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ABSTRACT:  For excavations in built-up areas with deep deposits of soft clays, it is essential to 

control ground movements to minimize damage to adjacent structures and facilities. This is 

commonly carried out by controlling the deflections of the retaining wall system. The limiting wall 

deflection or serviceability limit state is typically taken to be a percentage of the excavation height. 

In this study, extensive plane strain finite element analyses have been carried out to examine the 

excavation-induced wall deflections for a deep deposit of soft clay supported by diaphragm walls 

and bracing. Based on the numerical results, two polynomial regression approaches were used to 

develop the equations for estimating the maximum wall deflection. This paper describes how the 

developed equations can be used to perform reliability analysis of the diaphragm wall serviceability 

limit state to estimate the probability of exceeding the limiting wall deflection. 

 

INTRODUCTION 

 

In many urban environments the underlying soil comprises of thick soft clays overlying stiff 

clay. For excavation in these soil conditions, diaphragm walls are often used to minimize ground 

movements and damage to adjacent structures. The limiting wall deflection is typically taken to be 

a percentage of the excavation height. To prevent basal heave failure and to reduce the movement 

of the wall toe, extending the wall length into the stiff clay layer is commonly carried out. To date, 

many empirical methods (e.g., Mana & Clough 1981; Wong & Broms 1989; Clough & O’Rourke 

1990) have been proposed for estimating wall movements. These studies have demonstrated that 

the major factors affecting the excavation performance include: excavation width and depth, wall 

stiffness, strut spacing, stiffness and preloading, depth to an underlying hard stratum, soil stiffness 

and strength distribution, adjacent surcharge and quality of workmanship. In general, these 

methods assume that the wall (either a flexible sheet pile wall or a stiff concrete wall) is “floating” 

in the soft clay, without restraint at the wall toe. This paper focuses on the specific situation of the 

diaphragm wall penetrating into the stiff stratum. 

For excavations in soft clays, the Mohr-Coulomb constitutive relationship is commonly used 

to model the clay stress-strain behavior, with no consideration of the soil small strain effect. The 

importance of modeling the soil small strain behavior for many geotechnical problems has been 

highlighted by Burland (1989) and Jardine et al. (1986). The influence of the soil small strain effect 

on excavation problems which has been investigated through finite element analysis with some 

advanced small strain constitutive models (e.g., Benz 2007; Kung et al. 2009) showed 

improvements in the predictions of wall deflection and ground movement. 

In this paper, plane strain finite element analyses using Plaxis (Brinkgreve et al. 2006) were 

performed in which the soft clay stress-strain behavior was modeled using the hardening small 

strain (HSS) constitutive relationship that considers the small strain effect. Parametric studies were 

carried out to evaluate the behavior of excavations with diaphragm walls in soft clay. Based on 

these results, this paper describes simplified regression equations that were developed for 

estimating the maximum wall deflection and demonstrates how to perform reliability analysis of 
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the diaphragm wall serviceability limit state to estimate the probability of the wall deflection 

exceeding the limiting wall deflection. 

 

SOIL MODEL 
 

The hardening-soil (HS) model (Schanz et al. 1999) is an advanced constitutive soil model for 

simulating the behavior of soils. The model involves frictional hardening characteristics to model 

plastic shear strain in deviatoric loading, and cap hardening to model plastic volumetric strain in 

primary compression. Failure is defined by the Mohr-Coulomb failure criterion. The main input 

parameters are E50
ref

, a reference secant modulus corresponding to the reference confining pressure 

p
ref

, a power m for stress-dependent stiffness formulation, effective friction angle  cohesion c, 

failure ratio Rf, Eur
ref

 the reference stiffness modulus for unloading and reloading corresponding to 

the reference pressure p
ref

, and ur the unloading and reloading Poisson’s ratio. 

The HSS model is based on the HS model with two additional small strain parameters: G0
ref

 a 

reference initial shear stiffness corresponding to the reference pressure and shear strain 0.7 at which 

the secant shear modulus is reduced to 70% of G0. The value 0.7 = 2x10
-4

 was assumed in all the 

analyses. 

