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Asymptotically Good Quantum Codes Exceeding the
Ashikhmin-Litsyn-Tsfasman Bound

Hao Chen, San Ling, and Chaoping Xing

Abstract—It is known that quantum error correction can be achieved
using classical binary codes or additive codes over F'y (see [2], [3], [9]). In
[1] and [4], asymptotically good quantum codes from algebraic-geometry
codes were constructed and, in [1], a bound on (§, R) was computed from
the Tsfasman—V1adut—Zink bound of the theory of classical algebraic-ge-
ometry codes. In this correspondence, by the use of a concatenation
technique we construct a family of asymptotically good quantum codes
exceeding the bound in [1] in a small interval.

Index Terms—Algebraic-geometry codes, concatenated codes, Calder-
bank—Shor—Steane (CSS) construction, quantum codes.

I. INTRODUCTION

Since the pioneering works reported in [3]. [8], [9]. the theory of
quantum error-correcting codes has been rapidly developing. A thor-
ough discussion of the principles of quantum coding theory was given
in [2]. and many examples and tables on various bounds were given
there. Many kinds of interesting good quantum codes were also con-
structed using classical binary codes, see, e.g.. [5]. [7]. [10]. Tt is natural
to consider using the theory of algebraic-geometry codes to construct
good quantum codes. In [1] and [4], a family of asymptotically good
quantum codes (L.e.. F = lim, .. i—‘ > 0and & = lim, _ - :—‘ =0
for the family of quantum [[n., k., d ] codes) was constructed from
the algebraic-geometry codes arising from the well-known asymptot-
ically good family of curves over F',z: attaining the Drinteld—V1adut
bound [6]. [11]. The binary expansions of a pair of the asymptotically
good algebraic-geometry codes were used to produce the asymptoti-
cally good quantum codes with ? + & > L in [4] from the Calder-
bank-Shor—Steane (CSS) construction (see [2]. [3]. [9]. or Theorem 1.4
at the end of this Introduction). In [ 1], the binary expansions of asymp-
totically good algebraic-geometry codes were inserted into Steane’s
enlargement of the CSS construction [10] to produce asymptotically

good quantum codes as in the following theorem.

Theorem 1.1 (Ashilhmin, Litsyn, and Tsfasman [1], [12]): For any
hoe (0, I'—_‘ ) and R lying on the broken line given by the piecewise-
linear function

1 10
Rioy=1- P —mé, when & € A, do—1] (1)
form = 3, 4.5, ... and where & = I'—_‘ hy = % and
3 2;)1—1 ~
b = ST T form =456, ...
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there exist polynomially constructible families of quantum codes with
n — ~c and asymptotic parameters greater than or equal to (4, 1).

The main result of the present correspondence is the following.

Theorem 1.2: Let

2 20 -3
f"f —_— T T . Tvror v
(A +1)20=1)

Fort > 3 and » € (0. #), there exist polynomially constructible
families of quantum codes with n — ~ and asymptotic parameters
(&, Ri(0)). where

Bi(dy=31h — ).

Corollary 1.3: Using + = 3 and the equation ? + 96 = :—r

the bound in Theorem 1.2 is defined in (0. %} (bigger than
(0, ‘%) in the Ashikhmin-Litsyn—Tsfasman bound) and exceeds the

Ashikhmin-Litsyn—Tsfasman bound in the interval ( F "— I

Proof: The first part of the statement is clear from Theorem 1.2.
For the second part, it is clear that. in the interval (3/147. 1/18), the
Ashikhmin-Litsyn-Tsfasman bound is defined by R(4) = 2/3 —
104 and the bound in Theorem 1.2 is given by R, (4) = 30/49 —
94, These equations define two straight lines and it is easy to check
that 7, (1/18) > R(1/18) and R, (8/147) = R(8/147). Thus. the
second part of the statement is proved.

The outline of our proof of Theorem 1.2 is as follows. We begin
with an asymptotically good family of curves over F,2: satisfying the
Drinfeld-Vladut bound. From each of these curves. we construct a pair
of algebraic—geometry codes over F',z:. which are then used to yield.
via concatenation, a pair of binary codes '; and > such that ¢, C (.
The CSS construction (see Theorem 1.4 below) is then applied to these
pairs of codes to yield the desired family of quantum codes with good
asymptotic parameters.

We recall now the CSS construction (cf. [2]. [3]. or [9]). For a clas-
sical code ' (C' can be a nonlinear code). we denote by wi((') the
minimal Hamming weight of all codewords of .

Theorem 1.4 (Calderbank—Shor—Steane): Let(, and > be two bi-
nary codes with parameters [n. ] and [n. k-], respectively. Suppose
that , C (2. Then a quantum [[#, k2 — k. d|| code can be con-
structed, where

d = min{wt(CN\Cy ) Wr[C'|i \L)l )b

The correspondence is organized as follows. As concatenation is
used to construct the codes desired in Theorem 1.2, we give in Sec-
tion IT the concatenation code and a description of its dual code. The
description of the dual code is interesting in its own right. In Section
II1. we construct the asymptotically good quantum codes as claimed in
our main result Theorem 1.2.

