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Abstract. We address the issue of human activity recognition by intro-
ducing the multiclass relevance vector machine (mRVM), the current
state-of-the-art kernel machine learning technology given the multiclass
classification problems (actually, activity recognition can commonly be
viewed as a multiclass classification problem). Under our proposed recog-
nition framework, the required procedure consists of three functional cas-
cade modules: a. detecting the human silhouette blobs from the image
sequence by the background subtraction method; b. extracting the
shape and the motion features from the variation energy image (VEI);
and c. sending the obtained features to the mRVM and recognizing the
human activity. There are two types of mRVM: the constructive mRVM1
and the top-down mRVM2. We performed 10 times three-fold cross-
validation on the Weizmann benchmark data set to examine the effective-
ness of the proposed method. We also compared our method with other
existing approaches, and the experimental results show that the proposed
method offers superior performance. In summary, the mRVM, especially
the mRVM2, has advantages both in terms of recognition rate and sparsity,
along with a simple feature extraction process. The mRVM also signifi-
cantly simplifies the classification process, by comparison with traditional
binary-tree style multiclass classifiers. © 2012 Society of Photo-Optical Instrumen-
tation Engineers (SPIE). [DOI: 10.1117/1.OE.51.1.017202]

Subject terms: human activity recognition; kernel machine learning; multiclass
relevance vector machine; variation energy image.
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1 Introduction
Human activity recognition has received a great amount of
attention in the computer vision and video processing com-
munities. Research in this domain is motivated by a wide
range of promising applications, such as visual surveillance,1

analysis of sports events,2 human-computer interaction,3 and
biometrics.4 The procedure of human activity recognition
includes two stages: a. human detection and activity features
extraction, i.e., representation of activity, and b. classification
of activity. The selection of methodologies used in both
stages has a great influence on the final recognition
performance.

In the past few years a lot of work has been done on
human activity and motion analysis to search for a reason-
able representation of human activity. The existing methods
can be classified into two categories: model-based methods
and model-free methods. The model-based methods have
been widely used in motion analysis and the relevant appli-
cations, such as gait recognition. Many two-dimensional and
three-dimensional human models have been proposed
recently. Rectangle and skeleton models5,6 are the most fre-
quently adopted models in this category. Due to the large
degree of freedom in the non-rigid human body and the high
variability of individual shape, the model-based approaches
usually lack generality; thus, their applicability to actual
situations may be limited. On the other hand, in the model-
free methods, human movement is usually represented by

low-level features extracted from human appearance or
motion. Such methods exhibit much flexibility and robust-
ness and are promising for implementation in real-time
applications. Bobick and Davis7 proposed the motion energy
image (MEI) and motion-history image (MHI) for human
movement representation and recognition, which were
constructed from cumulative binary motion images. Wang8

introduced the average motion energy (AME) and mean
motion shape for human action recognition. Here, we pro-
pose a new spatio-temporal template: the variation energy
image (VEI), derived from the sequence of the detected sil-
houette blobs and the corresponding average motion image
(AME). Then, we extracted both the shape and the motion
features from the VEI, which are used to represent the
activity.

