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Abstract

The Z8-analogues of the Kerdock codes of length n ¼ 2m were introduced by Carlet in 1998.

We study the binary sequences of period n � 1 obtained from their cyclic version by using the

most significant bit (MSB)-map. The relevant Boolean functions are of degree 4 in general.

The linear span of these sequences has been known to be of the order of m4:We will show that

the crosscorrelation and nontrivial autocorrelation of this family are both upper bounded by a

small multiple of
ffiffiffi
n

p
: The nonlinearity of these sequences has a similar lower bound. A

generalization of the above results to the alphabet Z2l ; lX4 is sketched out.

r 2003 Published by Elsevier Inc.

Keywords: Generalized Kerdock code; Most significant bit map; Boolean functions; Correlation;

Nonlinearity

1. Introduction

For signature sequences in a spread spectrum multiple-access communication
system, it is desirable [9] to employ code-sequences having two kinds of
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pseudo-randomness properties:

� statistical: low non-central autocorrelation and low overall crosscorrelation
� cryptographical: large linear span, and high nonlinearity.

Many sequences in the literature meet the first requirement; some like the No
sequences and the bent function sequences also enjoy a large linear span [4, Section
6.2]. However, the No sequence family (together with its generalizations) as well as
the bent function sequences suffer from the fact that the families are relatively
small—the cardinality of the family is approximately the square root of the length of
the sequences.
In this article, we construct larger families of binary sequences of length T ¼

2m � 1 with reasonable correlation properties and a linear span of the order Oðm4Þ:
Furthermore, the size of the family is approximately T2=4: As the crosscorrelations

and the nontrivial autocorrelations of our family are only bounded by 3ð2þffiffiffi
2

p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
T þ 1

p
; and the nonlinearity by 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
2

pp ffiffiffiffiffiffiffiffiffiffiffiffi
T þ 1

p
; our families have somewhat

worse correlation properties than the binary families constructed using the theory of
Galois rings of characteristic 4 (cf. [4]). However, the linear span of these so-called

Z4-linear families is only of the order Oðm2Þ: Thus, our families might be an
attractive alternative in an application where a larger family of sequences is required,
and where higher linear span is desired even at the cost of slightly worse correlation
properties.
The Z8-analogues of the Kerdock codes of length n ¼ 2m were introduced by

Carlet [2]. We study the binary sequences of period n � 1 attached to its shortened
and punctured version. The relevant Boolean functions are of degree 4 in general.
The above-mentioned bounds on the nonlinearity and correlation follow from the

Galois Ring analogue of the Weil inequality [6] and some elementary character
theory. As a by-product, we obtain a construction of quartic sequences with

controlled nonlinearity. The linear span was known [5] to be of the order Oðm4Þ: A
key tool we shall use is the ability to express arbitrary complex valued functions
defined on a finite abelian group G as linear combinations of characters of G; i.e., we
perform discrete Fourier analysis on a finite abelian group. In retrospect this is a very
natural generalization of one of the key ingredients in the successful applications of
rings of characteristic 4, namely the fact that the Lee weight of an element aAZ4 can
be simply expressed by the equation

wLeeðaÞ ¼ 1�Re ðiaÞ ¼ c0ðaÞ �
1

2
cðaÞ þ %cðaÞ
� �

:

So we prefer to read the right-hand side of this equation as a linear combination of
the principal character c0 : a/1; the character c : a/ia; and its conjugate

character %c: It is easy to write a similar expression for the MSB-map (really for
any mapping by the inverse Fourier transform). In Section 4 we will carry out such
an analysis of the most significant bit (MSB)-map of the group Z8 (see the next
section for definitions and details). The last section in this article is devoted to the
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generalization of Lemma 2 and Theorem 7 to the case of the alphabet Z2l ; where
lX4:
Another key ingredient in the success of Z4-based designs of families of sequences

is the observation (originally due to A. Nechaev) that in addition to the cyclic group
T� of nonzero elements of the Teichmüller set, one may also use the larger group

T�,�T� that is also cyclic. Indeed, the Gray map Z4-Z2
2 is simply the

concatenation of the MSB-map evaluated at an element and at its negative. The
corresponding cyclic subgroup of the unit group of Galois rings of characteristic 8
could also be used to design families of sequences of twice the length. We have not
fully pursued this line of research yet. Early results seem to indicate that one should
not expect very exciting new sequence families to arise from this construction idea.
Something comparable to the families introduced in this article will probably come
out, though.

