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Abstract

Several RSA-type cryptosystems based on singular cubic curves have been proposed in recent
years (cf. Koyama, Lecture notes in Computer Science, vol. 921, Springer, Berlin, 1995, pp.
329–339; Kuwakado, IEICE Trans. Fund. E78-A (1995) 27–33; Koyama, IEICE Trans. Fund.
E77-A (1994) 1309–1318). We show that these schemes are equivalent and demonstrate that
they are insecure if a linear relation is known between two plaintexts. c© 1999 Elsevier Science
B.V. All rights reserved.
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1. Introduction

In recent years, elliptic curves (non-singular cubic curves) have found many appli-
cations in public key cryptography. Several RSA-type schemes based on elliptic curves
have been proposed (cf. [2, 7, 5]). Instead of elliptic curves, three RSA-types schemes
have been proposed which are based on singular cubic curves (cf. [4, 8, 6]). In all these
schemes, two plaintext messages mx and my are used to form a point M =(mx; my)
on a singular cubic curve of a predetermined type over Z=nZ. The ciphertext is then
a point C = eM on the same curve. In this paper, we show that these three schemes
are insecure if a linear relation is known between two plaintexts.
The paper is organised as follows. Section 2 contains general facts about singular

cubic curves over �nite �elds Fp and the rings Z=nZ. Section 3 describes the three
RSA-type schemes which are based on singular cubic curves modulo n. In Section 4,
we show that the three schemes are equivalent to each other. Section 5 contains the
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main theorem which gives the formula for the division polynomials on singular cubic
curves. Finally, we give a detailed description of the attack in Section 6.

2. Singular cubic curves

In this section, we discuss some basic facts about singular cubic curves over the
�nite �eld Fp and the ring Z=nZ, where n=pq is the product of two distinct odd
primes greater than 3.
Consider the congruence

y2 + axy≡ x3 + bx2 modp; a; b∈Z: (1)

We use Cp(a; b) to denote the set of all solutions (x; y)∈Fp ×Fp to (1), excluding the
point (0; 0), but including a “point at in�nity”, denoted by O. The curve Cp(a; b) is
called a singular cubic curve over Fp.
It is well known that the same addition laws de�ned by the chord-and-tangent method

in the case of elliptic curves still hold in the case of singular cubic curves [9]. For
any point P on Cp(a; b), the sum P + O is, by de�nition, equal to P, which is also
equal to O+ P. For P=(x0; y0), we de�ne −P as the point (x0;−y0 − ax0). The sum
P + (−P) is de�ned to be O. For P1 = (x1; y1) and P2 = (x2; y2) with P1 6= −P2, the
sum P1 + P2 = (x3; y3) is calculated as follows:

�=




y2−y1
x2−x1

if P1 6=P2
3x21+2bx1−ay1
2y1+ax1

if P1 =P2;
and �=




y1x2−y2x1
x2−x1

if P1 6=P2
−x31

2y1+ax1
if P1 =P2;

x3 = �2 + a�− b− x1 − x2 and y3 =−(�+ a)x3 − �:

The existence of such addition laws makes Cp(a; b) a �nite abelian group. In fact, the
group structure of Cp(a; b) is known.
Consider the quadratic congruence

T 2 + aT − b≡ 0modp (2)

and let �; �∈Fp2 be the roots of (2). We have that �; �∈Fp if and only if
((a2 + 4b)=p)= 1.
For a; b as in (1), suppose further that a2 + 4b 6≡ 0modp. Let Lp(a; b) be de�ned

as follows:

Lp(a; b)=



F×p if

(
a2+4b

p

)
=1

{x∈Fp2 | xp+1 =1} if
(

a2+4b
p

)
=−1:
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Then it is well known that Lp(a; b) is a cyclic group and that there is an isomorphism
(cf. [9])

Cp(a; b)
∼→ Lp(a; b);

(x; y) 7→ y − �x
y − �x

=
(
1 +

a2 + 4b
2x

)
+
(
−ax + 2y

x2

)
;

O 7→ 1;

