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We investigate a spin-boson model with two boson baths that are coupled to two perpendicular com-
ponents of the spin by employing the density matrix renormalization group method with an optimized
boson basis. It is revealed that in the deep sub-Ohmic regime there exists a novel second-order phase
transition between two types of doubly degenerate states, which is reduced to one of the usual types
for nonzero tunneling. In addition, it is found that expectation values of the spin components display
jumps at the phase boundary in the absence of bias and tunneling. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4873351]

The spin boson model (SBM),1, 2 a two-level system cou-
pled to a bosonic bath represented by a set of harmonic os-
cillators, describes a molecular dimer in its singly excited
state interacting with a large number of slow modes in its
environment. It is not surprising that the SBM is a sim-
ple, convenient tool for studying environment-induced de-
coherence and energy transfer phenomena. As an archetype
model for quantum dissipation, the SBM has been widely
used in fields such as quantum computation,3–5 amor-
phous solids,6 biological molecules,7, 8 as well as studies
of thermodynamic properties,9 spin dynamics,1, 10 and quan-
tum phase transitions.11, 12 The SBM Hamiltonian can be
written as

HSBM = ε

2
σz− �

2
σx +

∑
l

ωlb
†
l bl+ σz

2

∑
l

λl

(
b
†
l +bl

)
, (1)

where σ x and σ z are the Pauli matrices, ε and � are the spin
(on-site energy) bias and the tunneling (intermolecular cou-
pling) constant, respectively, ωl and λl are the frequency and
coupling constant, respectively, of the lth boson mode, with
bl(b

†
l ) being its annihilation (creation) operator. For a quasi-

continuous spectral density function J (ω) ≡ ∑
l λ

2
l δ(ω − ωl),

a power law form can be adopted in the low-frequency
regime: J (ω) = 2παω1−s

c ωs , where ωc, α, and s are the cut-
off frequency, the spin-bath coupling constant, and the spec-
tral exponent that characterizes bath properties, respectively,
so that s = 1 and s < 1 (s > 1) are known as the Ohmic and
sub-Ohmic (super-Ohmic) regime, respectively. Studies11, 12

have shown that if ε = 0 and s < 1, strong spin-bath coupling
induces spontaneous symmetry breaking restricting the spin
orientation to a specific direction (spin-up or down). Thus, the
spin-1/2 will be in a two-fold degenerate state, and the entire
system, described by Eq. (1), is said to be in the “localized”

a)Electronic mail: YZhao@ntu.edu.sg

phase. For weak coupling, the spin is free to flip between the
spin-up and the spin-down states, and the system is in the “de-
localized” phase. A critical coupling strength αc exists for this
second order phase transition, which for s = 1 emerges as a
Kosterlitz-Thouless transition.1

In this communication we extend the SBM to a more re-
alistic form by adding to Hamiltonian (1) an off-diagonal cou-
pling term, σx/2

∑
l λ̄l(b

†
l + bl). Recent studies13 reveal that

in the sub-Ohmic regime, off-diagonal coupling lifts the de-
generacy in the localized phase, hence removing a second or-
der phase transition, while there may exist a first-order phase
transition with properly chosen diagonal and off-diagonal
coupling strengths. Interplay between localization and de-
localization effects, induced by the competition between
diagonal and off-diagonal coupling, plays a crucial role in de-
termining energy transfer mechanisms which interpolate be-
tween the Forster-Dexter and polaron pictures. Such rivalry
manifests itself most clearly at low temperatures, often in
form of quantum phase transitions at T = 0. For a deeper
understanding of the competition, an additional bath cou-
pled to the spin off-diagonally is introduced, resulting in a
so-called “two-bath SBM.” In the absence of tunneling, the
model possesses a high level of symmetry corresponding to
a non-abelian group with 8 elements. Our symmetry-based
analysis shows that all quantum states of the system are dou-
bly degenerate, and this high symmetry is expected to af-
fect properties such as mechanisms of energy transfer. As a
starting step, we study the effects of high symmetry on the
low-temperature dynamics, focusing in this communication
on the zero-temperature quantum phase transition. We will
show that due to high symmetry the system ground state is
always doubly degenerate, and the phase transition occurs
not between the phases with degenerate and non-degenerate
ground states, but rather due to the fact that the ground-state
degeneracy does not necessarily imply spontaneous symme-
try breaking. Stated differently, a special type of quantum

0021-9606/2014/140(16)/161105/4/$30.00 © 2014 AIP Publishing LLC140, 161105-1
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phase transitions is identified, which is confirmed by results
of the density matrix renormalization group (DMRG) cal-
culations, a method that has been proven to be robust in
numerous studies of quantum phase transitions in the usual
SBM.14