2. Definitions and notation

Let GRð8;mÞ denote the Galois ring of characteristic 8 with 8m elements. Let x be
an element in GRð8;mÞ so that x2m ¼ x and set the Teichmüller set of GRð8;mÞ to be
T ¼ f0; 1; x; x2;y; x2

m�2g: The 2-adic expansion of xAGRð8;mÞ is given by

x ¼ u þ 2v þ 4w;

where u; v;wAT: The Frobenius operator F is defined for such an x as

Fðu þ 2v þ 4wÞ ¼ u2 þ 2v2 þ 4w2;

and the trace Tr; from GRð8;mÞ down to Z8; as

Tr :¼
Xm�1

j¼0
Fj :

We also define another trace tr from F2m down to F2 as

trðxÞ :¼
Xm�1

j¼0
x2j

:

Throughout this note, we let n ¼ 2m: We define first a cyclic code which is the
analogue of the simplex code:

Sm ¼ fðTrðlxtÞÞn�2
t¼0 j lAGRð8;mÞg:

Let I ¼ fN; 0; 1;y; n � 2g: We use the convention that xN ¼ 0: Define an
extended (and augmented) cyclic code as follows:

Sm ¼ fðTrðlxtÞ þ AÞtAI j lAGRð8;mÞ; AAZ8g:
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Let MSB : Zn
8-Zn

2 be the most-significant-bit map, i.e.,

MSBða þ 2b þ 4cÞ ¼ c:

Define the binary code sm as sm ¼ MSBðSmÞ:

3. Boolean functions

The 2-adic representation of TrðlxtÞ is given by the following result of Carlet (cf.
[2, Proposition 6]).

Theorem 1. Let l ¼ xr þ 2xs þ 4xwAGRð8;mÞ: For tAI; write

TrðlxtÞ ¼ at þ 2bt þ 4ct;

where at; bt; ctAF2: Then, with y � xmod 2;

at ¼ trðyrþtÞ

bt ¼ QðyrþtÞ þ trðysþtÞ

ct ¼ RðyrþtÞ þ QðysþtÞ þ trðyrþt þ ysþtÞQðyrþtÞ þ trðywþtÞ;
where

QðxÞ ¼
X

0piojpm�1
x2iþ2j

and

RðxÞ ¼
X

0pi1oi2oi3oi4pm�1
x2i1þ2i2þ2i3þ2i4

þ
X

0pi1oi2oi3pm�1
x2i1þ2i2þ2i3 ðx2i1 þ x2i2 þ x2i3 Þ:

4. Imbalance and autocorrelation properties

Let z ¼ e2pi=8 ¼ ð1þ iÞ=
ffiffiffi
2

p
be a primitive 8th root of 1 in C: For x; y; z; tAQ; set

A ¼ x þ y þ z þ t;

Qj ¼ x þ yzj þ zz2j þ tz3j; for j ¼ 1; 3; 5; 7:

Let m : Z8-f71g be the mapping mðtÞ ¼ ð�1Þc; where c is the most significant bit of
tAZ8: For all j ¼ 0; 1;y; 7 let cj : Z8-C� be the character

cjðtÞ ¼ zjt:

The following lemma should be viewed as discrete Fourier analysis of the MSB-
mapping m:
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Lemma 2. For the constants mj ¼ ð1þ z�j þ z�2j þ z�3jÞ=4; j ¼ 1; 3; 5; 7 we have

m ¼ m1c1 þ m3c3 þ m5c5 þ m7c7:

Furthermore,

ðjm1j þ jm3j þ jm5j þ jm7jÞ
2 ¼ 2þ

ffiffiffi
2

p
:

Proof. The expression for the mj’s follows from Lemma 11 below by the identity

X 4 � 1 ¼ ðX � 1ÞðX 3 þ X 2 þ X þ 1Þ; and the fact that ðz�jÞ4 ¼ �1 for j odd. Since

z ¼ ð1þ iÞ=
ffiffiffi
2

p
; it follows that m1 ¼ ð1� ð1þ

ffiffiffi
2

p
ÞiÞ=4 ¼ m7 and m3 ¼ ð1þ ð1�ffiffiffi

2
p

ÞiÞ=4 ¼ m5; from which

ðjm1j þ jm3j þ jm5j þ jm7jÞ2 ¼ 2þ
ffiffiffi
2

p

can be easily deduced. &

We record the following consequence of this result for future use.

