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Intersubband semiconductor-Bloch equations are investigated by incorporating many-body Coulomb interac-
tion, nonparabolicity, and coherence of resonant tunneling transport in a quantitative way based on the density
matrix theory. The calculations demonstrate the importance of these parameters on optical properties, especially
the optical gain spectrum, of terahertz (THz) quantum cascade lasers (QCLs). The results show that the lasing
frequency at gain peak calculated by the proposed microscopic density matrix model is closer to the experimentally
measured result, compared with that calculated by the existing macroscopic density matrix model. Specifically,
both the many-body interaction and nonparabolicity effects red-shift the gain spectrum and reduce the gain
peak. In addition, as the injection-coupling strength increases, the gain peak value is enhanced and the spectrum
is slightly broadened, while an increase of the extraction-coupling strength reduces the gain peak value and
broadens the gain spectrum. The dependence of optical gain of THz QCLs on device parameters such as external
electrical bias, dephasing rate, doping density, and temperature is also systematically studied in details. This
model provides a more comprehensive picture of the optical properties of THz QCLs from a microscopic point
of view and potentially enables a more accurate and faster prediction and calculation of the device performance,
e.g., gain spectra, current-voltage characteristics, optical output powers, and nonlinear amplitude-phase coupling.
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I. INTRODUCTION

Since the first demonstration in 1994, quantum cascade
lasers (QCLs) have become important coherent mid-infrared
(Mid-IR)1 and terahertz (THz)2 radiation sources. Room-
temperature continuous-wave operation of Mid-IR QCLs
have been achieved in the ∼3–14 μm wavelength range.
However, due to the challenges on building up enough optical
gain in long-wavelength emission devices above cryogenic
temperatures,3 THz QCLs with wavelengths covering from 60
to 300 μm are still operated below room temperatures. The best
temperature performance has been obtained at ∼200 K using
a resonant-phonon (RP) design.4 Further improvement on the
existing designs requires a better understanding of effects of
the electron transport on optical properties, e.g., optical gain,
of THz QCLs.

Up to now, several useful theoretical models, e.g., Monte
Carlo,5,6 nonequilibrium Green’s function,7–10 and simplified
density-matrix11–14 models, have been developed to predict
the optical properties and electron transports of THz QCLs.
Although Monte Carlo and nonequilibrium Green’s func-
tions analyses show good agreement between theories and
experiments in some aspects, implementations of these two
models are difficult, requiring intensive numerical computa-
tions. Alternatively, the simplified density matrix model is
simple in the analysis and requires much less computation
load, while still capturing the essentials of coherent effects
such as electron resonant tunneling (RT) transport. It has
been shown as one of the most promising candidates for
the study of THz QCLs. This model is in essence a set
of rate equations but includes electron distributions and
coherent dynamics in different subbands. Electrons in each
subband are assumed to behave the same, regardless of

their kinetic energies. Therefore, this model describes the
optical properties and electron transport from a macroscopic
point of view, while the microscopic phenomena, e.g., the
electron dynamics in the in-plane k space are neglected.
Moreover, the present experiments and theoretical predictions
have shown the limitations of this macroscopic model. The
gain peak frequency calculated by the macroscopic model
is overestimated compared to the experimentally measured
lasing frequency.4 Although coherence effects of RT transport
can be described in the macroscopic simplified density matrix
model,11 another aspect that needs to be considered for a
more accurate calculation of optical properties and electron
transport is the electron-electron Coulomb interaction, which
can induce the renormalizations of the bandstructure (subband
energy level) and the Rabi frequency (field).

Direct numerical treatment of many-body Coulomb in-
teraction is complex and hence is often handled at the
level of the Hartree-Fock approximation.16 In this case,
the set of motion equations, in terms of the diagonal and
off-diagonal elements of the reduced single-particle density
matrix, are well-known as the Hartree-Fock semiconductor
Bloch equations, which treat Coulomb effects via bandgap
and field renormalization.17 For Mid-IR QCLs, the effects of
many-body Coulomb interactions on the optical properties and
electron transports were considered but the role of coherence
of RT transport was neglected.18 For THz QCLs, many-body
effects on population dynamics were investigated,19 but only
the injection coupling was considered while the extraction
coupling was neglected. Dupont et al.12 have demonstrated
the importance of extraction coupling on optical properties
according to the macroscopic simplified density matrix model
but without considering the microscopic properties such as the
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many-body Coulomb interactions. Since many-body Coulomb
interactions result in bandstructure renormalization, Coulomb
enhancement of the optical transitions, and Coulomb-induced
subband coupling, they are expected to play an important
role in THz QCLs. However, the effects of electron-electron
Coulomb interactions on optical gain of THz QCLs have not
yet been reported. In addition, the subband dispersion with
different subband effective masses (commonly referred to as
nonparabolicity) is known to have a significant effect on the
optical properties of laser systems. Thus, the effect of the
nonparabolicity induced modifications of subband electrons
also needs to be considered. The purpose of this paper is to
study the dependence of the intersubband gain spectrum on the
electron-electron Coulomb interactions, nonparabolicity, RT,
and laser device parameters. The device parameters include
external electrical bias, injection- and extraction-coupling
strength, dephasing rate, doping density, and temperature.