The selection of an appropriate classification method also
plays a crucial role in a generic human activity recognition
system. So far, many well-known pattern recognition tech-
niques, such as k-nearest neighbor (k-NN), support vector
machine (SVM),4,9 and relevance vector machine (RVM),
as well as their variants have been developed and applied
in activity recognition. The k-NN simply selects k-closest
samples from the training data, and the class with the highest
number of votes is assigned to the observed sequence.
However, in k-NN the features extracted from all the training
samples are employed without selection, which usually
means redundancy and thus leads to vain computation cost.
In addition, the k-NN essentially gives equal weight to each
training sample, which may not be appropriate in some
cases. The SVM overcomes this problem by selecting the0091-3286/2012/$25.00 © 2012 SPIE
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informative samples located at the boundary of the decision
function. Accordingly, only a fraction of samples in the
training set are employed for the subsequent classification
process, i.e., the SVM can maintain relative sparsity of
support vectors without any loss of recognition accuracy.
However, the SVM still has some inherent drawbacks: a. the
number of support vectors typically grows linearly with the
size of the training set, i.e., the computational complexity
would increase proportionally to the scale of the problem,
and b. the traditional SVM makes non-probabilistic but
hard binary decisions. However, the probabilistic prediction
is particularly crucial in classifications where the posterior
probabilities of class membership are necessary to adapt to
the varying class priors and the asymmetric misclassification
costs. Some post-processing techniques have been employed
to transform the binary outputs to probabilistic outputs for
SVMs.10,11 Nevertheless, Tipping12 argued that these esti-
mates are unreliable, and the kernel function of the SVM
should meet some special requirements. To further overcome
the shortcoming of SVM, the relevance vector machine
(RVM) was put forward, which relies on Bayesian inference
learning. The RVM can achieve comparable or even better
performance than the SVM while at the same time the spar-
sity of relevance vectors is greatly improved. Gholami et al.4

distinguished pain from non-pain in neonates and assessed
their pain intensity by using the RVM classification techni-
que. Selvathi9 used RVM and SVM for the classification
of volume of MRI data as normal or abnormal and demon-
strated that the RVM can obtain higher classification
accuracy than SVM.

Since both RVM and SVM were originally devised for a
two-class context, they must be modified so as to be applic-
able in the multiclass discrimination problems. One possible
solution is to construct multiple RVM classifiers and com-
bine them together. For instance, B. Yogameena et al.13

extended the RVM to a multiclass scheme by training multi-
ple mapping functions to implement the sub-classification;
then, these sub-classification results were combined for the
final pose recognition. Since this method needs to train mul-
tiple RVM classifiers, the advantage of sparsity that SVM or
RVM has would be more or less canceled out. Another
possible solution is to directly generalize the RVM to the
multiclass RVM. But it had been viewed as impractical for
some time due to the bad scaling of the type-II ML procedure
with respect to the number of classes C14 and the dimension-
ality of the Hessian required for the Laplace approxima-
tion.15 Until very recently, a novel classification algorithm,
the multiclass relevance vector machine (mRVM), has been
introduced, which expands the original RVM to the multi-
class and multi-kernel setting.15 Psorakis et al.16 provided
further insight into the theoretical background of the
mRVM and proposed a collection of methodologies that

boost the performance of mRVM, both in terms of computa-
tional complexity and discrimination power. The mRVM
gains multiclass discrimination by introducing an auxiliary
variable Y , from which we can derive the multinomial probit
likelihood for the estimation of class membership probabil-
ities. Different from the method proposed in the reference,13

the mRVM does not need the extra procedure to minimize
the cost functions of multiple RVM regression. Moreover,
it does not need to train multiple RVM classifiers but can
use merely a single mRVM classifier when dealing with
multiclass problems. Therefore, the recognition systems
are expected to be more efficient and stable if the mRVM
is integrated into them.

In this paper we use the mRVM technique15,16 to recog-
nize human activities. To the best of our knowledge, we are
the first to use mRVM to recognize human activities. Figure 1
shows the overview of the proposed activity recognition
method. First, the binary silhouettes are detected from the
captured image sequences by using the background subtrac-
tion technique. After normalization, these binary silhouettes
are used to determine the motion period. Subsequently, the
VEI is generated, and the activity features are extracted from
it. Finally, the extracted features are used by the multiclass
classifier mRVM to learn and recognize the human activities.

The rest of the paper is organized as follows: in Sec. 2 we
briefly cover the related literature. Section 3 describes the
extraction of the human blobs by background subtraction
and the VEI construction and representation. Section 4
reviews two different structures of mRVM classification
techniques: mRVM1 and mRVM2. Then, Sec. 5 reports the
training of the classifiers as well as the recognition results
on a benchmark database. The last section presents our
conclusions and discusses future work.

2 Related Work
A number of approaches for human activity recognition have
been proposed recently. A detailed overview of these vision-
based human activity recognition algorithms can be found in
Ref. 17. It covers much work about image representation and
activity recognition. Here, we will concentrate mainly on
spatio-temporal templates-based activity recognition algo-
rithms, which are more relevant to our work.