(3)

where = � + a=2 so that 2 = (a2 + 4b)=4 mod p.
The inverse of the map (3) can be described as follows. An element of Lp(a; b) may

be written in the form of f + g with  as above, f; g∈Fp and f2 − 2g2 = 1. This
element is sent by the inverse map to the point (x;− 1

2 (gx
2 + ax)) of Cp(a; b), where

x≡ 22=(f − 1)≡ (a2 + 4b)=(2(f − 1))modp.
When n=pq is the product of two distinct primes greater than 3, we consider

similarly the congruence

y2 + axy≡ x3 + bx2 mod n: (4)

We denote by Cn(a; b) the set of solutions to (4) in Z=nZ × Z=nZ, excluding those
points which are either congruent to (0; 0) modulo p or congruent to (0; 0) modulo
q, but including a “point at in�nity”. By the Chinese Remainder Theorem, Cn(a; b) is
isomorphic as a group to Cp(a; b) × Cq(a; b). The curve Cn(a; b) is called a singular
cubic curve over Z=nZ.

3. RSA-type schemes based on singular cubic curves

Three RSA-type schemes have been proposed which are based on singular cubic
curves modulo n.

3.1. Scheme 1 [8]

This cryptosystem is based on the singular cubic curve of the form

Cn(0; b): y2≡ x3 + bx2 (mod n); (5)

where n=pq is the product of two large primes. The (public) encryption key e is
chosen such that gcd(e; Nn)= 1 where

Nn= lcm(p− 1; p+ 1; q− 1; q+ 1):
Encryption: Given a plaintext M =(mx; my), the sender �rst computes

b≡ m2y − m3x
m2x

(mod n)

then the ciphertext is computed as C = eM on the singular cubic curve Cn(0; b).
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3.2. Scheme 2 [4]

This cryptosystem is based on the singular cubic curve of the form

Cn(a; 0): y2 + axy≡ x3 (mod n); (6)

where n=pq is the product of two large primes. The (public) encryption key e is
chosen such that gcd(e; Nn)=1 where

Nn= lcm(p− 1; q− 1):
Encryption: Given a plaintext M =(mx; my), the sender �rst computes

a≡ m3x − m2y
mxmy

(mod n)

then the ciphertext is computed as C = eM on the singular cubic curve Cn(a; 0).

3.3. Scheme 3 [6]

This cryptosystem is based on the singular cubic curve of the form

(y − �x)(y − �x)= x3(mod n); (7)

where n=pq is the product of two large primes. The (public) encryption key e is
chosen such that gcd(e; Nn)= 1 where

Nn=1 cm(p− 1; q− 1):
Encryption: Given a plaintext M =(mx; my), the sender chooses �∈ (Z=nZ)∗ ran-

domly, and computes

�≡ m3x − m2y + �mxmy

mx(�mx − my)
(mod n)

then the ciphertext is computed as C = eM on the singular cubic curve de�ned in
Eq. (7).

4. Equivalence of the three schemes

In this section, we will show that all the three schemes described above can be
reduced to one scheme, namely, Scheme 1.

4.1. Reduction of Scheme 2 to Scheme 1

The following change of variables

(x; y) 7→
(
x; y +

a
2
x
)

will transform the curve Cn(a; 0) to the curve Cn(0; b) with b= a2=4. Using this trans-
formation, one can reduce Scheme 2 to Scheme 1.
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4.2. Reduction of Scheme 3 to Scheme 1

The following change of variables

(x; y) 7→
(
x; y − �+ �

2
x
)

will transform the curve

(y − �x)(y − �)= x3

to the curve Cn(0; b) with b=((�− �)=2)2. Using this transformation, one can reduce
Scheme 3 to Scheme 1.

5. Division polynomials on singular cubic curves

To carry out the attack on RSA-type schemes based on singular cubic curves, we
need to introduce the notion of division polynomials on singular cubic curves, similar
to the notion of division polynomials on elliptic curves (see [9]). They allow us to
compute the multiple of a point in terms of the �rst coordinate. Since we have shown
that both Schemes 2 and 3 can be reduced to Scheme 1, we will only describe the
division polynomials for the singular cubic curves of the form Cn(0; b).

