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Asymptotically Good Quantum Codes Exceeding the
Ashikhmin–Litsyn–Tsfasman Bound

Hao Chen, San Ling, and Chaoping Xing

Abstract—It is known that quantum error correction can be achieved
using classical binary codes or additive codes over (see [2], [3], [9]). In
[1] and [4], asymptotically good quantum codes from algebraic-geometry
codes were constructed and, in [1], a bound on ( ) was computed from
the Tsfasman–Vl̆aduţ–Zink bound of the theory of classical algebraic-ge-
ometry codes. In this correspondence, by the use of a concatenation
technique we construct a family of asymptotically good quantum codes
exceeding the bound in [1] in a small interval.

Index Terms—Algebraic-geometry codes, concatenated codes, Calder-
bank–Shor–Steane (CSS) construction, quantum codes.

I. INTRODUCTION

Since the pioneering works reported in [3], [8], [9], the theory of
quantum error-correcting codes has been rapidly developing. A thor-
ough discussion of the principles of quantum coding theory was given
in [2], and many examples and tables on various bounds were given
there. Many kinds of interesting good quantum codes were also con-
structed using classical binary codes, see, e.g., [5], [7], [10]. It is natural
to consider using the theory of algebraic-geometry codes to construct
good quantum codes. In [1] and [4], a family of asymptotically good
quantum codes (i.e.,R = limi!1

k

n
> 0 and� = limi!1

d

n
> 0

for the family of quantum[[ni; ki; di]] codes) was constructed from
the algebraic-geometry codes arising from the well-known asymptot-
ically good family of curves overFFF 2 attaining the Drinfeld–Vl̆aduţ
bound [6], [11]. The binary expansions of a pair of the asymptotically
good algebraic-geometry codes were used to produce the asymptoti-
cally good quantum codes withR + � � 1

12
in [4] from the Calder-

bank–Shor–Steane (CSS) construction (see [2], [3], [9], or Theorem 1.4
at the end of this Introduction). In [1], the binary expansions of asymp-
totically good algebraic-geometry codes were inserted into Steane’s
enlargement of the CSS construction [10] to produce asymptotically
good quantum codes as in the following theorem.

Theorem 1.1 (Ashikhmin, Litsyn, and Tsfasman [1], [12]):For any
� 2 (0; 1

18
) andR lying on the broken line given by the piecewise-

linear function

R(�) = 1�
1

2m�1 � 1
�

10

3
m�; when� 2 [�m; �m�1] (1)

for m = 3; 4; 5; . . . and where�2 = 1

18
; �3 = 3

56
, and

�m =
3

5

2m�2

(2m�1 � 1)(2m � 1)
; for m = 4; 5; 6; . . .
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there exist polynomially constructible families of quantum codes with
n!1 and asymptotic parameters greater than or equal to(�; R).

The main result of the present correspondence is the following.

Theorem 1.2: Let

�t =
2

3

2t � 3

(2t+ 1)(2t � 1)
:

For t � 3 and � 2 (0; �t), there exist polynomially constructible
families of quantum codes withn ! 1 and asymptotic parameters
(�; R1(�)), where

R1(�) = 3t(�t � �):

Corollary 1.3: Using t = 3 and the equationR + 9� = 30

49
,

the bound in Theorem 1.2 is defined in(0; 10

147
) (bigger than

(0; 1

18
) in the Ashikhmin–Litsyn–Tsfasman bound) and exceeds the

Ashikhmin–Litsyn–Tsfasman bound in the interval( 8

147
; 1

18
).

Proof: The first part of the statement is clear from Theorem 1.2.
For the second part, it is clear that, in the interval(8=147; 1=18), the
Ashikhmin–Litsyn–Tsfasman bound is defined byR(�) = 2=3 �
10� and the bound in Theorem 1.2 is given byR1(�) = 30=49 �
9�. These equations define two straight lines and it is easy to check
thatR1(1=18) > R(1=18) andR1(8=147) = R(8=147). Thus, the
second part of the statement is proved.

The outline of our proof of Theorem 1.2 is as follows. We begin
with an asymptotically good family of curves overFFF 2 satisfying the
Drinfeld-Vlăduţbound. From each of these curves, we construct a pair
of algebraic–geometry codes overFFF 2 , which are then used to yield,
via concatenation, a pair of binary codesC1 andC2 such thatC1 � C2.
The CSS construction (see Theorem 1.4 below) is then applied to these
pairs of codes to yield the desired family of quantum codes with good
asymptotic parameters.

We recall now the CSS construction (cf. [2], [3], or [9]). For a clas-
sical codeC (C can be a nonlinear code), we denote bywt(C) the
minimal Hamming weight of all codewords ofC.

Theorem 1.4 (Calderbank–Shor–Steane):Let C1 andC2 be two bi-
nary codes with parameters[n; k1] and[n; k2], respectively. Suppose
that C1 � C2. Then a quantum[[n; k2 � k1; d]] code can be con-
structed, where

d = minfwt(C2nC1); wt(C
?

1 nC
?

2 )g:

The correspondence is organized as follows. As concatenation is
used to construct the codes desired in Theorem 1.2, we give in Sec-
tion II the concatenation code and a description of its dual code. The
description of the dual code is interesting in its own right. In Section
III, we construct the asymptotically good quantum codes as claimed in
our main result Theorem 1.2.