In order to study the influence of the shear strength of the soft clay, a series of analysis were 

carried out using the HSS model in which the soil shear strength ratio cu/v ratio was varied where 

cu is the undrained shear strength and v is the vertical effective stress. For an assumed cu/v ratio, 

the effective friction angle  is computed using the correlation proposed by Wroth and Houlsby 

(1985): 
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 sin3
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The Plaxis default values are used to define the power for stress-level dependency of the 

stiffness m, the coefficient of earth pressure at-rest K0
nc

, the Poisson’s ratio ur and Eur with m = 1, 

K0
nc

 = 1 – sin, ur = 0.2 and Eur = 3E50. 

 

FINITE ELEMENT ANALYSES 

 

Parametric studies have been carried out using the HSS model for the soft clay with emphasis 

on the maximum wall deflection predictions. Figure 1 shows the geometry of the hypothetical case 

considered, and is typical of a soil profile in coastal areas with stiff clay layer underlying the thick 

normally consolidated soft clay layer. The Mohr Coulomb constitutive relationship was used to 

model the stiff clay ( = 20 kN/m
3
, cu = 500 kPa, Eu = 250 MPa). The soft clay thickness is denoted 

as T in Figure 1. 

The analyses considered a plane strain excavation supported by a diaphragm wall. Because of 

symmetry, only half the cross-section was considered. The soil was modeled by 15-noded 

triangular elements. The structural elements were assumed to be linear elastic with the wall 

represented by 5-noded beam elements and 3-noded bar elements were used for the 7 levels of 

struts located at depths of 2 m, 5 m, 8 m, 11 m, 14 m and 17 m below the original ground surface. 

The nodes along the side boundaries of the mesh were constrained from displacing horizontally 

while the nodes along the bottom boundary were constrained from moving horizontally and 

vertically. The range of properties that were varied are shown in Table 1. This study only 

considered the use of diaphragm walls. 

 



 

 
 

Figure 1.  Cross-sectional soil and wall profile. 
 

The construction sequence comprised the following steps: (1) the wall is installed (“wished 

into place”) without any disturbance in the surrounding soil; (2) the soil is excavated uniformly 1 m 

below each strut level prior to adding the strut support with struts at 3 m vertical spacings until the 

final depth He of 20 m is reached. The soil is assumed to be subjected to undrained shearing during 

excavation. For simplicity, for most of the cases presented, the groundwater table is assumed to be 

at the original ground surface with hydrostatic pore pressure conditions. The influence of the 

groundwater table is described later. 

For brevity only some general trends observed as various parameters were varied are 

presented. The influence of soil stiffness ratio E50/cu is shown in Figure 2 for cases with = 17 

kN/m
3
, B = 30 m, cu/v = 0.29 and T = 30 m. The influence of E50/cu is more significant for lower 

wall thickness d. The influence of the soil shear strength ratio cu/v for the cases with = 17 

kN/m
3
, B = 40 m, d = 0.9 m, E50/cu = 200 and T = 30 m is presented in Figure 3. The results show 

the maximum wall deflection decreases with the increase of soil shear strength ratio. 
 

Table 1.  Range of parameters. 
 

Parameter Range 

Soil shear strength ratio cu/v 0.21, 0.25, 0.29, 0.34 

Soil stiffness ratio E50/cu 100, 200, 300 

Soil unit weight  (kN/m
3
) 15, 17, 19 

Soft clay thickness T (m) 25, 30, 35 

Excavation width B (m) 20, 30, 40, 50, 60 

Excavation depth h (m) 8, 11, 14, 17, 20 

Strut stiffness EA ( 10
5
 kN/m) 2.5, 5, 10, 15, 30 

Wall thickness d (m) 0.6, 0.9, 1.2, 1.5 

Wall stiffness EI ( 10
6
 kNm

2
/m) 0.36, 1.21, 2.88, 5.63 

 



 

 
 

Figure 2.  Effect of soil stiffness on wall deflection for h = 20 m. 