In this paper, we extend the simplified density matrix
model to include the many-body interactions derived from
the electron Hamiltonian in the second quantization. It not
only takes into account coherent effects in the electron
transport through injector and extractor barriers by RT but
also distributions of kinetic energy of electrons and many-body
effects based on intersubband semiconductor-Bloch equations.
The nonparabolicity effect is also approximately considered.
The results show that the gain peak frequency calculated
by the proposed microscopic density matrix model has a better
agreement with the experimentally measured lasing frequency,
compared with that calculated from the existing macroscopic
density matrix model. The proposed model provides a compre-
hensive picture of optical properties of THz QCLs, not only en-
hancing our in-depth understanding of optical gain, but also en-
abling an accurate prediction of the device performance. More
importantly, this model has a low computational load which
can greatly simplify the optimization process of active region
designs of THz QCLs compared to other full quantum me-
chanical models. The paper is organized as follows. In Sec. II,
we present the intersubband semiconductor-Bloch equations
based on the Hartree-Fock approximation, which describes the
subband dispersion, Coulomb interaction, and RT effects. In
Sec. III, the dependence of subband dispersion, Coulomb in-
teraction and RT transport on the optical gain of THz QCLs are
numerically analyzed. The effects of external bias, injection-
and extraction-coupling strength, dephasing rate, doping
density, and temperature on optical gain are systematically
investigated. Finally, the last section summarizes the paper.

II. EQUATIONS OF MOTION

Currently, the highest temperature operation of THz QCL
is achieved by using RT injection scheme with three quantum
wells in each period.4 This record temperature performance is
achieved based on a diagonal design; we consider the same
design in this paper. Figure 1 shows the conduction band
diagram and magnitude squared envelope wave functions of
this design in a “tight-binding” scheme, where the injector
barrier and extractor barrier are made sufficiently thick to allow
one period to be separated into two regions,11,12 i.e., the active
region and the injector region (see Fig. 1). The energy states

FIG. 1. (Color online) Conduction band diagram and magnitude
squared envelope wave functions of a four-level resonant-phonon
THz QCL with a diagonal design in the “tight-binding” scheme. The
external electric field is 12.3 kV/cm. The radiative transition is from
4 → 3, and depopulation of the lower-laser level is via 3 → 2 (RT)
and (2 → 1) longitudinal optical phonon scattering. The thickness
in angstrom of each layer is given as 49/88/27/82/42/160 starting
from the injector barrier. The barriers are indicated in bold fonts. The
widest well is doped at 3 × 1010 cm−2.

within either the active region or the injector region are coupled
by scattering processes, but energy states from different
regions are coupled by tunneling. This localized wave function
analysis defined by each region allows us to investigate the
effects of RT on the electron transport and gain spectrum.

Assuming single mode operation in THz QCL, the laser
field can be written as

E(z,t) = 1
2ξ (z,t)ei[kz−ωλt−φ(z)] + c.c., (1)

where ξ is the slowly varying complex electric field amplitude,
ωλ is the laser frequency, k is wave vector, and φ is the phase.

In order to conveniently treat the many-body problem,
we derive the dynamical equations of motion in the second
quantized representation. The Hamiltonian of the system can
be divided into four parts

H = Hel + Hrt + H0 + HCoul. (2)

The first two terms

Hel + Hrt = −
∑

k

(μEb
†
4,kb3,k + c.c)

−
∑

k

[(�41′/2)b†1′,kb4,k + c.c]

−
∑

k

[(�23/2)b†3,kb2,k + c.c] (3)

are the Hamiltonian for the electron-light coupling and the
tunneling effects, respectively. The RT terms are written by
a close analogy with the electron-light term, which is similar
to the density matrix model firstly proposed by Kazarinov
et al.20 b

†
j,k(bj,k) is the creation (annihilation) operator of the

electron state in subband j . μ is the electron charge times
the dipole matrix element of laser transition. �′

41 and �23 are
the injection- and extraction-coupling strengths, which can be
derived by a simple tight-binding approach.21 The parasitic
coupling between levels 1 and 3 as well as levels 2 and 4 is ne-
glected, which is reasonably good for the diagonal design with
a large diagonality used in this paper. For the vertical design,
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these two parasitic couplings should be taken into account, and
they can be easily treated by analogy with the Eq. (3).