II. THE DUAL CODE OF A CONCATENATED CODE

Let C be an[s; t; d] code overFFF q and, fori = 1; 2; . . . ; s; let
�i:FFF q ! FFFn

q be anFFF q-linear injective map whose imageCi =
im(�i) is an [ni; k; di] code overFFF q. The image�(C) of the fol-
lowing FFF q-linear injective map:

� : C �! FFFn +���+n
q

(c1; . . . ; cs) 7�! (�1(c1); . . . ; �s(cs)) (2)

is an [n1 + � � � + ns; tk] linear (concatenated) code overFFF q . The
following observation can be easily verified.

Lemma 2.1: Suppose the imagesim(�i)(1 � i � s) are identical
and have parameters[n; k; w]. Then�(C) is an[ns; tk] linear code
overFFF q with the minimum distance at leastwd.

Next we describe the dual code of�(C). We show in Theorem 2.3
that it is the direct sumD � �0(C?), whereD and�0(C?) are two
codes to be described.

Let C?

i � FFFn
q be the dual code ofCi and letD be the direct sum

C?

1 � � � � � C?

s . It is clear thatD � FFFn +���+n
q is an

[n1 + � � �+ ns; n1 + � � �+ ns � sk]

linear code overFFF q .
To describe�0(C?), we need to first defineFFF q-linear injective maps

�0

i:FFF q ! FFFn
q , for 1 � i � s.

Let fe1; . . . ; ekg be anFFF q-basis ofFFF q . A set fe01; . . . ; e
0

kg
of FFF q is called the dual basis offe1; . . . ; ekg if we have
TrFFF =FFF (eie

0

j) = �ij (Kronecker symbol). It is well known that the
dual basis always exists. We say that a basis is self-dual if it is its own
dual.

Now we choose anFFF q-basis fe1; . . . ; ekg for FFF q and let
fe01; . . . ; e

0

kg be its dual basis. For each1 � i � s, we define the
FFF q-linear injective map�0

i: FFF q ! FFFn
q by first defining the images

�0

i(e
0

j) for 1 � j � k, and then extending the mapFFF q-linearly. For
each1 � j � k and1 � ` � k, we want�0

i(e
0

j) to satisfy

�i(e`) � �
0

i(e
0

j) = �`j (3)

where�`j is the Kronecker symbol. As̀runs through all values from
1 to k, (3) gives a linearly independent system ofk equations inni
variables. Ask � ni, the system admits a solution, which shall be
defined as our�0

i(e
0

j). In general, this choice of�0

i(e
0

j) is not unique,
but is unique up to addition by a vector inC?

i .
It is clear that�0

i is anFFF q-linear injective map whose image is an
[ni; k] linear code overFFF q.

Let C? � FFF s
q be the dual code ofC. This is an[s; s � t] linear

code overFFF q . We define�0(C?) to be the concatenated code defined
throughC? and�0

1; . . . ; �
0

s, similar to the way�(C) was defined
throughC and�1; . . . ; �s. This is an[n1+ � � �+ns; (s� t)k] linear
code overFFF q.

Lemma 2.2: For each1 � i � s, we haveC?

i \ im(�0

i) = 0.
Therefore,D \ �0(C?) = 0.

Proof: The second statement follows directly from the first. The
first statement follows directly from (3).

Theorem 2.3:The dual code�(C)? of �(C) is the direct sumD�
�0(C?).

Proof: Since

dimFFF (D) + dimFFF (�0(C?)) = n1 + � � �+ ns � tk

and it is clear thatD � �(C)?, we only need to prove�0(C?) �
�(C)?.

Let

a = (a1; . . . ; as) 2 C

and

b = (b1; . . . ; bs) 2 C?
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with

xxx0 = (x1; . . . ; xN(n)) 2 T?2

and

bbb = (b1; . . . ; bN(n)) 2 D:

It is clear thatxxx0 is a nonzero vector sincexxx is not inC?1 , thuswt(xxx0) �
m2(n)�2g(n)+2. At each positionj with xj nonzero, we know that
�0�(xj)+ bj is nonzero from the factbj 2 C?� andC?� \ im(�0�) = 0.
Thus, the claim is proved.

Using the CSS construction (see Theorem 1.4 in Section I), we have,
for eachn, a

[[(2t+ 1)N(n); 2t(m1(n)�m2(n));

� minf2(N(n)�m1(n)); m2(n)� 2g(n) + 2g]]

quantum codeAn. Let k(n) = m1(n)�m2(n). It is clear thatk(n)
can take any integer in(0; N(n)� 2g(n)]. For any suchk(n), taking

m1(n) = b(2N(n) + 2g(n) + k(n)� 2)=3c

wherebuc means the greatest integer less than or equal to the real
numberu, we have

2(N(n)�m1(n)) �m2(n)� 2g(n) + 2

� 2

3
(N(n)� 2g(n)� k(n) + 1):

Thus,An has parameters

(2t+ 1)N(n); 2tk(n); � 2
3
(N(n)� 2g(n)� k(n) + 1) :

For a fixed� 2 (0; 1 � 2=(
p
q � 1)), we letk(n)=N(n) ! � asn

tends to1. Put

R := lim
n!1

2tk(n)

(2t+ 1)N(n)
=

2t

2t+ 1
�

and

� := lim sup
n!1

2(N(n)� 2g(n)� k(n) + 1)

3(2t+ 1)N(n)

=
2

3(2t+ 1)
1� 2

2t � 1
� � :

Then(�; R) lies on the line defined by

R1(�) =
2t

2t+ 1
1� 2

2t � 1
� 3t�:

Hence, we have found the family of quantum codes with the desired
asymptotic parameters. Moreover, since the algebraic-geometry codes
used here and concatenation are polynomially computable (see, for ex-
ample, [11]), our conclusion of Theorem 1.2 is proved.
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