Previous studies, such as DMRG, numerical renormaliza-
tion group, and quantum Monte Carlo, have revealed that in
the absence of bias 〈σ z〉 will be zero if α is below some crit-
ical value αc(�), placing the system in a delocalized phase.
If α > αc, 〈σ z〉 acquires a finite value and the system en-
ters a localized phase. This well known delocalized-localized
transition is ascribed to the competition between the spin-bath
coupling and the tunneling. Off-diagonal spin-bath coupling
provides an alternative channel of communications between
spin down |↓〉 and up |↑〉 states. The single-bath SBM has
been investigated via the Davydov D1 variational ansatz,13

and a novel first order phase transition was found to arise
when the off-diagonal coupling is taken into account along
with the diagonal coupling. Motivated by this finding, we ex-
pect much richer ground state properties can be uncovered
when the diagonal and the off-diagonal coupling is ascribed
to two boson baths rather than a common one. The Hamilto-
nian for the two-bath SBM can be given as

Ĥ = ε

2
σz − �

2
σx +

∑
l,i

ωlb
†
l,ibl,i

+σz

2

∑
l

λl

(
b
†
l,1 + bl,1

) + σx

2

∑
l

φl

(
b
†
l,2 + bl,2

)
, (2)

where the subscript i = 1, 2 is introduced to distinguish the
two baths, and λl and φl are the diagonal and off-diagonal
coupling strengths, respectively, which can be used to deter-
mine spectral densities,

Jz(ω) =
∑

l

λ2
l δ(ω − ωl) ⇒ 2αω1−s

c ωs, (3)

Jx(ω) =
∑

l

φ2
l δ(ω − ωl) ⇒ 2βω1−s̄

c ωs̄ . (4)

Here, α and β are dimensionless coupling constants, and ωc is
set to be unity throughout this work. The two baths are char-
acterized by the spectral exponents s and s̄.

Equation (1) can be recast into its continuum form

HSBM = ε

2
σz − �

2
σx +

∫ ωc

0
g(ω)b†ωbω

+σz

2

∫ ωc

0
h(ω)

(
b†ω + bω

)
, (5)

where bω and b†ω are the counterparts of bl and b
†
l , g(ω) is the

dispersion relation, and h(ω) is the coupling function. Starting
from Eq. (5), and using the canonical transformation,15, 16 the
boson bath can be mapped onto a Wilson chain. Similarly, in
order to apply the DMRG algorithm to the two-bath SBM,
followed by the standard treatment,12, 15, 16 we map the two
boson baths in (2) onto two Wilson chains, and Hamiltonian
(2) morphs into the form

Ĥ = ε

2
σz − �

2
σx

+
∑
n=0,i

[
ωn,ip

†
n,ipn,i + tn,i

(
p
†
n,ipn+1,i + p

†
n+1,ipn,i

)]

+σz

2

√
ηz

π

(
p
†
0,1 + p0,1

) + σx

2

√
ηx

π

(
p
†
0,2 + p0,2

)
, (6)

where i = 1, 2 label the baths, ωn, i is the on site energy of site
n in the ith bath, p

†
n,i (pn, i) is corresponding boson creation

(annihilation) operator, tn, i is the hopping amplitude between
sites n and n + 1, and ηz (ηx) is a coupling constant propor-
tional to α (β). One has

ηx =
∫ ωc

0
Jx(ω)dω = 2πβ

1 + s̄
ω2

c , (7)

ηz =
∫ ωc

0
Jz(ω)dω = 2πα

1 + s
ω2

c , (8)

ωn,1 = ζs(An + Cn), tn,1 = −ζs

(
Nn+1

Nn

)
An, (9)

ζs = s + 1

s + 2

1 − λ−(s+2)

1 − λ−(s+1)
ωc,

An = λ−n (1 − λ−(n+1+s))2

(1 − λ−(2n+1+s))(1 − λ−(2n+2+s))
,

Cn = λ−n+s (1 − λ−n)2

(1 − λ−(2n+s))(1 − λ−(2n+1+s))
,

N2
n = λ−n(1+s) (λ−1; λ−1)2

n

(λ−(s+1); λ−1)2
n(1 − λ−(2n+1+s))