The last two terms22

H0 + HCoul =
∑
j,k

εj,kb
†
j,kbj,k + 1

2

1,2,3,4∑
uvv′u′

∑
kk′q

V uvv′u′
q b

†
u,k+q

× b
†
v,k′−qbv′,k′bu′,k (4)

describe free electrons and electron-electron Coulomb inter-
actions, respectively. εj,k is the j th subband energy, k is the
in-plane wave vector, the V uvv′u′

q is the screening Coulomb
matrix element which reads (in MKS units)

V uvv′u′
q = e2

2Aε0εrε(q)q∫
dz

∫
ϕu(z)ϕu′(z)e−q|z−z′ |ϕv(z′)ϕv′(z′)dz′, (5)

where A is quantum well area, εr is background dielectric
constant, and q = |k − k′|. The near-resonant screening is
approximately taken into account via the dielectric function

ε(q) calculated by the single subband screening model.16,23

The Coulomb matrix elements are difficult to evaluate numer-
ically, but they can be simplified according to the approaches
proposed in Refs. 24 and 25 without loss of high accuracy.

The equations of motion for the polarizations and elec-
tron occupation can be derived by using the Heisenberg
equations.18,26 However, due to the Coulomb interaction terms
in Eq. (4), the result is an infinite hierarchy of coupled
differential equations. The hierarchy describes the correlation
effect in the Coulomb potential. The first-order correlation
is induced by the Hartree-Fock contributions, which results in
bandstructure and Rabi frequency renormalizations. Scattering
and dephasing contributions cause the second-order correla-
tion in the Coulomb potential, and so on. In this paper, we
only include the Hartree-Fock contributions and dephasing
and scattering contributions at the level of a relaxation-rate
approximation.17,18 In the rotating-wave approximation, we
obtain the following kinetic equations for polarizations pij,k =
〈b†i,kbj,k〉 exp(−ωλt) and electron occupation ni,k = 〈b†i,kbi,k〉,
where the bracket 〈· · ·〉 indicates an expectation value

dp34,k

dt
= −γ34pp34,k − i

(
ε̃43,k

h̄
− ωλ

)
p34,k − i
̃0(n4,k − n3,k) + i
̃

†
41′p31′,k − i
̃

†
23p24,k (6a)

dp41′,k

dt
= −γ41′pp41′,k − i

ε̃1′4,k

h̄
p41′,k − i
̃41′ (n1,k − n4,k) − i
̃

†
0p31′,k (6b)

dp23,k

dt
= −γ23pp23,k − i

ε̃32,k

h̄
p23,k − i
̃23(n3,k − n2,k) + i
̃

†
0p24,k (6c)

dp31′,k

dt
= −γ31′pp31′,k − i

(
ε̃1′3,k

h̄
− ωλ

)
p31′,k − i
̃

†
0p41′,k + i
̃

†
41′p34,k − i
̃

†
23p21′,k (6d)

dp24,k

dt
= −γ24pp24,k − i

(
ε̃42,k

h̄
− ωλ

)
p24,k + i
̃

†
0p23,k + i
̃

†
41′p21′,k − i
̃

†
23p34,k (6e)

dp21′,k

dt
= −γ21′pp21′,k − i

(
ε̃1′2,k

h̄
− ωλ

)
p21′,k + i
̃

†
41′p24,k − i
̃

†
23p31′,k (6f)

dn4,k

dt
= −i(
̃†

0p34,k − 
̃0p
†
34,k) − i(
̃41′p

†
41′,k − 
̃

†
41′p41′,k) − γ4[n4,k − f4,k(μ4,e,T4,e)] − γ43[n4,k − f4,k (μ43,Tl)] − γspn4,k

(6g)

dn3,k

dt
= −i(
̃0p

†
34,k − 
̃

†
0p34,k) − i(
̃†

23p23,k − 
̃23p
†
23,k) − γ3[n3,k − f3,k(μ3,e,T3,e)] − γ43[n3,k − f3,k(μ43,Tl)] + γspn4,k

