
(7,-1) yes (7,-2) yes
(10,-1) no (10 = 9 + 1) (10,-2) yes
(11,-1) yes (11,-2) no (11 = 9 + 2)
(13,-1) no (13 = 9 + 4) (13,-2) yes

The condition whenuσ(u) 6= −1 is a priori less systematic
to check, since it relies on the trace ofuσ(u), though we can
look for an elementu such that the trace ofuσ(u) is c − 2,
wherec is such that(c,−c′) is a division algebra.
We finally discuss briefly how to findu with NL/K(u) = 1. A
natural choice is to start by takingu a unit inL. Recall that by
Dirichlet’s unit theorem, the units of an algebraic number field
L are a multiplicative group generated by a set offundamental
units. The number of fundamental units isr1+r2−1, wherer1
is the number of real embeddings ofL, andr2 is the number
of pairs of complex embeddings.
In the caseL = Q(

√
−c,

√
−c′), we haver1 = 0 andr2 = 2,

therefore there is only one fundamental unit.

III. C ODE CONSTRUCTIONS

A. A generic construction

Suppose that there existsu in L with NL/K(u) = 1, and
that the correspondinga and b as defined by (13) and (14)
satisfy the following conditions:

uσ(u) = −1, uτ(u) = ε ∈ {−1, i,−i},
abτ(u) ∈ R, abτ(u) < 0.

(15)

We now set
α = −abτ(u) > 0.

Observe that the first condition implies thata = i
√
ck, and

take k = 1. Sinceb ∈ K(
√
−c′) = Q(i), σ(b) = b∗ and the

second condition, withl′ = 1, implies thatε = uτ(u) = b∗

b .
We then have

bτ(u) = −α

a
=

iα√
c
,

u =
ε

τ(u)
= −εab

α
= −εbi

√
c

α
= − i

√
cb∗

α
,

τ(a)u = −i
√
cu = −cbε

α
= −cb∗

α
,

where the second equality uses the expression computed for
τ(u) above. Replacing in the expression (11), we find that a
codeword is of the form









x0 −αx∗
3 bτ(x2) i

√
cτ(x1)

∗

x3 x∗
0 τ(x1) − i

√
cb∗

α τ(x2)
∗

x2 −i
√
cx∗

1 τ(x0) − cb∗

α τ(x3)
∗

x1
iα√
c
x∗
2 bτ(x3) τ(x0)

∗









.



Dividing the first row by
√
α and multiplying the first column

by
√
α, and further multiplying the fourth column by

√
α√
c

and

dividing the fourth row by
√
α√
c

, yields:













x0 −√
αx∗

3
b√
α
τ(x2) iτ(x1)

∗
√
αx3 x∗

0 τ(x1) − ib∗√
α
τ(x2)

∗
√
αx2 −i

√
cx∗

1 τ(x0) − b∗
√
c√

α
τ(x3)

∗
√
cx1 i

√
αx∗

2
b
√
c√
α
τ(x3) τ(x0)

∗













. (16)

We have thus obtained a codeword composed of four gener-
alized Alamouti blocks:









z1 −z∗2 z5 iz∗6
z2 z∗1 z6 −iz∗5
z3 −iz∗4 z7 −z∗8
z4 iz∗3 z8 z∗7









.

We now provide examples of such code constructions, with
values ofc which give a division algebra, namelyc′ = 1 and
c = 3, 6 and11. In the following, the fundamental units have
been computed using the KASH software [4].

Example 1 (L = Q(i,
√
3)). Let c′ = 1, c = 3. Then

L = Q(i,
√
3) = Q(ζ12). The fundamental unit ofL is v =

(

1+i
2

)

(
√
3−1). We will chooseu = τ(v) =

(

1+i
2

)

(−
√
3−1).

We haveuσ(u) = −1, uτ(u) = −i. Then a =
√
−3 and

b = 1+i
2 . We haveabτ(u) =

√
3
(

1−
√
3

2

)

< 0, so the
conditions (15) are satisfied.

Example 2(L = Q(i,
√
6)). Let c′ = 1, c = 6. We can choose

asu the fundamental unitu = (1 + i)
(

−
√
3√
2
− 1

)

. We have

uσ(u) = −1, uτ(u) = −i. Thereforea = i
√
6, b = 1+i

2 . As

in the previous case,abτ(u) = −
√
6
(√

3√
2
− 1

)

< 0.

Example 3 (L = Q(i,
√
11)). Let c′ = 1, c = 11. We can

choose asu the unitu =
(

1+i
2

)

(−3−
√
11). We haveuσ(u) =

−1, uτ(u) = −i. Thereforea = i
√
11, b = 1+i

2 . Again, we

haveabτ(u) =
√
11

(

3−
√
11

2

)

< 0.