,

with (a; b)n = (1 − a)(1 − ab)(1 − ab2)· · ·(1 − ab(n − 1)).
Here λ > 1 is the discretization parameter. In the Fock repre-
sentation, the ground state wave function of Hamiltonian (6)
characterizing a single chain system can be written in the form
of matrix-product states (MPS) as

|ψ〉 =
∑

i0=↑,↓;j

Xi0Xj1Xj2 · · · XjL−1 |i0, �j 〉, (10)

where i0 is the spin index, �j = (j1, j2, . . . jL−1), with 0 ≤ ji
≤ dp, represents the quantum numbers for the boson basis, L
is the length of the chain (chosen as 51), and dp is the number
of boson modes allocated on each site. Xj are single matrices
whose dimensions are restricted by a cutoff Dc = 50. Sub-
sequently, performing an iterative optimization procedure,17

each matrix X can be optimized to a truncation error less than
10−7. Furthermore, if a DMRG algorithm with an optimized
boson basis14 is used, the boson number dp on each site of the
Wilson chain can be kept up to 100. Therefore, a total of 102L
phonons are included in our calculations. A minimum of dp

= 20 phonons need to be kept to arrive at a clear conclusion
about the phase transition, which points to the difficulty in
dealing with off-diagonal coupling. Using the obtained MPS
wave functions, we can extract 〈σ x〉 (i.e., excitonic coherence
between the two levels), 〈σ z〉 (i.e., exciton population dif-
ference), and the von-Neumann entropy Sv−N ≡ −Trρs logρs ,
where ρs is the reduced density matrix of the spin.
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The sub-Ohmic SBM with β = 0 and the spectral den-
sity (3) may exhibit a second order transition from a delo-
calized phase (〈σ z〉 = 0) to a localized one (〈σ z〉 
= 0), if
α > αc (0 < αc < 1).12 Especially, if s < 1/2, critical
exponents of the phase transition, e.g., 〈σz〉 = (α − αc)βMF

where βMF = 1/2, can be obtained via quantum-to-classical
correspondence as demonstrated by a variety of numerical
techniques.11, 12 In the two-bath SBM of Eq. (6), competition
between the baths poses a significant challenge to the numer-
ical simulations due to an increased total boson number that
must be kept. DMRG calculations14 have so far revealed that
if s = s̄ < 1/2 and σ x and σ z coupled to two boson baths with
equivalent coupling strengths (α = β), the spin is situated in
a localized state. Furthermore, to obtain a deeper insight into
the properties of the two-bath SBM, it is interesting to inves-
tigate the deep sub-Ohmic regime of the two-bath SBM with
differing α and β, for a general scenario of s = s̄ and s 
= s̄.
At last, we will discuss the situations with finite ε or �.

We first explore the case of ε = � = 0 and s = s̄ = 0.25
for which Hamiltonian (6) is invariant under operation

P = σyei
∑

n(b†n,1bn,1+b
†
n,2bn,2), (11)

indicating a two-fold degeneracy of the ground state. A tiny
symmetry-breaking perturbation is often applied to a state
with two-fold degeneracy in the DMRG calculations. Due to
diagonal coupling, the spin will be trapped with a finite 〈σ z〉,
forming a localized phase. The coupling with σ x, however,
induces a spin flip between |↑〉 and |↓〉, thereby hindering
the self-trapping process. Fig. 1(a) shows calculated 〈σ x〉 and
〈σ z〉 for α = 0.02 and a range of β values from 0.0 to 0.05.
It is clear that when the off-diagonal coupling is dominant,
i.e., β � α, 〈σ x〉 is finite so that the spin is in the superpo-
sition state of |↑〉 and |↓〉. We ascribe this phase as “phase
I.” Similar arguments remain valid for the case of β � α,
when 〈σ z〉 assumes a finite value and we term this phase as
“localized phase II,” abbreviated as “phase II.” As shown in
Fig. 1(b), Sv−N also shows a sharp peak at the critical point,
β ∼ 0.0204. In addition, we have also calculated the fidelity
near the critical point reaching the same conclusion. As shown
in Fig. 1(a), 〈σ z〉 and 〈σ x〉 are sensitive to the boson number dp

being kept in DMRG calculation. Evidently, to obtain reliable
data at the critical point, it is necessary to choose a sufficiently
large dp (over 20).

Next, we study the case of s 
= s̄. According to Eq. (7)
[Eq. (8)], if ω < ωc = 1, the strength of ηx (ηy) is inversely
proportional to 1 + s (1 + s̄). Therefore, as opposed to the
case of s = s̄, where the spin-bath interactions are governed
solely by α and β, if s 
= s̄, the effective spin-bath interactions
are modified, leading to a shift of the two critical points as
shown in Fig. 1. In Fig. 2, we present calculated 〈σ z〉 and
〈σ x〉 for the case of s = 0.3, s̄ = 0.2. Similarly, the properties
of the transition from I to II are analogous to those exhibited in
Fig. 1(a), and the critical point moves from 0.0204 to 0.0115,
as indicated by the peak of the entanglement entropy in Fig. 2.
It is convenient to renormalize α and β by the factors 1/(1 + s)
and 1/(1 + s̄), respectively. Here, s (s̄) increases (decreases)
from 0.25 to 0.3 (0.2), and therefore, the effective diagonal
(off diagonal) coupling will become smaller (larger). In order
to reproduce the phase transition in Fig. 1, the critical value of

FIG. 1. (a) 〈σ x〉 and 〈σ z〉 as a function of β using two on-site boson numbers,
dp = 6 and 30; (b) the von-Neumann entropy Sv−N as a function of β. The
critical point is labeled by the dashed lines, and we set s = s̄ = 0.25 and
α = 0.02.