(6h)

dn2,k

dt
= −i(
̃23p

†
23,k − 
̃

†
23p23,k) − γ2[n2,k − f2,k(μ2,e,T2,e)] − γ21′ [n2,k − f2,k(μ21′ ,Tl)] (6i)

dn1′,k

dt
= −i(
̃†

41′p41′,k − 
̃41′p
†
41′,k) − γ1′[n1′,k − f1′,k(μ1′,e,T1,e)] − γ21′[n1′,k − f1′,k(μ21′ ,Tl)], (6j)

where

ε̃uv,k = εu,k − εv,k −
∑
k′ �=k

(
V uuuu

k−k′ nu,k′ − V vvvv
k−k′ nv,k′

) +
∑
k′ �=k

(nu,k′ − nv,k′ )V uvuv
k−k′ (6k)


̃0 = μξ

2h̄
+ 1

h̄

∑
k′ �=k

V 4334
k−k′ p43,k′ − 2

h̄
V 4343

0

∑
k′

p43,k′ (6l)


̃uv = �uv

2h̄
+ 1

h̄

∑
k′ �=k

V uvvu
k−k′ puv,k′ − 2

h̄
V uvuv

0

∑
k′

puv,k′ , (6m)
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FIG. 2. Graphic representations of the Coulomb interactions
between the subbands u and v (from left to right): exchange
self-energy, excitonic enhancement, and depolarization.

where γijp is the dephasing rate associated with energy levels
i and j . γj is the intrasubband electron-electron scattering rate
at level j , γij is the combined electron-electron and electron-
phonon scattering rate between levels i and j . The lifetime of
the upper-laser level as a function of temperature is approx-
imated in the form of γ43 = γ430 exp [h̄ (ωLO − ωλ) /kbT4e],
where γ430 is the raw longitudinal optical (LO) phonon-
scattering rate when the upper-state electrons can sufficiently
emit LO phonons and ωLO is the energy of LO phonon.
γsp is the spontaneous emission rate. Tj,e is the electron
temperature at level j , and Tl is the lattice temperature.
fj,k is the Fermi-Dirac distribution with chemical potential
μj,e at level j . The chemical potentials and temperatures
are determined by electron number conservation and energy
conservation.17 The terms with coefficients V uuuu

k−k′ refer to the
exchange self-energy, V uvvu

k−k′ to the excitonic enhancement,
and V uvuv

0 to the depolarization. Processes corresponding to
these contributions are shown in Fig. 2. The influence of the
subband dispersion, namely the nonparabolicity, is represented
by using the effective mass of electrons m∗. For subband j , we
have εj,k = εj + h̄2k2/2m∗

j . For our structure, the calculation
shows that m∗

1 ≈ 0.0670m0, m∗
2 ≈ m∗

3 ≈ 0.0723m0, and m∗
4 ≈

0.0743m0 (m0 is the free electron mass) according to the
Ekenberg’s model.27

In the previous equations of motion, the relaxation-rate
approximation approach is employed to calculate dephasing
and scattering contributions,17,18,28 because a full kinetic
treatment of dephasing and scattering terms based on the
Boltzmann equation requires extremely long computational
time. In this relaxation-rate approximation, the dephasing
contributions on the polarizations is treated as

dpij,k

dt
= −γijppij,k, (7)

where γijp denotes an effective dephasing rate.
As for the scattering contributions, the influence of scat-

tering on the electron distributions is treated as the relaxation
of a given population distribution nu,k to a quasi-equilibrium
Fermi-Dirac distributionfu,k(Ti,μi) with temperature Ti and
chemical potential μi as γu(nu,k − fu,k) at energy level i. Two
main scattering contributions considered in THz QCLs are
electron-electron scattering and electron-phonon scattering.

For the intrasubband scattering, we only consider the
electron-electron scattering due to the much smaller intrasub-
band electron-phonon scattering rate. The electron distribution
of each subband (e.g., subband u) is relaxed to a Fermi-Dirac
distribution by this intrasubband scattering at the correspond-

ing electron temperature Tu,e and chemical potential μu,e. The
actual value of electron temperature and chemical potential
can be determined by the conditions of particle and energy
conservation ∑

k

nu,k =
∑

k

fu,k(μu,e,Tu,e) (8a)

∑
k

εu,knu,k =
∑

k

εu,kfu,k(μu,e,Tu,e). (8b)

As for the intersubband scattering, two contributions
are considered. First, for the intersubband electron-phonon
scattering between levels u and v, energy is dissipated from
the electrons to the lattice. In this case, electrons of these
two energy levels relax to a shared Fermi-Dirac distribution
with lattice temperature Tl and chemical potential μuv,l .
The chemical potential can be determined by the particle
conservation∑

k

∑
i=u,v

ni,k =
∑

k

∑
i=u,v

fi,k(μuv,l,Tl). (8c)