Bobick and Davis7 pioneered the idea of spatio-temporal
templates. They characterized each action with a binary
motion energy image (MEI) and a motion-history image
(MHI), from which seven Hu moments were extracted. Then,
the Hu moments were matched using a nearest neighbor
(NN) approach based on the Mahalanobis distance in order
to recognize the activities. Ahad18 extended this work by
using the directional motion-history image (DMHI) and
the NN approach for action recognition.

Fig. 1 Flow chart of the proposed activity recognition method.
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Schuldt et al.19 proposed a method for recognizing com-
plex motion patterns based on local space-time features in
video. They integrated these features with an SVM scheme
for recognition.

Weinland et al.20 introduced motion-history volumes
(MHV) as a free-viewpoint representation for human actions
in the case of multiple calibrated and background-subtracted
video. They presented algorithms for computing, aligning,
and comparing MHVs of different actions performed by
different people from a variety of viewpoints.

Wang et al.8 introduced average motion energy (AME)
and mean motion shape (MMS) to depict human motion in
a two-dimensional space. The features extracted from AME
and MMS were used to train NN and k-NN for recognizing a
set, including nine types of natural actions.

Meng et al.21 proposed a new motion-history histogram
(MHH) feature to capture information in a video. To further
improve classification performance, they combined both
MHI and MHH into a low-dimensional feature vector, which
is then processed by a support vector machine (SVM).

Qian et al.22 introduced a contour coding of the motion
energy image (CCMEI) and recognized the activities of
people with an SVM multiclass classifier with binary-tree
architecture, which is determined by a clustering process.

We note that, in some of these methods, the motion fea-
tures employed are relatively complex,20 or the classifiers do
not have good discriminative performance,7,8 which would
hinder their feasibility in real applications.

3 Feature Extraction of Activities
The original pixel-level data contained in the captured image
sequences correspond to extremely high dimensionality and
have a lot of redundancy. The dimensionality of the data
needs to be reduced through an efficient and effective feature
extraction process to ensure real-time activity recognition.
Moreover, the reliable detection of a silhouette is also a
vital pretreatment for the subsequent feature extraction.

In this section we will briefly introduce the silhouette
detection and the features extraction procedures. We use
a new spatio-temporal template, VEI, for the feature
extraction.

3.1 Silhouette Detection and Post-Processing

A silhouette is usually detected by finding the difference
between the background and the current image23 or by
grouping optical flow to find coherent motion.24 In our case,
we use the background subtraction technique to detect
the binary human silhouette. There are inevitably existing
spurious pixels, holes inside the moving subject, and other
anomalies in the detected sections. The connectivity compo-
nent analysis and the morphological operations, such as
erosion and dilation, are successively applied to remove
the spurious pixels and to fill small holes inside the extracted
silhouettes. To eliminate the effect of variation in imaging
distances, the obtained binary silhouettes are centered and
normalized to a fixed size 100 × 80. The whole procedure
of detecting a human blob is shown in Fig. 2.

3.2 Period or Duration Estimation

Many types of human activities (e.g., walking, running,
jogging, etc.) show periodicity at a short time-duration. The
motion period can be determined by calculating the number
of foreground pixels in a silhouette image.25 However, the
number of foreground pixels is prone to be affected by noise
arisen from complex background, illumination variation, and
the change in an object’s appearance. Here, we estimated the
motion period by examining the aspect ratio values asso-
ciated with the silhouette image sequence. For example, the
silhouette image sequence for a short-time-duration is shown
in Fig. 3, which is related to the “walking” activity. Figure 4
shows the corresponding variation in the aspect ratio over the
whole time span (here, the whole image sequence includes
about five motion cycles). It is clear that the variation in the
aspect ratio exhibits strong periodicity; thus, the time dura-
tion between two adjacent valley points can be taken as one
motion period.

