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Abstract: An improvement is made to the traditional 2D integration with least squares method by introducing an 
iterative compensation procedure. The issue of inaccurate reconstruction due to imperfection of Southwell grid model is 
solved through the introduced iterative compensations. The feasibility and superiority of the proposed method are 
investigated with simulations. Moreover, the proposed method is compared with the integration method with radial basis 
functions. 
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1. Introduction 
A variety of optical techniques are explored in three-dimensional (3D) shape metrology for industrial inspection 
applications [1]. Some of these shape measurement techniques are referred to direct methods, since they get 3D results 
directly from the captured optical signals, e.g. laser spots or pattern images. Other techniques deduce the shape by 
integration of the surface gradient information. The fringe reflection technique [2-3] and Shack-Hartmann methods [4] 
are two representatives of these indirect shape measurement methods. Consequently, a process to integrate the shape 
from gradient data is required in order to reconstruct the shape of the surface or wave front. 

The shape or profile results are influenced by the two-dimensional (2D) integration process, and hence research efforts to 
make this process more accurate and faster are being explored. Fried [5], and Hudgin [6-7] studied the reconstruction of 
wave front from phase difference or slope using a least squares fitting approach, and evaluated the error propagation in 
reconstructions. Southwell [8] provided the wave front estimation from slope data with least squares method in more 
details including a discussion on grid models, solutions, and errors of least squares integration method. Li et al. [9] 
reviewed several evaluation methods for gradient measuring techniques and a comparison of these integration methods 
shows the superiority of the least squares integration method in terms of accuracy, robustness and flexibility. Ettl et al. 
[10] proposed another accurate shape reconstruction method from gradient data by dividing the whole area into in small 
pieces with certain common regions, integrating the slope data piece-wise by radial basis functions (RBFs) with least 
squares sense, and then stitching all pieces together to reconstruct the entire surface. 

In least squares integration method, the widely-used Southwell grid model assumes the surface can be expressed as a 
biquadratic spline function. This assumption is obviously not satisfied in many situations resulting in integration errors. 
Ettl’s RBFs based method is not able to directly handle large matrices without dividing and stitching process and it is 
slow even for one small piece of data with RBFs, although it may perform with high accuracy and flexibility. 

Least squares integration method with Southwell grid model [8] is basically good for handling large datasets, because 
sparse matrices can be utilized to reduce the memory usage during the least squares integration. However, the accuracy 
of least squares integration method is affected by its assumption which is not commonly satisfied. Consequently, this 
work aims to improve the integration accuracy due to the imperfection of the assumption from Southwell grid model. 

The rest of this article is organized as follows. Section 2 briefly recalls the least squares integration with Southwell 
model at first, and then describes the proposed iterative compensation process to increase the integration accuracy. 
Section 3 demonstrates serious of simulations to show the feasibility of the novel iterative least squares integration 
method. Section 4 discusses merits and limitations of the new method with a performance comparison of RBFs based 
method. Section 5 concludes the work. 

Optical Micro- and Nanometrology IV, edited by Christophe Gorecki, Anand K. Asundi, Wolfgang Osten, Proc. of SPIE
Vol. 8430, 84300S · © 2012 SPIE · CCC code: 0277-786X/12/$18 · doi: 10.1117/12.921402

Proc. of SPIE Vol. 8430  84300S-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 02/05/2014 Terms of Use: http://spiedl.org/terms



 

 

2. Principle 
In some slope-measuring-based optical metrology methods, integration converts gradient data to surface shape using 
least squares fitting. Following Southwell grid model [8] as shown in Fig. 1, the relationship between slope and shape 
can be expressed as 
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where x, y, z are the coordinates. p and q are the slopes in x- and y-directions, respectively, i.e. p = dz/dx and q = dz/dy. 

 
Fig. 1. The Southwell grid model in least squares integration. 

Therefore the height information can be given as 
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In terms of matrices, it shows as 
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where these matrices are 
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Commonly Eq. (3) is over determined in practical situations. Hence, a least squares estimation can be carried out to 
provide the height distribution as an optimized solution. 

The assumption implied in Eq. (1) is that the slope distribution is bilinear within each tiny quadrilateral, i.e. the 
variation of surface height is biquadratic. As we mentioned above, this assumption is not always satisfied, and hence is a 
main source of error. An iterative compensation procedure is thus proposed to improve the integration accuracy. 
Basically higher order terms are contained in these residual gradient data, which cannot be fit with the biquadratic spline. 
By integrating these residual gradient data it is possible to compensate errors due to the higher order terms. Following a 
few iterations, the final shape can be accurately reconstructed with no influence of the imperfect assumption. 