Second, in the case of the intersubband electron-electron
scattering between levels u and v, electrons of these two
energy levels relax to a Fermi-Dirac distribution with electron
temperature Tuv,e and chemical potential μuv,e. According to
the particle and energy conservation, it has

∑
k

∑
i=u,v

ni,k =
∑

k

∑
i=u,v

fi,k(μuv,e,Tuv,e) (8d)

∑
k

∑
i=u,v

εi,kni,k =
∑

k

∑
i=u,v

εi,kfi,k(μuv,e,Tuv,e). (8e)

If the electron-electron and electron-phonon scattering
between levels u and v occur on similar timescales, elec-
trons of these two energy levels driven by electron-electron
scattering still relax to a Fermi-Dirac distribution with lattice
temperature Tl and chemical potential μuv,l .18 Because the
electron-electron and electron-phonon scattering between the
upper-laser level and the lower-laser level occur on similar
timescales for THz QCLs due to thermally activated phonon
scattering at our chosen temperatures, electrons of these two
energy levels are assumed to share a Fermi-Dirac distribution
at the lattice temperature, as shown in Eqs. (6g) and (6h). In
addition, because the electron-phonon interaction dominates
the scattering processes between level 2 and level 1 in THz
QCLs, we neglect the electron-electron scattering between
level 2 and 1, as shown in Eqs. (6i) and (6j).

The dynamic equations of motion are solved numerically in
the steady state for a small laser field. Using the semiclassical
laser theory, the intensity gain G is given by

G = − 2ωλ

ε0ncVmξ
Im

(∑
k

μp34,k

)
, (9)

where ε0 is the vacuum permittivity, n is the refractive index,
c is the light speed in vacuum, and Vm is the volume of one
period of active region.
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III. RESULTS AND DISCUSSIONS

A. Effects of many-body interaction and nonparabolicity
on optical gain

The results presented here are obtained by numerically
solving the equations of motion [Eqs. (6a)–(6m)] for a small
laser field (linear absorption). In our calculation, 250 k points
within each subband are taken. Figure 3 shows the computed
gain spectra at resonance based on the design shown in Fig. 1.
In order to evaluate the importance of Coulomb interaction
and nonparabolicity on optical properties for THz QCLs, we
first compare the gain spectra calculated from the microscopic
model with “many-body + nonparabolicity” (considering
both many-body and nonparabolicity effects), microscopic
model with “many-body + parabolicity” (considering both

FIG. 3. (Color online) Simulation results for gain spectra at
resonance and 100 K. (a) The gain spectra calculated from
microscopic model “many-body + nonparabolicity” (solid
line), microscopic model “many-body + parabolicity” (dotted
lines), microscopic model “free carriers” (dotted-dashed lines),
and macroscopic matrix density model (dashed lines). The following
default parameters are used: z43 = 40.7 Å, 2h̄
41 = 2.16 meV,
2h̄
23 = 4.94 meV, γ34p = 2.4 × 1012 s−1, γ41p = 4.0 × 1012 s−1,
γ23p = 4.5 × 1012 s−1, γ31p = 3.5 × 1012 s−1, γ24p = 3.5 × 1012

s−1, γ21p = 3.5 s−1, γ43 = 1.3 × 1011 s−1, γ21 = 3 × 1012 s−1, γ1 =
1.3 × 1012 s−1, γ4 = 1.3 × 1012 s−1, γ3 = 1.3 × 1012 s−1, γ2 =
1.3 × 1012 s−1. The typical values of scattering and dephasing rate
are used (Refs. 11 and 19). (b) The interplay of different Coulomb
interactions. Solid lines: full many-body effects with nonparabolicity;
dashed lines: free carriers; dotted lines: depolarization; dot-dashed
lines: excitonic enhancement; dot-dot-dashed lines: exchange
self-energy.

FIG. 4. (Color online) Effects of bias on gain spectra at 100 K.
The designed bias is 12.3 kV/cm.

many-body and parabolicity effects), microscopic model with
“free carriers” (considering free carriers and nonparabolicity
but neglecting the renormalizations of bandstructure and
Rabi frequency), and the macroscopic density matrix model
(Ref. 12), as shown in Fig. 3(a). Comparing the two gain
spectra calculated by the microscopic models with “many-
body + nonparabolicity” and “many-body + parabolicity,”
we found that nonparabolicity causes a slight shift of peak
position of gain spectrum to the lower frequency side and
reduces the peak gain due to the k-space distribution of elec-
trons in subbands with different effective masses. Not only the
nonparabolicity but also the many-body Coulomb interactions
make the red-shift of gain spectrum and cause the decrease
of peak value of optical gain of THz QCLs by comparing the
microscopic models with “many-body + nonparabolicity”
and “free carriers.” The red-shift of the gain spectrum is mainly
caused by the depolarization terms with the consideration of
the interplay of various many-body interactions, as shown
in Fig. 3(b). It is shown that, in our population inverted
laser system, the depolarization causes a red-shift of gain
spectrum relative to the “free-carrier” model,29 but it induces
the blue-shift in the usual noninverted absorption system. In
addition, exchange self-energy terms renormalize the subband
energy level and induce nonparabolicity to slightly red-shift the
gain spectrum, and excitonic enhancement terms give a peak
near the higher frequency edge of the spectrum and cause the

