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ABSTRACT   

We present a single-shot experimental configuration for quantitative phase microscopy recovery based on the transport-
of-intensity equation (TIE). The system can simultaneously capture two laterally separated images with different 
amounts of defocus using only one digital camera. The defocus distance can be adjusted by varying the free space 
propagation transfer function on a phase only spatial light modulator. The intensity derivative along optics axis can thus 
be estimated optimally. In contrast to the state of the art techniques, this configuration requires no mechanical moving 
parts. Furthermore its single-shot property allows potential application for measuring fast moving objects or dynamic 
processes. Validation experiments are presented. 

Keywords: quantitative phase microscopy; transport-of-intensity equation; single shot; spatial light modulator 
 

1. INTRODUCTION  
Over the past decade, a great deal of scientific attention has been paid to quantitative phase imaging (QPI), which has 
emerged as an important tool in many fields of physics where either phase imaging or structure retrieval is an issue, such 
as optics [1], electron- and X-ray microscopy [2, 3] , diffraction [4]. In the area of cell and tissue imaging, quantitative 
phase imaging is also vital because biological soft tissues and cells are phase objects which are nearly uniform with little 
intensity variation in the case of conventional bright-field microscopy. Transport-of-intensity (TIE) phase imaging is a 
promising tool for QPI because of its unique advantages over interferometric methods such as: non-interferometric 
approach, does not require phase unwrapping, and not strict requirement on coherent illumination [1, 5].  

The TIE follows from the wave equation under paraxial propagation and specifies the relationship between phase and the 
first derivative of intensity with respect to the optical axis. However, the intensity derivative along the optic axis cannot 
be directly measured. It can be approximated by finite differences taken between two close separated images [6-8]. To 
acquire the two images with slight defocus, either the camera or the object has to be mechanically translated, which 
limits the applicability of the technique to static objects. However, in many applications, including applied physics and 
biomedicine, it is important to have high throughput, high speed, and real-time phase information. 

In this paper, we propose a novel experimental configuration for quantitative phase microscopy, which is able to achieve 
simultaneous capture of two laterally separated images with different defocusing degrees, using only one digital camera. 
The defocusing distance can be adjusted by changing the free space propagation transfer function on a phase only spatial 
light modulator (SLM). Thus the intensity derivative along optics axis can be estimated optimally. Since no mechanical 
adjustment is required during the recording process, this provides quantitative phase images that are inherently stable and 
at an acquisition speed limited only by the detector. 
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The SLM is loaded with a designed phase pattern, enabling another laterally shifted beam with angular offsets α−  to 
the optical axis. Furthermore, this wave field is also axially-displaced by Δz  [9] 

( , ) ( , )exp( 2 sin ) ( , )ξ η ξ η πξ α λ ξ ηΔ=t zG U i H                                                      (2) 

where ( , )ξ ηΔzH  is the angular spectrum transfer function in the spatial frequency domain 

( ) ( )( )2 2( , ) exp 2 1ξ η π λξ λη λΔ = − Δ − −zH i z                                                    (3) 

After passing through lens L2, the complex amplitude distributions of the two split beams are given by 

( , ) ( sin , )α= +ru x y u x f y                                                                        (4) 

( , ) ( sin , )αΔ= −t zu x y u x f y                                                                       (5) 

Thus the two images in the CCD plane tI and rI are laterally separated by 2sinα f . To prevent overlapping of the two 
images in the CCD plane, a rectangular aperture is set just behind the image plane. Besides, to ensure the SLM is 
working in the linear region and to maintain the intensity balance between the two images, three linear polarizers are 
added in the refection beam (M2 side), and the transmission beam (SLM  side), and the combined beam (CCD  side) 
respectively (not shown in Fig. 1).  

For the phase reconstruction step, the phase map without 2π  discontinuity is directly calculated using the two images 
acquired within single shot. Accurate registration of the two experimental images ( tI and rI ) should be performed 
beforehand [10]. Once the axial shift between the two images is obtained, no other calibration procedure is needed for 
the successive measurement unless the setup is changed. First the intensity derivative is estimated by  

( , ) ( , )( , ) −∂
≈

∂ Δ
t rI x y I x yI x y

z z
,                                                                 (6) 

Then the phase map is directly calculated by solving the TIE  

[ ]( , ) ( , ) ( , )ϕ∂
− =∇⋅ ∇

∂
I x yk I x y x y

z
,                                                              (7) 

Mathematically, the smaller the defocus distance, more accurate the approximation in Eq. (2) will be. However, 
real measurements yield data with noise and discretization which does not allow zΔ  to be very small. The optimal zΔ  
should be chosen by balancing the high-order (or nonlinearity) error and the noise effect [11, 12], which can be easily 
adjusted by changing the phase pattern loaded on the SLM.  

3. RESULTS 
An experiment was conducted to verify the validity of the proposed method. In the experiment, the microscope objective 
used has a magnification 40x with 0.8NA. A plano-convex linear microlens array with 30 μm  pitch from SUSS 
MicroOptics was used as the test sample. Fig. 2(a) shows the raw images of the microlens array obtained in both halves 
of the camera in a single-shot. The right-side shows the best focus image, while the left-side depicts the defocused one 
controlled by the SLM. The defocus distance between the two planes was chosen as 8.5μm . After registration, the 
intensity derivative can be obtained, as shown in Fig, 2(b). Fig. 2(c) shows the recovered phase and Fig. 2(d) shows the 
rewrapped phase with the range within 2π . For comparison, the same sample was also measured using a digital 
holography microscopy (DHM) system (laser wavelength 650 nm, magnification 43x), and the wrapped phase is shown 
in Fig. 2(e). The three-dimensional profile of one single lens (indicated by the black square region in Fig. 2(d)) by 
converting the phase to the physical height of the lens. One cross-section corresponding to the red solid red line in Fig. 
2(d) are shown in Fig. 4(g). One line profile for DHM result is also shown in Fig. 2(h). Given the height profile of the 
lens, the radius of curvature (ROC) can be calculated by 

22 8= +ROC h D h ,                                                                    (8)  

where h is the height of the microlens, and D  is the diameter of the microlens. Considering the fill factor of the 
microlens array, the diameter of the microlens is 27μm . The average height h  of the microlens are measured 2.371μm
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for our method and 2.464 for DHM. Thus, the calculated ROC are 396 μm for our method and  382 μm for DHM, 
which both correspond reasonably well to the ROC value provided by the supplier (390 μm ). 
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Fig.2. The experimental results for a lens array. (a) raw images obtained in both halves of the camera in a single-shot. (b) intenisty derivative. (c) 

recovered phase. (d) rewarpped phase from (c). (e) DHM result. (f) 3D profile for one single lens. (g) and (h) are two corresections corresponding to 
the lines indicated in (d) and (e), respectively. 

4. CONCLUSION 
We have presented a new configuration for quantitative phase microscopy based on TIE. The experimental results show 
that the proposed method can reconstruct phase of the object accurately with a one-shot measurement. This offers the 
possibility to imaging moving objects and dynamic scenes, e.g. in-vivo cell imaging.  
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