In this paper we assume that all the captured image
sequences span more than one motion cycle. Once the
motion period parameter is determined, the whole sequences
will be truncated into several cycles. Thereafter, the binary
silhouettes corresponding to a certain motion cycle are
picked out to generate the VEI.

Fig. 2 Detection of a human silhouette: (a) original image; (b) background image; (c) raw binary silhouette; (d) final silhouette.

Fig. 3 Silhoutte sequences in a motion cycle.
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3.3 A New Spatio-Temporal Template: VEI

The spatio-temporal templates-based activity recognition
methods try to map the whole captured image sequences
into a single or several images,7,18 which in essence is a data
compression process. Here, we proposed a new spatio-
temporal template named VEI, which has been extended
from the average motion energy (AME).8 The AME is gen-
erated from silhouette sequences in a certain motion cycle as:

Uðx; yÞ ¼ 1

T

Xk0þT−1

k¼k0

f ðx; y; kÞ; (1)

where f ðx; y; kÞ is the silhouette image corresponding to the
k-th frame while T equals the number of frames included in a
motion cycle. We can also obtain the deviation image by:

σðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T − 1

Xk0þT−1

k¼k0

½f ðx; y; kÞ − Uðx; yÞ�2
vuut . (2)

By using the AME and the deviation image, we compute the
VEI as:

Vðx; yÞ ¼ σðx; yÞ
Uðx; yÞ . (3)

Figure 5 shows several silhouette samples related to the
“jacking” activity, as well as the resultant VEI. Both the
shape profile and the motion characteristics are reflected
in the VEI.

Next, we will extract the shape and the motion features
from the VEI, which would then be integrated and sent to
a classifier for training and testing.

3.3.1 Shape features

A specific activity is usually accompanied with unique var-
iations in shape profile. For instance, the “bend” activity
would greatly expand the body in the lateral direction while
the “walking” activity creates variation of shape width within
a relative small range, so the aspect ratio metric would
discriminate between the “bend” and the “walking” activity.
Meanwhile, there also exist significant differences in the
centroid positions in such situations even if the same persons
are involved.

Based on the aforementioned discussions, we decided to
adopt three kinds of shape features for activity recognition:
the centroid of AME, the centroid of VEI, and the aspect
ratio of VEI.

To find the centroid of the VEI, first we compute its
0-rank and 1-rank geometric moments:

m00 ¼
XM
x¼1

XN
y¼1

Vðx; yÞ;

m10 ¼
XM
x¼1

XN
y¼1

x • Vðx; yÞ;

m01 ¼
XM
x¼1

XN
y¼1

y • Vðx; yÞ;

(4)

where Vðx; yÞ represents the gray scale value of the VEI at
the pixel ðx; yÞ whileM and N are the width and the height of
the VEI, respectively. Then, the centroid of VEI is defined as

ðx0; y0Þ ¼
�
m10

m00

;
m01

m00

�
. (5)

The centroid ðx1; y1Þ of AME can be calculated in a similar
way while the aspect ratio of the VEI can be determined from
the bounding box surrounding it.

Certainly, the shape of VEI can also be described in some
other more deliberate and complicated ways. For instance,
we can: a. extract the Hu moments or the Zernike moments18

from the VEI, which are invariant to the rotation, scale, or
translation transforms in the same plane or b. use curve-
fitting methods, such as the B-spline method, to describe
the contour of VEI, so the fitting parameters will be included
in the feature data or c. even do spatial/transformed domain
analysis on the landpoints located at the boundary of VEI,
such as the square-to-circular transformation,22 the LLE26

method, the Fourier transform, etc. By using such shape
features during the classification, we may expect better
recognition performance. However, the extraction of more

Fig. 4 Variation of the aspect ratio over time.

Fig. 5 Human activity representation using VEI: (a) to (f) represent some key frames of one activity (jacking) while (g) shows the resultant VEI.
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deliberate features will increase the computational complex-
ity and the storage cost, which make it infeasible for real-
time systems. To maintain the real-time performance of the
proposed algorithm, we suggest using relatively simple
shape or motion features.