 
The excavation strutting system is one of the structural components affecting the wall 

deflection. In this study, the vertical strut spacing havg is assumed to be 3 m as is common in many 

excavation sites. The effect of strut stiffness is illustrated in Figure 4 for a series of analyses with 

= 17 kN/m
3
,  B = 40 m, h = 20 m, cu/v = 0.29, E50/cu, = 200 and T = 30 m. The results show that 

the deflection ratio S (which is defined as the maximum wall deflection divided by the maximum 

wall deflection for the case with strut stiffness EA = 1.0x10
6
 kN/m) decreases with increasing strut 

stiffness, but the effect is not very significant when the strut stiffness EA exceeds 1.5x10
6
 kN/m. 

The results also show that for concrete diaphragm walls the influence of the wall stiffness 

(represented by the wall thickness d) is minimal. The factor S will be used later in the proposed 

simplified mathematical equation to estimate wall deflections. 

 

 
 

Figure 3.  Effect of soil shear strength ratio on wall deflection for d = 0.9 m. 
 



 

 
 

Figure 4.  Plot of S versus strut stiffness. 

 

In the previous analyses, the groundwater table was assumed at the ground surface, which is 

the most unfavorable condition. In many situations with soft clay, the groundwater table could be 1 

to 2 m below the ground surface. To study the influence of the groundwater table, a series of 

analyses were carried out assuming various groundwater levels. Defining the deflection ratio W as 

the maximum wall deflection divided by the maximum wall deflection for the case where the 

groundwater table is at the ground surface, the results indicate that W decreases almost linearly 

with decreasing groundwater level. The factor W can be estimated as W = 1 – 0.1l, where l is the 

depth of the ground water table below the ground surface (in metres) and l ≤ 2 m. The factor W will 

be used later in the proposed simplified mathematical equations to estimate wall deflections. 

 

DETERMINATION OF RESPONSE SURFACE 

 

In order to carry out reliability analysis of the diaphragm wall serviceability limit state to 

estimate the probability of the wall deflection exceeding the limiting wall deflection, the failure 

domain response surface first needs to be determined. Because of the complexity of modeling this 

highly nonlinear problem involving a large number of variables, the serviceability failure domain 

was constructed artificially through repeated point-by-point numerical analyses. A total of 1120 

cases were analyzed (Xuan 2009) for the maximum diaphragm wall deflection. The ranges of the 

variables are shown in Table 1. Various different techniques to model the response surface have 

been proposed including artificial neural networks (Goh and Kulhawy 2005) and regression 

methods (Kung et al. 2007). In this paper, two different approaches were considered for developing 

the response surface equation. In the first approach, regression analysis using a trial-and-error 

process was used to develop the explicit function for the maximum wall deflection h0 as a function 

of seven input parameters: the soil unit weight , the excavation width B, the excavation depth h, 

the soil shear strength ratio cu/v, the soil stiffness ratio E50/cu, the system stiffness EI/whavg
4
, and 

the soft clay thickness T. The term havg refers to the average vertical spacing of the struts. The 

regression equation for wall deflection takes the following form: 
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The values of the coefficients are shown in Table 2. A comparison of the maximum wall 

deflection values computed using (2) versus the predicted values from the finite element analyses 

for all the cases indicated a fairly high accuracy with a coefficient of determination R
2
 of 0.88. 

The second approach involved the use of a simple nonparametric regression algorithm known 

as multivariate adaptive regression splines (MARS) to model the nonlinear interactions between 

variables (Friedman 1991). The MARS method makes no specific assumption about the underlying 

functional relationship between the input variables and the response. The main advantages of 

MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the 

contributions of the input variables, and its computational efficiency. The underlying idea behind 

MARS is to allow potentially different linear or nonlinear polynomial functions over different 

intervals. The end points of the intervals are called knots. A knot marks the end of one region of 

data and the beginning of another. The resulting piecewise curve (spline), gives greater flexibly to 

the model, allowing for bends and other departures from linear functions. An adaptive regression 

algorithm is used for selecting the knot locations. MARS models are constructed in a two-phase 

procedure. The first (forward) phase adds functions and finds potential knots to improve the 

performance, resulting in an overfit model. The second (backward) phase involves pruning the least 

effective terms using a Generalized Cross-Validation method that penalize large numbers of basis 

functions BFs and serves to reduce the chance of overfitting. 