De�nition 1. The division polynomials 	m(x; y) for the singular cubic curve Cn(0; b)
are de�ned inductively by

	1 = 1;

	2 = 2y;

	3 = 3x4 + 4bx3;

	4 = 4y(x6 + 2bx5);

	2m+1 =	m+2	3
m −	m−1	3

m+1; (m¿2);

2y	2m=	m(	m+2	2
m−1 −	m−2	2

m+1) (m¿3):

Theorem 2. Let Cn(0; b) be a singular cubic curve de�ned over the ring Z=nZ. If
P=(x; y)∈Cn(0; b); then the �rst coordinate of mP is given by

x(mP)=
xm

2

	m(x; y)2
=

xm

�m(x; y)
;

where 	m(x; y) is the mth division polynomial for Cn(0; b) and �m(x; y) is the poly-
nomial de�ned by

�m(x; y)=
	m(x; y)2

xm2−m
:
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Proof. To prove this formula, we �rst note that the rational function x(mP) has poles
at those points T such that mT =O, with multiplicity 1. Since (0; 0) is not a point on
the curve Cn(0; b), x(mP) is never equal to zero. Hence the rational function x(mP)
must be of the form

x(mP)=
kmxm

m2
∏

mT=O
T 6=O

(x − x(T ))
=

kmxm
2

Fm(x)
;

where km is a constant independent of x and Fm(x) is the polynomial de�ned by

Fm(x)=m2xm
2−m ∏

mT=O
T 6=O

(x − x(T )):

We �rst claim that km=1. By a straightforward computation, it is not di�cult to see
that x(mP) can be expressed in the form

x(mP)=
�m(x)

	m(x; y)2
;

where �m(x)= xm
2
+ lower order terms, and 	m(x; y)2 =m2xm

2−1+ lower order terms.
(Note that the formula obtained above is similar to that given in [9, Exercise 3.7].)
By comparing the coe�cients of the leading terms in the equation

kmxm
2
 m(x)

2 =�m(x)Fm(x)

we easily deduce km=1. Note that even though the degree of �m(x) is m2, it is not
clear that �m(x)= xm

2
.

Observe that for any point T 6= O with mT =O, we have m(−T )=O. Moreover,
T = − T if and only if 2T =O. In conclusion, we have
• for m odd, all factors in the product occur with multiplicity 2;
• for m even, all factors in the product occur with multiplicity 2 except those T for
which 2T =O.

However, note that

x2
∏
2T=O
T 6=O

(x − x(T ))=y2:

Hence Fm is a perfect square as a polynomial in x; y. In other words, there exists
a polynomial ’m(x; y) satisfying Fm(x)=’m(x; y)2 for each m. We shall prove that
’m(x; y) is the mth division polynomial for Cn(0; b). For m=1; 2; 3; 4, we can easily
verify that

F1(x) = 1=	1(x; y)2;

F2(x) = (2y)2 =	2(x; y)2;

F3(x) = x6(3x + 4b)2 =	3(x; y)2;

F4(x) = x10(4y(x + 2b))2 =	4(x; y)2:
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So far, we have proved that 	m(x; y)=’m(x; y) if m64. We shall now prove by
induction on m that indeed 	m(x; y)=’m(x; y) for m¿1. Suppose we have proved
that 	m(x; y)=’m(x; y) for m6m0.
Let m be an integer with m+ 26m0. Consider the rational function x − x(mP).

• It has poles exactly at the zeros of 	2
m, with the same multiplicity 2.

• It has zeros at those points T such that

mT =±T i.e., (m± 1)T =O:

These points have multiplicity 1.
By comparing the coe�cients of the leading terms, we conclude that

x − x(mP)=
	m+1	m−1

	2
m

and x − x((m+ 1)P)=
	m+2	m

	2
m+1

:

By the above formula and induction, we then get

x(mP)− x((m+ 1)P)=
	m+2	3

m −	3
m+1	m−1

	2
m+1	2

m
=

xm
2

Fm(x)
− x(m+1)

2

Fm+1(x)
:

Note that 	m+2	3
m −	3

m+1	m−1 =	2m+1 and

xm
2

Fm(x)
− x(m+1)

2

Fm+1(x)
=

xmp(x)
q(x)