FIG. 5. (Color online) Effects of bias on gain spectra from the
free-carrier model and the macroscopic model at 100 K when the
injection-coupling strength is set as 1.2 meV.
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slight blue-shift of the gain spectrum in THz QCLs. Therefore,
the interplay of various many-body effects leads to the red-shift
of gain spectrum. Furthermore, since the macroscopic
model does not consider the many-body interactions and
nonparabolicity, the obtained peak value and peak frequency
are higher as compared to those obtained by the microscopic
“many-body + nonparabolicity” model. Moreover, the
spectral lineshape, which is important for calculating
parameters such as the linewidth enhancement factor, is not
accurately predicted by the macroscopic model. Overall,
the different spectral features, e.g., different peak values,
peak frequency positions, and spectrum lineshapes from two
models demonstrate that the microscopic density matrix model
can enrich in-depth understanding of optical properties of
THz QCLs and enables a more accurate prediction of the gain
spectrum.

B. Optical gain spectrum as a function of bias

Figure 4 shows the gain spectra at different biases calculated
from the microscopic model (in subsequent discussions,
unless otherwise specified, “microscopic model” refers to
the microscopic model “many-body + nonparabolicity”), the
free-carrier model, and the macroscopic one. Due to the
coherence of RT transport across the injector and extractor
barriers, the effects of RT on the broadening mechanism of
gain spectrum are complicated for THz QCLs. As shown in
Fig. 4, the gain spectrum is broadened as the applied bias is

FIG. 6. (Color online) The effects of detunings with and without
many-body interactions on the optical gain at 100 K. (a) The gain
spectra at different injection detunings ε14: the extractor level is kept in
resonance with the lower-laser level. (b) The gain spectra at different
extraction detunings ε32. The injection level is kept to be in resonance
with the upper-laser level.

close to the designed value. This broadening results from the
contributions of the polarization p31,k and p24,k to polarization
p34,k due to the indirect 1 → 3 and 4 → 2 radiative transition
formed by the coherent coupling 1↔4, 3↔4, and 3↔2. As
the bias increases, levels 1–4 and 3–2 are close to resonance,
then levels 1–3 and 4–2 become more coherent, hence 1 → 3
and 4 → 2 indirect radiative transitions become stronger and
contribute to the spectrum broadening.

It is noted that the gain peak frequency calculated by
the microscopic model is lower (∼0.3 THz) than that by
the macroscopic model, as shown in Fig. 4. Because, as
demonstrated in Ref. 4, the macroscopic density matrix model
overestimates (∼0.6 THz) the gain peak frequency compared
to the experimentally measured lasing frequency, therefore
the microscopic many-body model discussed in this paper
predicts a better result closer to the experimental lasing
frequency. However, the gain peak frequency calculated by
the microscopic model is still ∼0.3 THz higher than the
experimental value. This discrepancy is probably caused by
the neglected intermodule electron-light scattering in this
particular density matrix model.4 Due to the choice of basis
states from the two isolated modules (the active and the
injector modules) in the “tight-binding” scheme (see Fig. 1),
this model considers only intramodule scatterings, and hence
only one intramodule dipole moment z43, but neglects other
direct dipole moment contributions, e.g., z42. This limit is not
inherent to the density matrix model but is due to the choice of
the basis states. Further work could be carried out to include
this intermodule electron-light scattering.