 

Table 2.  Response surface coefficient for h0. 

 

a0 1612.23 a4 -0.0456 a8 699.08 a12 8.78 

a1 2.524 a5 38.76 a9 -0.881 a13 -118.05 

a2 -0.0169 a6 -0.256 a10 0.00131 a14 2.978 

a3 7.55 a7 -1014.39 a11 -119.04 a15 -3.31 

 

The MARS model f(X) is constructed as a linear combination of splines (also known as basis 

functions BFs) and their interactions, and is expressed as: 

 

   



M

1m

mm0 XXf  (3) 

 

where each m is a basis function. It can be a spline function, or the product of two or more spline 

functions already contained in the model (higher orders can be used when the data warrants it; for 

simplicity, at most second order is assumed in this paper). The coefficients i are constants, 

estimated using the least-squares method. 

For the analysis, the same database used to formulate (2) was divided into 840 training 

patterns and 280 testing (validation) patterns. The optimal MARS model consisted of 22 BFs of 

linear spline functions with second-order interaction. Execution time of 1.11 seconds indicates the 

computational efficiency of MARS. The coefficient of determination R
2
 values of 0.938 and 0.949 

for the training and testing patterns respectively indicate that the MARS model is another 

alternative to (2) that can also be used. Table 3 lists the BFs and their corresponding equations for 

the optimal MARS model. The term max in Table 3 can be explained as: max (a, b) is equal to a if 

a > b, else b. The interpretable MARS model in the format of linear combination of BFs as shown in 

(3) is given by  

 

h0 = 165 - 50.889*BF1 + 66.598*BF2 - 0.1914*BF3 + 0.4956*BF4 - 10.324*BF5 + 19.135*BF6 - 

326.34*BF7 + 815.69*BF8 + 4.9881*BF9 - 6.1891*BF10 + 7.4897*BF11 - 7.0073*BF12 

-13.712*BF13 + 24.131*BF14 + 540.93*BF15 - 331.28*BF16 + 2.7716*BF17 

 - 4.5821*BF18 -1.1808*BF19 + 0.8612*BF20 + 0.5114*BF21 - 1.5474*BF22 (4) 



 

 

Table 3.  Basis functions and their corresponding equations for h0. 

 

Basis Function Equation 

BF1 max(0, ln(EI/whavg
4
) - 7.313) 

BF2 max(0, 7.313 - ln(EI/whavg
4
)) 

BF3 max(0, E50/cu - 200) 

BF4 max(0, 200 - E50/cu) 

BF5 max(0,  - 17) 

BF6 max(0, 17 - ) 

BF7 max(0, cu/v - 0.25) 

BF8 max(0, 0.25 - cu/v) 

BF9 max(0, h -17) 

BF10 max(0, 17 - h) 

BF11 max(0, T - 30) 

BF12 max(0, 30 - T) 

BF13 BF6 * max(0, ln(EI/whavg
4
) - 7.313) 

BF14 BF6 * max(0, 7.313 - ln(EI/whavg
4
)) 

BF15 BF7 * max(0, ln(EI/whavg
4
) - 8.176) 

BF16 BF7 * max(0, 8.176 - ln(EI/whavg
4
)) 

BF17 BF10 * max(0, ln(EI/whavg
4
) -7.313) 

BF18 BF10 * max(0, 7.313 - ln(EI/whavg
4
)) 

BF19 BF10 * max(0, T - 30) 

BF20 BF10 * max(0, 30 - T) 

BF21 max(0, B - 40) 

BF22 max(0, 40 - B) 

 

For either (2) or (4), corrections for the depth of the groundwater table (described in the 

previous section) and strut stiffness can be considered using: 

 

hm = wsh0 (5) 
 

where w is the correction factor for water table, and s is the correction for strut stiffness (Figure 

4). Predictions using (2) and (5) were found to compare well with measured results from a number 

of documented case studies (Xuan 2009). 