We conclude by giving an example withc′ = 2 instead of
c′ = 1, with c = 5 to get a division algebra.

Example 4 (L = Q(i
√
2, i

√
5)). Let c′ = 2, c = 5. The

fundamental unit isu = 3 −
√
10. We haveuσ(u) = −1,

uτ(u) = −1, a = i
√
5, b = i

√
2, andabτ(u) = −

√
10(3 +√

10) < 0.

Remark 1. Ideally, the parametersu, a and b ought to be
of complex norm1 in order to have good energy efficiency
[1]. Unfortunately, this does not seem to be possible. Indeed,
in the case of two imaginary quadratic subfieldsK(

√
−c) and

K(
√
−c′), if a andb have complex norm1, since the automor-

phismsσ and τ act as the complex conjugation respectively
on K(

√
−c) andK(

√
−c′), we haveaτ(a) = |a|2 = 1 and

bσ(b) = |b|2 = 1. As a consequence, the condition in Theorem
1 cannot hold and the crossed-product algebra is not a division
algebra, since∀q ∈ Q, the quaternion algebra

(

1,q
Q

)

is never

a division algebra. Clearly, the case of real quadratic subfields
is also hopeless because they do not contain any non-trivial
roots of unity.

We finally give an example of a crossed product algebra
which is not a division algebra, but provides good shaping:

Example 5 (L = Q(i,
√
3)). Let c′ = 1, c = 3 as in

Example 1, and chooseu = ζ = ζ12. We haveuσ(u) = ζ8,
uτ(u) = −1. Then a = 1 + ζ8 = ζ10 and b = i. We have
abτ(u) = −1, so the conditions (15) are satisfied. Sinceu, a
and b have complex norm1, this code provides a very good
shaping, although unfortunately it is not full-diversity.

B. Code optimization

As we have seen in the previous subsection, in order
to obtain an Alamouti-like structure, the price to pay is to
unbalance the energy in the codewords. In this subsection, we
consider the codeC in Example 1, and discuss some changes
to improve its performance.

Choice of the basis ofL: Recall that an element ofL
is of the formx = a1 + a2

√
−c′ + a3

√
−c + a4

√
−c′

√
−c,

a1, a2, a3, a4 ∈ Q. Thus Examples 1-3 and 5 allow QAM
encoding, since:

x = a1+a2i+a3
√
−c+a3

√
−ci = (a1+a2i)+

√
−c(a3+ia4)

where botha1 + a2i anda3 + ia4 are inQ(i).
In particular, to encode QAM symbols, we can choose any
basis ofL as a vector space overQ(i). We will consider two
bases, which may not coincide: the basisB1 of the ring of
integersOL over Z(i), and the basisB2 = {1,

√
−c}. B1

corresponds to a denser lattice, but we will see thatB2 is
more convenient for fast decodability, since it is composedby
one purely real and one purely imaginary element.
Let C2 be the version of the codeC employing the basis
B2 = {1,

√
3i}. Its drawback is that the basis vectors have

unbalanced norms. In order to improve the shaping, we also
consider the codeC3 with basisB3 = {2,

√
3i}.

Renormalization of the parametersa and b: Sincea and
b are only defined up to a rational constant in (6) and (7), we
can choose the normalization in such a way that their complex
norm is close to1, for example we can choosek = l′ = 4

7 in
Example 1 (codeC4). However, this renormalization affects
the minimum determinant of the code; indeed, ifk and l are
not integers, the code is not contained in the natural order of
the crossed-product algebra.
A further improvement can be obtained by multiplying the
block C in (4) by |a|

1
4 and dividing the blockB by the same

constant; this transformation does not affect the determinant.

IV. FAST DECODABILITY

In this section we briefly review some facts about decoding
complexity. Consider a linear dispersion code encodingK
real symbolsa1, . . . , aK in a constellationS such that each
codeword is of the formX =

∑K
i=1 Aiai with generator

matricesA1, . . . , AK . The code is calledconditionallyg-group
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Figure 1. Performance comparison of the proposed codes using4-QAM
constellations with the version of theA4 code withM10 decoding complexity.

decodable[8] if there exists a partition of{1, . . . ,K} into g+1
disjoint subsetsΓ1, . . . , Γg, ΓC such that

blj =
∥

∥AlA
H
m +AmAH

l

∥

∥

F
= 0 ∀l ∈ Γi, ∀m ∈ Γj , i 6= j.