FIG. 7. (Color online) Effects of coupling strength with and
without many-body interactions on gain spectra at resonance and
100 K. (a) Gain spectra at different injection-coupling strength.
(b) Gain spectra at different extraction-coupling strength.
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In addition, the variation of the gain spectrum with the
bias calculated from the microscopic model is different from
that calculated from the macroscopic model with the present
parameters, as shown in Fig. 4. According to the free-carrier
model, the peak gain first slightly increases then decreases as
the bias increases before the injection level 1 and upper-laser
level 4 are resonantly coupled. In contrast, the peak gain
increases as the bias increases in the macroscopic model.
Through further calculations, we found that the differences
of the bias-dependent spectrum characteristics between the
microscopic and macroscopic models depend on the RT
parameters, i.e., the coupling strength. As shown in Fig. 5,
when the injection-coupling strength is set as 1.2 meV,
similar variations of gain spectra with the bias between the
free-carrier and the macroscopic models are observed, i.e.,
the peak gain increases as the bias increases before levels 1
and 4 are resonantly coupled. Hence, the bias dependences of
gain spectrum in the microscopic many-body and free-carrier
models, which is different from that of macroscopic model
in Fig. 4, can be attributed to the interplay of many-body
interaction, kinetic-energy distribution of electrons and RT
effects.

Figure 4 gives the overall effects on the gain spectra
when the injection and extraction detunings are simultaneously
changed. The respective effects of the injection and extraction
detunings on the gain spectra are shown in Fig. 6. The
optical gain spectrum changes as the injection and extraction
detunings vary due to the energy splitting owing to the 1–4
and 3–2 anticrossing, respectively. By comparing Fig. 6(a)
with Fig. 6(b), we found that the peak position and lineshape
of gain spectrum strongly follows the variations of extraction
detuning. Hence, the extraction detuning is more important
than the injection detuning for determining the gain spectrum.
In addition, at each injection and extraction detunings, the
many-body interactions tend to suppress the high frequency
side of gain spectrum and enhance the low frequency side by
the comparison of microscopic model and free-carrier one.

C. Optical gain spectrum as a function of injection-
and extraction-coupling strength

In order to further illustrate the effects of RT on gain
spectrum, we simulate the gain spectra at different injection-
and extraction-coupling strengths, as shown in Fig. 7. As
the injection-coupling strength gradually increases toward
the value of extraction coupling strength, the gain spectrum
tends to be enhanced, peak frequency follows the variation of
coupling strength, and spectrum width is slightly broadened,
as shown in Fig. 7(a). When the injection-coupling strength
is small enough (smaller than extraction coupling strength),
double-peak gain spectrum is generated. Furthermore, by the
comparison of the microscopic model and free-carrier one, the
many-body interaction tends to suppress the high frequency
side of the gain spectrum and enhance the low frequency side.

In contrast, since the extraction coupling strength is
larger than the injection-coupling strength, as the extraction
coupling strength increases, extraction electron transport tends
to be more coherent and the gain spectrum is additionally
broadened. In this case, the peak value is reduced owing to
the interplay of Coulomb interaction and RT effect due to the

indirectly coherent interaction of p24. When the extraction
coupling strength is large enough (larger than injection-
coupling strength), double-peak gain spectrum is generated.
Similarly, owing to modifications to gain spectrum by many-
body interactions, the high frequency side of spectrum is
suppressed, and the low frequency side is enhanced in the
microscopic model, as compared to the free-carrier model.

D. Optical gain spectrum as a function of dephasing rate

RT transport is not only influenced by coupling strength
but also determined by the dephasing rate. Figure 8(a) shows
the effects of the dephasing rate γ41p associated with RT
transport across the injection barrier on the gain spectrum.
Although the decreasing dephasing rate γ41p enhances the gain
spectrum, it does not change the lineshape of gain spectrum
like the coupling strength. For completeness of analysis, we
also give the effects of dephasing rate γ34p associated with laser
transition on the gain spectra, as shown in Fig. 8(b). Also, the
peak value of gain spectrum decreases, but the lineshape is not
changed as the dephasing rate γ34p increases.

E. Optical gain spectrum as a function of doping density
and temperature

Since many-body Coulomb interaction strongly depends
on the doping density, we anticipate that doping will strongly
affect the gain spectra, as shown in Fig. 9. As the doping den-
sity increases, the many-body interactions become stronger,

FIG. 8. (Color online) Gain spectra at different dephasing rates
γ41p (a) associated with resonant tunneling across the injection barrier,
and γ34p (b) associated with laser transition at resonance and 100 K.
Solid lines: microscopic model; dashed lines: free carriers.
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FIG. 9. (Color online) (a) Effects of doping density on gain spectra at resonance and 100 K. The solid lines with right triangle and dashed
lines with open circles show the results of microscopic and free-carrier models, respectively. From the bottom to the top for each kind of
color line, the doping density is 1.8 × 1010 cm−2, 3 × 1010 cm−2, 4.2 × 1010cm−2, and 5.4 × 1010cm−2. The effects of doping density on
lifetimes of energy levels are neglected. (b) Normalized gain spectra from microscopic model at different doping density. (c) The interplay of
various Coulomb interactions at doping densities 3 × 1010 cm−2 and 5.4 × 1010 cm−2, respectively. Solid lines: full many-body effects with
nonparabolicity; dashed lines: depolarization; dot-dashed lines: excitonic enhancement; dot-dot-dashed lines: exchange self-energy.