 

RELIABILITY ANALYSIS 

 

With the determination of the response surface equations (2) and (4) as outlined in the 

previous section, reliability assessment of the diaphragm wall serviceability limit state can be 

carried out using a spreadsheet algorithm (Goh and Kulhawy 2005) as described in the following. 

The reliability index  using the first order reliability method (FORM) proposed by Hasofer and 

Lind (1974) can be determined using: 
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where x = vector of random variables; m = vector of mean values;  = vector of standard deviation; 



 

R = correlation matrix; and F = failure region. 

For the illustrative case shown in Table 4, the reliability analysis spreadsheet for normally 

distributed and uncorrelated variables is shown in Figure 5. For illustration, the predicted 

maximum wall deflection derived from (2) and (5) is 75 mm. The limiting wall deflection is 87.5 

mm or 175 mm when h,lim of 0.5% or 1% of the excavation height He is adopted. The step-by-step 

procedure for setting up Figure 5 is described in the following: 

 

1. Input the mean values (D5:D20) to calculate the predicted maximum wall deflection 

(F21). Modify with w (D22) and s (D23) to obtain hm (F24). 

2. Input the mean value in ‘x value’ (I5:I13) and ‘mean’ (J5:J13), and transpose ‘x value’ as 

[X’]
T
 (C31:R31) which coincides with the response surface coefficient column (E5:E20). 

Input COV in (L5:L13) and obtain  in (K5:K13), as well as the column [nx] in (M5:M13) 

which contains the equation (xi – i)/i. Transpose (built-in spreadsheet function) [nx] in 

(C28:K28). 

3. Input the element matrix R, inverse (built-in spreadsheet function) R to obtain [R]
-1

. 

4. Invoke the ‘Solver’ option in the spreadsheet. Minimize reliability index  in (J16). 

Change ‘x value’ in (I5:I13). Constraint g(x) = h,lim - hm in (J25), where h,lim = 1.0% or 

0.5%He and  = (I12)(I13)[X’]
T
[E5:E20]. 

5. Obtain  and Pf = 1 – NORMSDIST(), where NORMSDIST is the spreadsheet function 

returning the standard normal cumulative distribution. 

 

Table 4. Mean value and COV assumed for example. 

 

Variable Mean COV Variable Mean COV 

cu/v’ 0.285 15% B (m) 21 5% 

E50/cu 150 15% T (m) 22 5% 

 (kN/m
3
) 17.3 7% h (m) 17.5 5% 

ln(EI/wh
4
avg) 7.3 1.9% w 0.8  5% 

   S 1.02 5% 

 

Monte Carlo simulations (MCS) for the limiting wall deflection of 1.0%He as shown in Table 

5 indicate that the reliability index computed using FORM and MCS are comparable. The influence 

of the COV of cu/v computed using (4) is presented in Figure 6 for the limiting wall deflection of 

1.0%He. As expected, the Pf increases from approximately 1% to 20% when COV of cu/v 

increases from 0.1 to 0.5. 

 

RELIABILITY ANALYSIS 
 

A parametric study using the hardening small strain constitutive soil model has been carried 

out to examine the behavior of diaphragm walls in soft clays overlying a stiffer stratum. The 

maximum wall deflection was found to be influenced by a number of factors: the excavation width 

and depth, the soft clay properties and thickness, the wall and strut properties, and the groundwater 

level. Based on the numerical results, two alternative mathematical equations were developed for 

predicting the maximum lateral wall displacement. Subsequently, based on the proposed response 

surface expressions, a spreadsheet was developed for performing reliability analysis of the 

serviceability limit state for diaphragm walls in soft clay. The proposed methodology is potentially 

useful for optimization of braced excavation design using diaphragm walls. 

 



 

 
 

Figure 5.  Sample spreadsheet for performing reliability analysis. 

 

Table 5.  Summary of  for limiting wall deflection of 1.0%He. 

 

 Equation (2) Equation (4) 

 FORM  MCS FORM MCS 

Reliability index  2.51 1.98 2.20 2.14 

 

 
 

Figure 6.  Influence of soil strength ratio on Pf.  
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