3.3.2 Motion features

As shown in Fig. 5(g), the motion characteristics are
strengthened in the VEI. More importantly, the VEI takes
on a distinctive pattern, from which the corresponding
style of activity can be identified. Here, we have extracted
three kinds of motion features: the normalized effective
area of motion domain, the distribution of motion area in
the four quadrants, and the normalized amplitude of the
leg raising.

The effective area of motion domain is defined as:

S ¼
XM
x¼1

XN
y¼1

Vðx; yÞ. (6)

We normalize the effective area of the motion domain (S̄) to
compensate for the inconsistency among the body profiles
of different persons. Although we can measure the motion
component from S̄ quantitatively, we cannot extract any
information about where the motion had taken place. There-
fore, the distribution of motion area in the four quadrants is
an indispensible and supplementary feature.

We also noticed that the motion of legs always plays an
important role in many types of human activity, such as
“walking,” “skipping,” running,” etc. Hence, the cue of
leg motion cannot be ignored in real applications. For sim-
plicity, we considered only the amplitude of the leg in this
paper, which can easily distinguish between the “walking”
activity and the “running” activity. The amplitude of the
leg raising can be easily determined from the contour of
VEI. We normalized it to the body height to eliminate the
effect of individual discrepancy.

In summary, six features determined by 11 parameters
were extracted from the VEI template. Since our method
is based on motion periodicity, the frames that belong to
a single motion cycle are required for feature extraction,
which reduces the computation cost significantly. Both the
shape features and the motion features are used to depict
the activities. Therefore, the limitation resulting from either
shape or motion-based representation can be alleviated.
Moreover, all these adopted features are simple, intuitive,
and relatively easy to extract. Thus, they are especially
applicable for real-time tasks.

4 Multi-Kernel Relevance Vector Machines
In this section we solve the multiclass data classification
problem by using a new state-of-the-art sparse Bayesian
learning approach, which is known as mRVM. The mRVM
expands the original RVM to the multiclass setting by intro-
ducing auxiliary variable Y , which acts as the intermediate
regressing target and can lead to the multinomial probit like-
lihood for the estimation of class membership probabilities.16

Based on the search of the relevance vectors during the
training phase, two variants (mRVM1 and mRVM2) of
mRVM15,16 have been proposed recently. We use both of
these variants to classify the human activities.

4.1 The mRVM1 Classifier

Assume a training set fX1;X2; · · · ;XNg ⊂ RD, with target
values given by ft1; t2; · · · ; tNg, where Xn is a Ds-
dimensional sample and tn ∈ f1; · · · ;Cg, n ¼ 1; · · · ;N. The
corresponding multinomial likelihood function is as follows:

pðtn ¼ ijW; knÞ ¼
Z

pðtn ¼ ijynÞpðynjW; knÞdyn

¼ εpðuÞ

�Y
j≠i

Φ½uþ ðwi − wjÞ�Tkn
�
; (7)

where Y is the auxiliary variable introduced for multiple
class discrimination and assumed to obey a standardized
noise model yncjwc; k

β
n ∼ Nycnðwck

β
n; 1Þ, where wc from W

follows a standard zero-mean Gaussian distribution
ωnc ∼ N½0; ð1∕αncÞ�, and each element kn from the kernel
K describes a similarity measure between activity samples
based on specific features.

Given A ¼ ðα1; · · · ; αnÞ, the posterior parameter distribu-
tion conditioned on the data is given by combining the like-
lihood with the prior under the Bayes rule:

pðWjY;A;KÞ ¼ pðYjW;KÞpðWjAÞ∕pðYjK;AÞ. (8)

The value of A� can be determined by maximizing the multi-
class marginal likelihood pðYjK;AÞ, where

pðYjK;AÞ ¼
Z

pðYjK;WÞpðWjAÞdW.

The logarithm counterpart LðAÞ can be further expanded as:

LðAÞ ¼ log pðYjK;AÞ ¼ log

Z
pðYjK;WÞpðWjAÞdW

¼
XC
c¼1

−
1

2
½N log 2π þ log jCj þ yTcC−1yc�; (9)

where C ¼ IþKA−1KT and the determinant and inverse of
C can then be written as:

jCj ¼ jC−ijj1þ α−1i kTi C
−1
−i kij;

and

C−1 ¼ C−1
−i −

C−1
−i kik

T
i C

−1
−i

αi þ kTi C
−1
−i ki

.