and hence the spectra are further red-shifted. Moreover, not
only the peak value with doping density is enhanced by
many-body interactions, the lineshape of spectrum is modified,
as shown in Fig. 9(b). Figure 9(c) shows the interplay of various
Coulomb interactions at doping densities of 3 × 1010 cm−2

and 5.4 × 1010 cm−2, respectively. As shown by this figure,
the red-shift and spectrum lineshape modification are mainly
attributed to the depolarization, as demonstrated in Ref. 30. In
contrast, the spectrum lineshape calculated from free-carrier
model is not changed with the rise in doping density.

In addition to the previous analysis, temperature is also
an important parameter that influences the gain spectrum.
The macroscopic model cannot accurately investigate the
temperature effects on optical properties of THz QCLs due
to the lack of the description of electron distribution in k

space. However, temperature effect is important since it can
affect the kinetic distribution of electrons. Our results show
that the rise in temperature will decrease the peak value of the
gain spectrum, as shown in Fig. 10(a). The gain spectrum
is slightly blue-shifted, and the lineshape is modified. In
addition, according to the results of free carriers, as shown
in Fig. 10(b), nonparabolicity induces neglected modifications
to the lineshape of the gain spectrum at different temperatures.

Therefore, the spectrum shift and modification of lineshape
are induced by the many-body Coulomb interactions.

IV. CONCLUSION

We have established the Hartree-Fock semiconductor
Bloch equations with dephasing and scattering contributions
treated at the level of a relaxation-rate approximation,
which describes the electron-electron Coulomb interaction,
nonparabolicity, and coherence of RT transport. We use the
developed model to investigate the optical gain of a four-state
RP-based THz QCL. The simulation results calculated from
the microscopic model with “many-body + nonparabolicity,”
the microscopic model with “many-body + parabolicity,” the
microscopic model with “free carriers,” and the macroscopic
model are compared to demonstrate the importance of
those parameters in the simulation of optical properties of
THz QCLs. The effects of the external bias, injection- and
extraction-coupling strength, dephasing rate, doping density,
and temperature on optical gain are also systematically investi-
gated. The results show that the gain peak frequency calculated
by the microscopic model is closer to the experimentally
measured lasing frequency compared with the calculated one
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FIG. 10. (Color online) (a) Gain spectra at resonance at different
temperatures. (b) Normalized gain spectra at resonance. Solid lines:
microscopic model; dashed lines: free-carrier model.

by the macroscopic model. Specifically, both the many-body
Coulomb interaction and nonparabolicity cause the red-shift
of gain spectrum and reduce the peak gain. The interplay
of various many-body interactions reveals that the optical
spectral red-shift is mainly caused by the depolarization terms
in THz QCLs, and this red-shift in our population inverted
system is contrary to that in the usual noninverted absorption
case. Furthermore, the gain spectrum is enhanced and slightly
broadened as the injection-coupling strength increases, while
an increasing extraction-coupling strength reduces the peak

value and broadens the gain spectrum. When the extraction
and injection-coupling strengths have different values as to
favor one side, the double-peaked gain spectrum is generated.
In addition, as the doping density increases, the gain spectrum
is red-shifted and modified, while the increasing temperature
slightly blue-shifts the gain spectrum.

The microscopic model discussed in this paper provides
a relatively comprehensive picture of optical properties of
THz QCLs and enables a more accurate and faster pre-
diction and calculation of the device performance, e.g.,
gain spectra, current-voltage characteristics, optical output
power, and amplitude-phase coupling (linewidth enhancement
factor). It also provides an essential design tool for the
optimization of the quantum wells/barriers thicknesses to
improve the performance of THz QCLs, such as the max-
imum operation temperature. There are still certain aspects
that the model can be further improved. First, this model
takes into account dephasing mechanisms in laser transition
and transport coherence but only considers them under the
relaxation-rate approximation using phenomenological values,
where the nondiagonal scattering contributions are neglected.
Nondiagonal scattering contribution is expected to yield not
only a smaller linewidth but also a reshaping of the gain
spectrum.17 A more stringent treatment of the dephasing
parameters is required for future theoretical studies. Another
limitation is that the present implementation of microscopic
model considers only intramodule electron-light scatterings
but neglects intermodule dipole moment contributions due to
the choice of the basis states from the isolated modules in the
“tight-binding” scheme. Further study is required to include
intermodule electron-light scattering.
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