Lemma 3. We have for all x; y; z; tAQ

A ¼ m1Q1 þ m3Q3 þ m5Q5 þ m7Q7;

where mj; j ¼ 1; 3; 5; 7 are the coefficients of the previous lemma.

Proof. Writing

Qj ¼ xcjð0Þ þ ycjð1Þ þ zcjð2Þ þ tcjð3Þ;

we see that, by Lemma 2, we haveX
j

mjQj ¼ xmð0Þ þ ymð1Þ þ zmð2Þ þ tmð3Þ;

which is A; by definition of m: &

For all lAGRð8;mÞ we denote by Cl the character

Cl : GRð8;mÞ-C�; x/zTrðlxÞ:

The following lemma follows from [6].

Lemma 4. For all lAGRð8;mÞ; la0; we have

X
xAT

ClðxÞ
�����

�����p3
ffiffiffiffiffiffi
2m

p
:

Proof. We restate [6, Theorem 1] for the special Galois Ring of concern here. Let
f ðX Þ denote a polynomial in GRð8;mÞ½X � and let

f ¼ F0 þ 2F1 þ 4F2
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denote its 2-adic expansion. Let ni be the degree in X of Fi: Call w an arbitrary
additive character of GRð8;mÞ; and N the weighted degree of f ; namely

N ¼ maxð4n0; 2n1; n2Þ:

With the above notation, we have (under mild technical conditions) the bound

X
xAT

wð f ðxÞÞ
�����

�����pðN � 1Þ2m=2:

See [6] for details. The result follows upon considering a linear f ; when N ¼ 4: &

We now have the following results on, respectively, the imbalance and the
autocorrelation function of the binary sequence ðctÞtAN:

Theorem 5. With notation as above, we have

X
tAI

ð�1Þct

�����
�����p3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
2

pq ffiffiffiffiffiffi
2m

p
:

Proof. Write zt ¼ TrðlxtÞ: For 0pip7; let ni denote the number of t such that zt ¼ i:
Then,

X
tAI

ð�1Þct ¼
X3
i¼0

ðni � niþ4Þ;

while

X
tAI

zzt ¼
X3
i¼0

ðni � niþ4Þzi:

Using the notation above with x ¼ n0 � n4; y ¼ n1 � n5; z ¼ n2 � n6; and t ¼ n3 � n7
we get

Qj ¼
X
tAI

zjzt :

Going back to the definition of zt; we get

Qj ¼
X
tAI

ClðjxtÞ;

and, after a change of variable

Qj ¼
X
xAT

ClðxÞ:
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By Lemma 4, jQjjp3
ffiffiffiffiffiffi
2m

p
for all j ¼ 1; 3; 5; 7: Therefore, using Lemma 3 and the

triangle inequality, we obtain

X
tAI

ð�1Þct

�����
�����p3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
2

pq ffiffiffiffiffiffi
2m

p
: &

Theorem 6. With notation as above, and for all phase shifts t; 0oto2m � 1; let

YðtÞ ¼
X
tAI

ð�1Þctð�1Þctþt :

We then have the bound

jYðtÞjp3ð2þ
ffiffiffi
2

p
Þ
ffiffiffiffiffiffi
2m

p
:

Proof. Again let x be a generator of the Teichmüller set. As we have ct ¼
MSBðTrðlxtÞÞ; Lemma 2 implies that

YðtÞ ¼
X
j;j0

mjmj0
X
xAT

Clð jþj0xtÞðxÞ:

Here j þ j0xta0 as xteZ8; so the claim follows from the triangle inequality, Lemma
4 and Lemma 2, and the elementary identity