In this case, the sphere decoding complexity order reduces to
M |ΓC |max1≤i≤g|Γi|, whereM is the size ofS.
For codes of the form (16), using the basisB2, one can check
that the Hurwitz-Radon matrixB = (bij) [3] has the shape
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

































where t denotes any possibly nonzero symbol. Clearly, this
code is conditionally4-group decodable and has complexity
order10. In fact, in order to decode one can list all the possible
values for the variables{x9, x10, . . . , x16} and then minimize
separately the Euclidean distance over the pairs of variables
{x1, x2}, {x3, x4}, {x5, x6} and{x7, x8}.
When using the basisB1, one can see that the complexity
order is12 (details are omitted for lack of space).

V. SIMULATIONS

Figure 1 shows the performance of the proposed codes using
4 − QAM , compared to theO(M10) decoding complexity
version of the “A4 code” in [12] at the same spectral efficiency.
The codeC2 loses about1.6 dB with respect to theA4 code
at the WER of10−4. Thanks to its more balanced basis,
the codeC3 improves the performance by1 dB. Finally, the
renormalized versionC4 has better performance than theA4

code in the low SNR regime (up to SNR=18) but does not work

so well at high SNR due to its small minimum determinant.
Due to its excellent shaping, the codeC5 from Example
5 performs surprisingly well at low SNR, and in fact it
outperforms theA4 code by0.9 dB at the WER of10−4, even
though the error rate will eventually be worse in the high SNR
regime since the code is not full rank.

VI. CONCLUSIONS

We proposed a new family of full-rate, non-vanishing deter-
minant4×4 MIDO codes based on cross-product algebras over
Q with ML decoding complexity orderO(M10). Simulation
results show a performance from similar up to a 1 dB gain
compared to the best previously known code with the same
complexity order [12]. While the latter requires real PAM
signal constellations, our codes further have the advantage of
being suitable for QAM complex modulation.

ACKNOWLEDGMENTS

This work was partly done while L. Luzzi was visiting the
Division of Mathematical Sciences, Nanyang Technological
University, Singapore. The research of F. Oggier is supported
in part by the Singapore National Research Foundation under
Research Grant NRF-RF2009-07 and NRF-CRP2-2007-03,
and in part by the Nanyang Technological University under
Research Grant M58110049 and M58110070.

REFERENCES

[1] G. Berhuy, F. Oggier, “Space-time codes from crossed-product
algebras of degree4”, Proc. Applied Algebra, Algebraic algo-
rithms, and error-correcting codes, 2007.

[2] E. Biglieri, Y. Hong and E. Viterbo, “On fast-decodable space-
time block codes”,IEEE Trans. Inform. Theory, vol. 55, no. 2,
Feb 2009.

[3] G. R. Jithamitra, B. Sundar Rajan, “A quadratic form
approach to ML decoding complexity”, submitted,
http://arxiv.org/abs/1004.2844

[4] Available at http://www.math.tu-berlin.de/˜kant/kash.html.
[5] T. Y. Lam, Introduction to quadratic forms over fields, Graduate

Studies in Mathematics, vol. 67, Amer. Math. Soc, 2005
[6] F. Oggier, C. Hollanti, R. Vehkalahti, “An algebraic MIDO-

MISO code construction”,Proc. Int. Conf. on Signal Processing
and Communications2010 (SPCOM 2010), Bangalore, India,
July 2010

[7] F. Oggier, R. Vehkalahti, C. Hollanti, “Fast-decodable MIDO
codes from crossed product algebras”,Proc. IEEE Int. Symp.
Inform. Theory, Austin, TX, June 2010

[8] L. P. Natarajan, B. S. Rajan, “Fast group-decodable STBCs
via codes over GF(4)”,Proc. IEEE Int. Symp. Inform. Theory,
Austin, TX, June 2010

[9] K. P. Srinath, B. S. Rajan, “Low ML-decoding complexity, large
coding gain, full-diversity STBCs for2× 2 and4× 2 MIMO
systems”, IEEE J. on Special Topics in Signal Processing:
managing complexity in multi-user MIMO systems, 2010

[10] E. Viterbo, J. Boutros, “A universal lattice decoder for fading
channels”,IEEE Trans. Inf. Theory, vol 45, n. 5, 1999

[11] R. Vehkalahti, C. Hollanti, J. Lahtonen, “A family of cyclic
division algebra-based fast-decodable4 × 2 space-time block
codes”,Proc. 2010 Int. Symp. Inf. Theory and its Appl.(ISITA
2010), Taiwan, Oct. 2010

[12] R. Vehkalahti, C. Hollanti, F. Oggier, “Fast-decodable asym-
metric space-time codes from division algebras”, submitted,
http://arxiv.org/abs/1010.5644