II. THE DUAL CODE OF A CONCATENATED CODE

Let (' be an [s, f, d] code over F' ; and. for/ = 1,2, ... s let
m:F oy — F% be an F,-linear injective map whose image ', =
im{m,)is an [n,., k., d,] code over F,. The image 7(C'} of the fol-
lowing F',-linear injective map:

Frtotns
(miler), oo Tales)) (2)



is an [y + - -+ + n., tk] linear (concatenated) code over F',. The
following observation can be easily verified.

Lemma 2.1: Suppose the images im (7, )( 1 < i < s) are identical
and have parameters [, k. w]. Then (') is an [ s, t&| linear code
over F', with the minimum distance at least w .

Next we describe the dual code of «{ C'). We show in Theorem 2.3
that it is the direct sum 1 - ='(C* ). where ) and «'( ('~} are two
codes to be described.

Let(C*- C F +* be the dual code of (', and let [ be the direct sum
b b Ttis clear that D Fllm " s an

1+ F e, w4+ e — sk

linear code over F',.

To describe 7' ('), we need to first define F', -linear injective maps
F::F,I,F\: — F:;i. for1 < i < s.

Let {er. ..., er} be an F,-basis of F r. A set {e},.... €.}
of F » is called the dual basis of {ei.....ep} if we have
Tr Fon/Fq {e.e)) = &, (Kronecker symbol). Tt is well known that the
dual basis always exists. We say that a basis is self-dual if it is its own
dual.

Now we choose an F,-basis {e. ..., e} for F  and let
lel. ..., e} beits dual basis. For each 1 < ; < s. we define the
F,-linear injective map =/: F s — F* by first defining the images
mi(el)y for 1 < j < k. and then extending the map F',-linearly. For
eachl < j <k andl < ¢ < /-, we want 7, (¢ ) to satisfy

Toled) - mlel) = b (3)

where 4, ; is the Kronecker symbol. As ( runs through all values from
1 to k. (3) gives a linearly independent system of /- equations in #,
variables. As & < u,. the system admits a solution. which shall be
defined as our w(¢,). In general. this choice of (¢!} is not unique.
but is unique up to addition by a vector in ;"

It is clear that 7! is an F,-linear injective map whose image is an
[12., ] linear code over F,.

Tet O C F . be the dual code of ". This is an [s, s — #] linear
code over F 1. We define 7' (C ) to be the concatenated code defined
through ' and 7. .... 7/. similar to the way 7(C') was defined
through C' and . ..., m.. Thisisan [ +-- -+ n.. (s —{)k] linear
code over F',.

Lemima 2.2: Foreach1l < i < s.wehave C;5 N imin!) = 0.
Therefore, D N« () = 0.
Progf: The second statement follows directly from the first. The
first statement follows directly from (3).

Theorem 2.3: The dual code ()" of x( ("} is the direct sum 1) -
ety

Proof: Since
dimp, (D) + dimp (7'(CT)) =0y + -+ 0, —th

and it is clear that 2 C 7(C')*. we only need to prove 7' (') C
ﬁ[_(‘}J‘.
Let
a= (. ....a.) e’
and
b=(b.....h,)eC™"

so that

Ty =(milar), ... Tlas)) € ()
and

(B = (7l (b ). ., T E 7O,

Using (3) and the expansions

i, = rr,‘m + o4 rrf'm‘.

and
1o kot
b, =Db,ey +---+ D e

where o’ B/ € F, foralll < < sand 1 < j < I, we have

El

Tla) -7 (b) = Zmn, Vo (b))

P

= Z (Zf*fm[m )) . (Z?)'fﬁ:[_f'_: ')) 4

=1 i=1

=1

sk
= E E allb!.

i=1 j=1

On the other hand, since v €' and h € (', we have Y°_ | b, =0.
Hence

0= E[ arer + - +are)(blel + -+ el
=3

=303 albe, (5)

By taking the trace of (5) and using the property of the dual basis.
we have

i i alb! = 0.

=1 =1
Thus. 7(a)- 7' (b)) = 0.s0o 7 (CH) C w(C)t.

Remark: Although the choice of the maps 7, (and hence 7') is not
unique, we have noted that it is unique up to addition by a vector in
(' Therefore, the direct sum D < 7' (') is uniquely defined.

Corollary 2.4: Suppose n, =---=un, =k and. for each 1 < < s,
7. is the expansion with respect to some F,-basis 7" of F . so that
("} is the expansion of (" with respect to the basis 7". Then the dual
of (") is the expansion of (' with respect to the dual basis 7.

Corollary 2.4 follows directly from Theorem 2.3. The result of
Kasami and Lin used in [1. Theorem 3] is a direct consequence of
Corollary 2 4.