;

where p(x); q(x) are polynomials in x and x does not divide q(x). Clearly, 	2m+1(x)
q(x)= xmp(x)	2

m+1	
2
m. Observe that by induction, x(m+1)

2−(m+1) and xm
2−m divide

	2
m+1 and 	2

m, respectively. Since x does not divide q(x), it follows that x2m
2+m divides

	2m+1. On the other hand, the rational function x(mP)−x((m+1)P) has zeros at those
points T such that

(m+ 1)T =±mT; i.e., ((m+ 1)±m)T =O:

Hence these points are the zeros of 	2m+1. Combining with the earlier observation
that x2m

2+m divides 	2m+1, we conclude that F2m+1 divides 	2
2m+1. Finally, by com-

paring the degrees and their leading coe�cients, we see that F2m+1 =	2
2m+1 and hence

’2m+1 =	2m+1.
By using a similar argument on the rational function x((m+1)P)−x((m−1)P), it is

straightforward to prove that 	2m=’2m. This completes the proof of our theorem.

6. Detailed description of the attack

To illustrate the attack, we shall only focus on the �rst coordinate. Let x(M1)=mx

and x(M2)=mx+� be the x-coordinates of two plaintexts M1 and M2, and let c1; x and
c2; x be the x-coordinates of the two corresponding ciphertexts C1 = eM1 and C2 = eM2,
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respectively. Recall that � is a known constant. By the previous theorem, we have

me
x − c1; x�e(mx; ·)≡ 0 (mod n);
(mx + �)e − c2; x�′

e(mx + �; ·)≡ 0 (mod n);
where �m is de�ned by

�m(x; y)=
	m(x; y)2

xm2−m

for the curve Cn(0; b) on which M1 and C1 lie. The function �′
m is de�ned analogously

for the curve on which M2 and C2 lie. This relation allows us to construct the following
attack.
(1) Let F(x) and G(x) be polynomial over the ring Z=nZ, de�ned by

F(x) = xe − c1; x�e(x; ·);
G(x) = (x + �)e − c2; x�′

e(x + �; ·):
(2) We compute H (x)= gcd(F(x); G(x)), the gcd of F(x) and G(x) over the ring

Z=nZ, which is with a very high probability, a polynomial of degree 1. Solving
the polynomial H (x) in x will give the value of mx.

Although this attack is similar to that proposed in [3], it should be noted that, unlike
the elliptic curve case where the polynomials F(x) and G(x) are of degree e2, our
attack involves only polynomials of degree e and is therefore much more e�cient.

Example. Suppose we set

keys: p=1237; q=5683; e=11;

plaintext: M1 = (54321; 67890); M2 = (54411; 67980); i.e., �=90

ciphertext: C1 = (2687388; 3712394); C2 = (2387261; 3231021):

Let F(x)= x11 + 5229989x10 + 3440216x9 + 1918724x8 + 833716x7 + 4214133x6 +
5288492x5+658705x4+5018141x3+2203074x2+3786039x+3314999 and G(x)= x11+
6396991x10+4606503x9+6789657x8+6778159x7+6520626x6+6319754x5+806279x4

+3985603x3+4360013x2+4835444x+1937673. Then GCD(F(x); G(x))= 6975550+x.
Solving, we get x=54321.

7. Conclusion

We have shown that the RSA-type schemes in [4,6] are special cases of that in [8].
Moreover, we have described an attack on the scheme in [8] (and hence those in [4,6])
when the x-coordinates of the plaintexts are related by a known linear relation. Our
attack uses polynomials of degree e (which is the same as in the case of the classical
RSA (cf. [1])) as compared to the elliptic curve case which needs polynomials of
degree e2.
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In [1], the following generalizations were discussed: (i) when the number of mes-
sages involved could be more than 2; and (ii) when the messages are known to be
related in some ways more complicated than a linear relation. It is easy to see that
our above attack could be modi�ed to accommodate these generalizations. In all cases,
as a result of the Theorem above, the complexity of the algorithms for the attacks on
the singular cubic curve schemes is the same as those for the classical RSA schemes,
which is in turn more e�cient than the corresponding attacks on the RSA-type schemes
based on elliptic curves.
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