X
j;j0

mjmj0
�� �� ¼ X

j

mj

�� �� !2

: &

We remark that, using the technique of Theorem 6, it is also easy to bound the
crosscorrelation function of two MSB-sequences ðctÞ and ðc0tÞ respectively defined by
the equations ct ¼ MSBðTrðl1xtÞÞ and c0t ¼ MSBðTrðl2xtÞÞ: The argument in the

above proof can be carried out provided that the parameters l1; l2 are chosen
carefully. To be more precise, we must exclude the cases where jl1 þ j0l2x

t ¼ 0 for
some odd j; j0AZ8 and some phase-shift t: For otherwise we cannot apply the bound
of Lemma 4. As only the odd values of j; i.e., the units of the ring Z8; appear in the
expansion of Lemma 2, the equation jl1 þ j0l2x

t ¼ 0 will never hold for any t; when
l1 and l2 belong to different cosets of the subgroup Z�

8 �T� of the unit group of our
ring GRð8;mÞ: We summarize this discussion in the following Theorem.

Theorem 7. There exists a family of Nm :¼ 2m�2ð2m þ 1ÞBT2=4 cyclically distinct

binary sequences of period T ¼ 2m � 1; and auto- and crosscorrelation at most

11
ffiffiffiffiffiffiffiffiffiffiffiffi
T þ 1

p
:

Proof. The order of the unit group of GRð8;mÞ is 8m � 2m: The order of Z�
8 �T�

is 4ð2m � 1Þ: Observe that 3ð2þ
ffiffiffi
2

p
ÞC10:24: The period is determined in

Section 6. &
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For the sake of comparison, the family Sðm; 3Þ of [1,8] allocates as many

sequences of period T with a correlation peak at most 2
ffiffiffiffi
T

p
: However, both the

nonlinearity and the linear span of our sequences are fairly high as the next two
sections show.
We further remark that we can also bound the incomplete sums of the types

considered in the above two theorems, where we restrict the range of summation to a
subinterval of the index set I: To that end we would also need to invoke the
Shanbhag–Kumar–Helleseth bound on hybrid sums. Such estimates are based on a
method originally due to I.M. Vinogradow. We refer the reader to [7] for an account
of this version of Vinogradow’s method.

5. Nonlinearity

We employ the same techniques and notations as in the preceding section.
Observe first that the scalar product xy of x; yAFm

2 can always be expressed—thanks

to the existence of a self-dual basis of Fm
2 over F2—by means of the trace

function:

x:y ¼ trðxyÞ:

(We tacitly identify an element of F2m with its coordinate vector over the
said basis.) Let ĉðyÞ denote the Walsh–Hadamard Fourier coefficient of ct

in y; namely:

ĉðyÞ ¼
X

xAF2m

ð�1ÞcðxÞþtrðxyÞ;

where cðxtÞ ¼ ct; for tAI; is viewed as a Boolean function.

Theorem 8. For all cAsm and all yAFm
2 ; we have the bound

jĉðyÞjp3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
2

pq ffiffiffi
n

p
:

Proof. It suffices to replace c by c þ trðyytÞ and yw by yw0
such that yw0 ¼ y þ yw to

reduce to Theorem 5. &

For the sake of comparison, for even m; the bent sequences have a better

nonlinearity (viz.
ffiffiffi
n

p
). All known constructions of infinite families of bent functions

are quadratic, as opposed to our quartic family of Boolean functions [3].

6. Period and linear span

The following result follows from [5, Theorem 7] by letting k ¼ 2:
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Proposition 9. (Kumar–Helleseth). The linear span of the binary sequence ðctÞtAN is at

most
P4

j¼1
m
j

� �
and at least m

4

� �
:

The binary sequence ðctÞtAN has period 2m � 1:

Proposition 10. The period of the binary sequence ðctÞtAN is 2m � 1:

Proof. To determine the period, it suffices to show that the greatest common divisor
of 2m � 1 with the exponents of x in RðxÞ is equal to 1. Among these exponents are:

a ¼ 2 � 2i1 þ 2i2 þ 2i3 ; b ¼ 2i1 þ 2 � 2i2 þ 2i3 ; g ¼ 2i1 þ 2i2 þ 2 � 2i3 and d ¼ 2i1 þ 2i2 þ
2i3 þ 2i4 : Since 4d� a� b� g ¼ 4 � 2i4 ¼ 2i4þ2; the g.c.d. of these three exponents

divides 2i4þ2: Since 2m � 1 is odd, it follows that the period is 2m � 1: &

We remark that the above result on the period of the sequence ðctÞ also follows
immediately from our bound on its autocorrelation, Theorem 6, in those cases,

where the length of the sequence exceeds 3ð2þ
ffiffiffi
2

p
Þ
ffiffiffiffiffiffi
2m

p
þ 1; i.e., for all mX7:

Note that the linear span is of the order of the fourth power of the logarithm of the
period, which is better than the No sequences whose linear span is only logarithmic
in the period [4, Section 6.2].

7. Generalization to Z2l

Let l be a positive integer (without loss of generality, we assume that lX4) and let

z ¼ e2pi=2l
be a primitive 2lth root of 1 in C: Let ck be the additive character of Z2l

such that

ckðxÞ ¼ zkx:

Let m : Z2l-f71g be the most significant bit map. It maps 0; 1;y; 2l�1 � 1 to þ1
and 2l�1; 2l�1 þ 1;y; 2l � 1 to �1: Our goal is to express this map as a linear
combination of characters. Recall the Fourier transformation formula on Z2l :

m ¼
X2l�1

j¼0
mjcj; where mj ¼

1

2l

X2l�1

x¼0
mðxÞcjð�xÞ: ð1Þ

We need the following lemma:

Lemma 11. We have that:

mj ¼
2

2l�1
1

1� z�j
; ð2Þ

where j ¼ 1; 3;y; 2l � 1 is odd, and mj ¼ 0 when j ¼ 0; 2;y; 2l � 2 is even.
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Proof. From the definition of z; it follows that cjðx72l�1Þ ¼ �cjðxÞ: The most

significant bit function mðxÞ satisfies mðx þ 2l�1Þ ¼ �mðxÞ: Thus

mðx þ 2l�1Þcjð�ðx þ 2l�1ÞÞ ¼ mðxÞcjð�xÞ

and we have

mj ¼
1

2l

X2l�1

x¼0
mðxÞcjð�xÞ ¼ 2

2l

X2l�1�1

x¼0
mðxÞcjð�xÞ:

Note that mðxÞ ¼ 1 when x ¼ 0; 1;y; 2l�1 � 1: So we have

mj ¼
2

2l

X2l�1�1

x¼0
z�jx ¼ 1

2l�1
1� ðz�jÞ2

l�1

1� z�j
: ð3Þ

Since z72l ¼ 1 and z72l�1 ¼ �1; we have

1� ðz�jÞ2
l�1

¼ 1� ð�1Þj ;

which is 2 when j is odd and zero when j is even. The Lemma follows. &

From this Lemma we obtain:

Corollary 12. We have:

jmjj ¼ jm2l�jj ¼
1

2l�1
1

sinðpj=2lÞ; ð4Þ

when j ¼ 1; 3;y; 2l�1 � 1 is odd.

Proof. Indeed, we have

j1� z7jj ¼ jz7j=2j jz8j=2 � z7j=2j ¼ 2 sin
pj

2l

 �
:

The corollary follows. &

The main result of this section is the following theorem:

Theorem 13. Set q ¼ 2l : Then we have:

Xq�1
j¼1

j mj jo
2

p
lnðcotðp=ð2qÞÞÞ þ 4

q sinðp=qÞ

Xq�1
j¼1

j mj j4
2

p
lnðcotðp=ð2qÞÞÞ þ 2

p
lnðtanðp=4� p=ð2qÞÞÞ:
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Proof. Using Lemma 11 and Corollary 12, we have

Xq�1
j¼1

j mj j ¼ 2
Xq=2�1
j¼1

j mjj ¼
4

q

Xq=4�1
k¼0

1

sinðpð2k þ 1Þ=qÞ: ð5Þ

Consider the following function:

f ðxÞ ¼ 1

sinðpx=qÞ:

This function is positive and decreasing on the interval ½1; q=2� 1�: Thus, for any
a; bA½1; q=2� 1� and aob; we have

f ðbÞðb � aÞo
Z b

a

f ðxÞ dxof ðaÞðb � aÞ:

We use it when b is a þ 2 and a runs over 1; 3;y; q=2� 3: Taking the sum and
dividing by 2, we obtain:

1

2

Z q=2�1

1

f ðxÞ dx þ f ðq=2� 1Þo
Xq=4�1
k¼0

f ð2k þ 1Þo1

2

Z q=2�1

1

f ðxÞ dx þ f ð1Þ:

Since f ðxÞ is positive on the interval ½1; q=2�; we will drop the f ðq=2� 1Þ term from
the lower bound and integrate up to q=2 in the upper bound. Thus we obtain a
weaker estimate

1

2

Z q=2�1

1

f ðxÞ dxo
Xq=4�1
k¼0

f ð2k þ 1Þo1

2

Z q=2

1

f ðxÞ dx þ f ð1Þ: ð6Þ

Recall thatZ
dx

sinðxÞ ¼ lnðtanðx=2ÞÞ þ const:

Using this formula, we obtain the following for the lower bound:

1

2

Z q=2�1

1

dx

sinðpx=qÞ ¼
q

2p

Z p=2�p=q

p=q

dt

sinðtÞ;

which is equal to the product of q=ð2pÞ and
lnðtanðp=4� p=ð2qÞÞÞ � lnðtanðp=ð2qÞÞÞ:

Similarly, for the upper bound we have:

1

2

Z q=2

1

dx

sinðpx=qÞ ¼ � q

2p
lnðtanðp=ð2qÞÞÞ:

Recall that cotðtÞ ¼ 1=tanðtÞ: Thus we can estimate the sum of (6) from above as:

Xq=4�1
k¼0

1

sinðpð2k þ 1Þ=qÞo
q

2p
lnðcotðp=ð2qÞÞÞ þ 1

sinðp=qÞ;
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and from below as:

q

2p
lnðcotðp=ð2qÞÞÞ þ q

2p
lnðtanðp=4� p=ð2qÞÞÞ:

Multiplying it by 4=q; we obtain the estimate of (5). The Theorem follows. &

In particular, we obtain the following:

Corollary 14. Let q ¼ 2l where lX4: Then

Xq�1
j¼0

j mj jo
2

p
lnðqÞ þ 1: ð7Þ

Proof. Recall that when 0oxop=4; we have tanðxÞ4x: Thus

lnðcotðxÞÞ ¼ �lnðtanðxÞÞo� lnðxÞ:

We apply this inequality when x ¼ p=ð2qÞpp=32 to obtain:

ln cot
p
2q

 � �
olnðqÞ � lnðp=2Þ: ð8Þ

Furthermore since:

p
q
4sin

p
q

 �
4

p
q

1� 1

6

p
q

 �2
 !

40:993
p
q
;

we have that

4

p
o

4

q sinðp=qÞo
4

0:993p
o1:283:

Combining it with (8) multiplied by 2=p; and using that

1:283� 2

p
ln

p
2

� �
o1;

we obtain the required estimate. &

We are now in a position to generalize Theorem 7 to higher l’s. The proof is
analogous and omitted.

Theorem 15. There exists a family of

Nl;m :¼ 2m�l�1 2
ðl�1Þm � 1

2m � 1
BTl�1=2l�1

cyclically distinct binary sequences of period T ¼ 2m � 1; and auto- and cross-

correlations at most 0:19l2ð2l�1 � 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
T þ 1

p
:
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8. Conclusion

In this work, from the Z8-Kerdock code, we have derived sequences of MSB type.
Generalizing to other cyclic codes (e.g., Delsarte–Goethals) seems feasible. Our key
tool was to express the MSB-function as a linear combination of characters of the
group Z8:While the correlation performance of our sequences is lower than, e.g., the
Sðm; 3Þ family of [1,8], both the nonlinearity and the linear span are fairly high. We
leave as an open problem to determine these two invariants for lX4:
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