The specific steps of the algorithm are described as follows. 

Step 1: Integrate the gradient data with the traditional least squares integration method to get initial height z0(x, y). Set 
the current height z(x, y) = z0(x, y). 

Step 2: Calculate the residual slopes in x- and y-directions dp(x, y) and dq(x, y) with current height distribution z(x, y). 

Step 3: Integrate the residual slopes dp(x, y) and dq(x, y) with the traditional least squares integration method to get zc(x, 
y) for compensation. 

Step 4: Compensate the height z(x, y) = z(x, y) + zc(x, y)/nk, where the parameter nk are empirical constants which can be 
determined through simulation and k stands for the number of compensation. 

Step 5: Repeat the compensation loop from step 2 to step 4 till the compensating term zc(x, y) is less than the preset 
threshold zthr. The current z(x, y) is the final height. 

Note: the empirical parameters nk are determined by simulations with surfaces containing different higher order 
components. Form the numerical calculation, these empirical parameters nk are n1≈3, n2≈4.0909, n3≈4.9476, n4≈5.6768 
when k=1, 2, 3, 4. 

3. Simulation 
A series of simulation were conducted in order to investigate the validity of the proposed iterative compensation. First, 
an example is to show the iterative compensation works efficiently to improve the integration accuracy when the 
assumption of biquadratic spline is not satisfied. Both coordinates of x and y range from -5mm to 5 mm with an interval 
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of 0.02mm, i.e. the size of matrices is 500 by 500, which yields 500,000 x- and y-slope values in all. As shown in Fig. 
2(a), the true out-of-plane dimension is predefined as 

 ( ) ( )2 2cos 0.4 2 cos 0.4 2z x x y y= + + , (7) 

and its corresponding slopes in x- and y-directions p and q shown in Fig. 2(b) and (c) can be derived as 

 ( ) ( ) ( )2 20.8 2 sin 0.4 2 cos 0.4 2p x x x y y= − + + + , (8) 

 ( ) ( ) ( )2 20.8 2 cos 0.4 2 sin 0.4 2q y x x y y= − + + + . (9) 

In Fig. 2(b) and (c), the surface gradient varies slightly at the lower left corner and acutely at the upper right corner. The 
sample surface shape is specially chosen by purpose to test the iterative performance of the proposed method. 

 
Fig. 2. True shape and gradient data in simulation. (a) True shape, and true slopes in x-direction p = dz/dx (b) and in y-

direction q = dz/dy (c). 

By applying the proposed integration method with iterative compensation, the out-of-plane height distribution can be 
accurately reconstructed as shown in Fig. 3. The result from traditional least squares integration method with no 
compensation is demonstrated in Fig. 3(a), which shows large integration errors as the true surface does not satisfy the 
biquadratic spline assumption. The objective of the work is to reduce this type of error. 

(a) 

(b) (c) 
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Fig. 3. Integration results. (a) Height error with no compensation, (b) after the 1st compensation, (c) after the 4th 
compensation, (d) after the 8th compensation, (e) standard deviations of height error after compensations, and (f) 

reconstructed result after the 8th compensation. 

As shown in Fig. 3(b-d), with the proposed compensation process, height errors significantly reduced down to less than 
1% as compared to Fig. 3(a). The majority of compensation is completed after the first one or two compensations, which 
is also shown in Fig. 3(d). After repeating the compensation with eight times, the out-of-plane height is accurately 
reconstructed as shown in Fig. 3(e). 

The second example demonstrates the ability of the proposed method to operate in the presence of noise. The true height 
is defined by 

(a) (b) 

(c) 

(e) (f) 

(d) 
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where the in-plane dimensions x and y are limited within a range from -1 to 1 with sampling points of 400 by 400, and 
the corresponding out-of-plane height varies by more than 5 mm. 

 
Fig. 4. Integrate gradient data with noise. (a) slope p = dz/dx, (b) slope q = dz/dy. 

In practical measurement, noise is normally distributed on fringe phase, and furthermore can be approximately 
considered as normally distributed on surface normal directions. Normally distributed angular noise with a standard 
deviation of 8 arcsec is added in the normal directions, which is a typical noise level in fringe reflection technique. The 
associated noisy slopes in x- and y-directions are shown in Fig. 4(a) and (b). 

 
Fig. 5. Integration results. (a) Height error before compensation, (b) height error after iterative compensation, and (c). 

The integration result from the traditional least squares method is shown in Fig. 5(a). Without any compensation, the 
height error is not only because of the influence from gradient noise but also the mismatch between the assumed 
biquadratic spline surface and the actual surface to be reconstructed. However, most of the errors due to this assumption 
can be compensated through the iterative process with the height error shown in Fig. 5(b). 