FIG. 2. 〈σ x〉 and 〈σ z〉 as a function of β with s = 0.3, s̄ = 0.2, and α = 0.02.
The transition points are marked by the dashed line. Also shown is the von-
Neumann entropy (Sv−N ) with a remarkably sharp peak at the critical point
(at about 0.0115) where phase I goes into II.
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β will have to shift to the left, which is just the result shown
in Fig. 2.

It is now clear that due to the competition of the two baths
a second order phase transition exists in the two-bath SBM.
In the absence of ε and �, σ x and σ z swap their roles through
a rotation along the y axis. This results in a similar swap of
〈σ x〉 and 〈σ z〉 near the critical point, where 〈σ x〉 displays a
kink when � 
= 0. In contrast to the single-bath SBM, 〈σ x〉
vanishes due to the full SU(2) symmetry of the spin and the
absence of a confining potential for σ x. It should be stressed
that both phases, phases I and II, are doubly degenerate, in
agreement with the parity symmetry of Hamiltonian (6). The
degeneracy of phase I (II) is characterized by the eigenstates
of σ z (σ x), |↑〉 and |↓〉 (| ← 〉 and | → 〉). This is a novel
feature of a second order phase transition between states with
two-fold degeneracy as a result of bath competition.

As pointed out in Ref. 13, finite ε or � can break the
symmetry of the ground-state free energy and thus prevent the
occurrence of a second order phase transition. For s = 0.3,
s̄ = 0.2, Fig. 3 shows 〈σ z〉 as a function of α and β, where
a finite tunneling constant of � = 0.1 is imposed on the
x spin component. A phase boundary in the α-β plane is
clearly visible judging from a sudden disappearance of the
expectation value of the z component. Fig. 4, which dis-
plays 〈σ z〉, 〈σ x〉, and Sv−N as a function of α for the case of
β = 0.03, further confirms the phase boundary in Fig. 3. Un-
like the large spike at the critical point shown in Fig. 1, only a
much less pronounced kink is found in 〈σ x〉. It is argued that
the occurrence of the kink is ascribed to a sufficiently large
value of �. Similar results can be obtained under a spin bias
in the z component after rotating along the y axis. Moreover,
through intensive DMRG calculations, we find that 〈σ z〉 can
be reduced to zero by increasing � in the localized phase,
while 〈σ x〉 reaches a saturation value.

To summarize, in the deep sub-Ohmic regime, for an ex-
tended SBM with two independent baths coupled to two per-
pendicular spin components, there exists a second order phase
transition, from the doubly degenerated “coherent phase I” to
another doubly degenerated “localized phase II.” This phase
transition, which survives the introduction of finite � or ε, of-

FIG. 3. 〈σ z〉 as a function of α and β, wherein s = 0.3, s̄ = 0.2, and
� = 0.1. The spin bias ε is set to zero.

FIG. 4. 〈σ z〉, 〈σ x〉, and entanglement entropy Sv−N as a function of α near
the critical point, pointing to a second order phase transition. The off-diagonal
coupling strength β is set to 0.03, and the same spectral densities are used for
the two baths as in Fig. 3. The tunneling strength � and the spin bias ε also
remain the same as in Fig. 3. 〈σ x〉 shows a small kink at the critical point.

fers a notable difference between the single-bath SBM and
the two-bath SBM. Varying bath spectral densities (s 
= s̄)
shifts the critical point, and for ε = 0 and � = 0, 〈σ z〉 and
〈σ x〉 display jumps near the critical point, a feature that is ab-
sent from the single-bath SBM. It is found that the DMRG
algorithm combined with an optimized phonon basis is a ro-
bust approach to deal with SBM with off-diagonal coupling,
despite that further improvement is in need to give accurate
estimates of the critical exponents and other quantities of
importance.

This work is supported by the Singapore National Re-
search Foundation under Project No. NRF-CRP5-2009-04
and the U.S. National Science Foundation under Grant No.
CHE-1111350.
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