III. PROOF OF THEOREM 1.2

Let X be a smooth. projective, absolutely irreducible curve of genus
¢ defined over F,. let D be a set of ¥ F,-rational points of X' and
let ¢ be an F,-rational divisor of X such that supp(G) N D =
and 29 — 2 < deg(() < N, where supp(() and deg((+) denote
the support and the degree of (/. respectively. Then the functional al-
gebraic-geometry code ) (7, D) and the residue algebraic-geom-
etrty code (o (. ) can be defined. It is well known that the dual
of O (G, D) is Cy(G, D) (e.g. see [11]). Their parameters are as
follows.



Theorem 3.1 (cfi [11]): The functional code ', (/. D) is an
[V, deg(()—g+1., N —deg( ()] linear code over F', and the residue
code C'o (G, Dyisan [N, N —deg(G) + g — 1, deg(G) — 29 + 2]
linear code over F',.

We assume ¢ = 2*" from now o1

It is known [6]. [11] that there exists a family of algebraic curves
{ X} over F, with y(n) — ~c aftaining the Drinfeld—V1adut bound.
ie..

limsup(N( X /F ) /gln)) = g—1

¥

where V{ X, /F,) and g( n) are the number of F,-rational points and
the genus of X, . respectively.
We choose a rational point '™ on each X, and put

D, = E P

PeEXGF ;’(“}}

where .X,, (F,) is the set of F', -rational points of .X',, . Then
Nin) = |supp(D,}|= N(X,./F,) —1

satisfies

lim sup(N(n)/gin)) = /g — L.

i —

For each », let &' (n). &5 (n) be two divisors of X, supported at
the point '/ and, fori = 1, 2, letn, (n ) denote the degree of (7, (1 ).
Suppose that

20(ny =2 < moln) < mp(n) < N(n).
Consider the algebraic-geometry functional codes
1, =0 Gn), Doiti =1, 2).
Note that 7, C T and that 7| is an
[N(nh, m(n)—gin)+ 1 N(n)—m,(n)]

linear code over F',. The dual of 7, is the algebraic-geometry residue
code 70" = Co (G, (n). D, ). which is an

[N{nd Nl —m, (n)+ gl — 10 m, (n) — 2g(n) + 2]

linear code over F, (see Theorem 3.1).

Proof of Theorem 1.2 Foranyt € |3, 4.5, ...}.let 7. be an
F-linear injective map from F',z: into F,'"' whose image (. is the
trivial binary maximum-distance separable (MDS) [2¢+ 1. 27, 2] code.
Then. using the notation of Section II with 7, = -+ = 7y, =
7.. We have the concatenated codes (> = 7(7%) C ¢ = «(11) as
described in Section IT. From Lemma 2.1. ¢, (/ = 1. 2} is a binary

[(2t + 1) N (). 28 () — gln) 4+ 1) 2(N(n) —m(n))]

code. The dual of ¢, is C;- = D =
orem 2.3.

We claim that, for any vector @ € (C3-\Ci"). the weight wt (&) sat-
isfies wt{a) = ma(n) — 2g(n) + 2. Indeed, let

(7' (Co(Gi(n)y. Dy))) from The-

r=a ) b= (7l + b T )+ ba)

with

crn) €T
and
b=(b..... by ) € D

-

Itis clear that ' is a nonzero vector since » isnot in Ci- . thus wt(x') >
main)—2g(n)+2. At each position j with »; nonzero. we know that
w' {;)+ b, is nonzero from the facth, € 2" and C"Nim(wl) = 0.
Thus. the claim 1s proved.

Using the CSS construction (see Theorem 1.4 in Section I), we have.
for each . a

[([(2¢ + 1)N (), 2¢0m () — ma(n)),

i 2(N () —m(n)), ma(n) —2g(n) + 2]

quantum code A, . Tet &(n) = m(n) — mo(n). Tt is clear that F(n)
can take any integer in (0, N(n) — 2g(n)]. For any such k(). taking

my () = [(2N () + 2g(n) + Flu) —2)/3]

where |« | means the greatest integer less than or equal to the real
number «. we have

20N (ny—m () Zmaln) —2g(n) + 2

2
> %[__\'[_ ny—2giny— E(ny+1).
Thus, A,, has parameters
[[[?f + 1LiN{n), 2tk (n), > %[_\'[ ny —2g(n) —kln)+ 1}]] .

Forafixed A € (0, 1 —2/( /g — L)), weleth(n)/Nin) — Nasn
tends to ~. Put

P i 2tl(n) 2t \
T B ON () 2417

and

5 I 20N(n)y =2gin) = Ein)+ 1)
= lim sup _
B 3020+ )V ()

2 2
= — — A},
2+ 1) ! 2t — 1

Then (4, /) lies on the line defined by

.H| [_l"'::' - g

2y 2 3t4
1\ 2—1) 7T



Hence, we have found the fanuly of quantum codes with the desired
asymptotic parameters. Moreover. since the algebraic-geometry codes
used here and concatenation are polynomially computable (see. for ex-
ample. [11]). our conclusion of Theorem 1.2 is proved.
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