(a) (b) 

(a) (b) 
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Fig. 6. Height error in one line (y=0) 

A line profile (y=0) of errors before and after compensation is compared in Fig. 6, from which it can be easily found that 
the iterative process improves the integration accuracy with successful elimination of the waviness, and the residual error 
is mainly from the gradient noise. The result shows the iterative least squares integration method is able to reconstruct 
shapes from gradient data in the presence of noise. 

4. Discussion 
As noted in literature, Ettl’s RBFs based method [10] is an accurate integration approach as well. A comparison of these 
two methods is also conducted to show the relative performances. As mentioned above, with no stitching process, the 
RBFs based integration method can only handle small piece of dataset because of its large memory consumption. 
Therefore the true height distribution is set as a small piece of spherical surface shown in Fig. 7(a) with 

 2 2 290 90z x y−= − − , (11) 

where the in-plane dimensions x and y vary from -4 to 4 with 40 by 40 sampling points such that the dataset can be 
handled by both methods. Normally distributed angular noise with a standard deviation of 8 arcsec is added onto the 
surface normal directions. 

 
Fig. 7. Integration comparison with small dataset. (a) True shape, and (b-c) height error with the RBFs based integration 

method (b) and the proposed integration method (c). 

Integration results of RBFs based method and the proposed method are shown with their height errors in Fig. 7(b) and 
(c), respectively. It is found that both methods are able to successfully reconstruct the shape from gradient data with a 

(a) (b) (c) 

Proc. of SPIE Vol. 8430  84300S-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 02/05/2014 Terms of Use: http://spiedl.org/terms



 

 

comparable accuracy. Although least squares estimation is involved in both methods, there are some differences between 
them, especially when handling large datasets. The RBFs based integration method accurately integrates every subset in 
a sequence and then stitch all subsets together to get the entire shape. That means the heavy work is spatially distributed 
and completed in sequence. On the other hand, the proposed method works on the whole region or at least few relatively 
large blocks if blocking is necessary for some huge datasets. The issue of large memory occupation is solved by 
implementing simple integration models with sparse matrices and reusing the same memory during iterative calculation 
in time axis. 

The comparison on accuracy and speed of these two methods is shown in Fig. 8. First, the accuracy is compared by 
integrating the same noisy gradient dataset with different sampling rates. The plot in Fig. 8(a) shows the standard 
deviations of height errors with different methods. It is obvious that the proposed method is more accurate. Also the 
larger the size of subset the more insensitive to noise as well as the stitching process the integration result is. 

 
Fig. 8. Comparison of the RBFs method with the proposed method: accuracy (a) and speed (b). 

Considering the necessary overlaps for stitching, the subset number is actually larger than the size ratio between the 
whole surface and the subset. The total runtime for integration is thus composed of the integration time in sequence and 
stitching time. It is also important to notice that if the subsets are identical for each patch, the integration time of the 
RBFs based method can be reduced by calculating the common matrix beforehand. Thus the RBFs based method is very 
fast when identical subsets are used as shown in Fig. 8(b) and also smaller subsets yields shorter runtime. However, in 
practical situation, some sampling data might be missing due to boundaries, unavailable regions, or poor quality, thus 
subsets are not identical and need to be recalculated, which increases the runtime as shown in Fig. 8(b). The proposed 
method copes with the complete and incomplete dataset in the same way and almost the same speed. Generally speaking 
the proposed method is fast, especially when the dataset can be directly handled without stitching. the proposed method 
runs faster, comparing to the reported runtime in Ref. [10] as around 300 seconds when reconstructing 106 surface 
values, which is also marked in Fig. 8(b). The limitation for this proposed method is investigated. As the traditional least 
squares integration method, the method can only handle complete or incomplete gradient dataset with rectangular mesh 
grid and it is not able to integrate arbitrarily distributed dataset, but the data are generally in rectangular mesh grid in 
many practical optical measurements. 

5. Conclusion 
This work attempts to improve the least squares integration method with iterative compensation to solve the issue of the 
incorrect biquadratic spline assumption. The proposed method is investigated by several simulations. Significant 
improvement in accuracy is verified by comparing with the traditional least squares integration method. Moreover, a 
comparison with the RBFs based integration method is carried out, and the results show the accuracy of both methods 
are comparable. The merits of the proposed method are accurate, fast, and able to handle large datasets. In summary, this 
least squares integration with iterative compensation method is an effective and accurate 2D integration tool to handle 
shape from slope problems in some gradient measuring based optical inspection applications. 

(a) (b) 
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