We can then rewrite the logarithm marginal likelihood func-
tion [Eq. (11)] in the form

LðAÞ ¼ LðA−iÞ þ
XC
c¼1

1

2

�
log αi − logðαi þ siÞ þ

q2ci
αi þ si

�
;

(10)

where si ¼ kTi C
−1
−i ki and qci ¼ kTi C

−1
−i yc. The sparsity factor

si defines the measure of overlap between a sample ki and the
ones already included in the model. qci measures how good
the sample is in helping to describe a specific class. Setting
the derivation of ∂LðAÞ∕∂αi equals to zero, we can obtain the
stationary points:
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αi ¼
Cs2iP

C
c¼1 qci þ Cs2i

if
XC
c¼1

q2ci > si; (11)

αi ¼ ∞ if
XC
c¼1

q2ci ≤ si. (12)

Note that the quantity θi ¼
P

C
c¼1 q

2
ci − si represents the con-

tribution of the i’th sample to marginal likelihood, so we can
set the rule of inclusion or exclusion sample based on the
values of θi and αi:

a. IF θi > 0 and αi < ∞, THEN update αi from Eq. (11)
b. IF θi > 0 and αi < ∞, THEN set αi from Eq. (11)
c. IF θi ≤ 0 and αi < ∞, THEN set αi ¼ ∞ from Eq. (12)

Then, the M-steps and E-steps are used to estimateW and
the posterior expectations of Y respectively.

ŵc ¼ ðKKT þ AcÞ−1KyTc ; (13)

ỹcn←ŵT
c kn −

εpðuÞfNuðŵT
c kn − ŵT

i kn; 1ÞΦn;i;c
u g

εpðuÞfΦuðuþ ŵT
i kn − ŵT

c knÞΦn;i;c
u g ; (14)

and for the i’th class

ỹin←ŵT
i kn −

�X
j≠i

ỹjn − ŵT
j kn

�
; (15)

where ỹ denotes the expectation value.
The training procedure involves consecutive updates of

the model parameters. The hyper-parameters A, W, and Y
are all updated during each iteration, and the process is
repeated until the change in the hyper-parameter values is
minimal or the preset number of iterations has been reached.
A detailed description of the training process of the mRVM1

classifier can be found in Ref. 16.
In the classification phase, the test sample X is classified

to the class for which the auxiliary variables yin, 1 ≤ i ≤ C is
maximized:

tn ¼ argmax
i
ðyinÞ (16)

4.2 The mRVM2 Classifier

The mRVM2 follows a top-down strategy by loading the
whole training kernel into memory and iteratively removing
non-relevant samples. The training phase related to mRVM2

is similar to the one for mRVM1, which also requires
consecutive updates of the parameters W and Y through
Eqs. (13)–(15). The only difference lies in that the mRVM2

does not adopt the marginal likelihood maximization as
mRVM1 but rather employs an extra E-step for the updates
of the hyper-parameters A. The selection rule of training
samples and other details can be found in Ref. 16.

5 Experimental Results
In this section, we use the classification techniques described
in Sec. 4 to recognize human activities. We chose the Weiz-
mann data set, which is a publicly available data set well
designed for activity recognition. Here, we will offer a brief
introduction about the Weizmann data set and then provide
the experimental results. The quantitative comparative eva-
luation between our method and some other methods was
made in two ways: on the one hand, both the feature repre-
sentation and the classification techniques are individually
taken out as independent modules for recognition perfor-
mance evaluation, so as to thoroughly examine the validity
of our method. On the other hand, the performance with
different methods is also compared directly.

5.1 The Weizmann Data Set

This data set has been introduced by Blank et al.27 It
consists of 93 uncompressed videos in avi format with low
resolution (180 × 144 pixels, 25 frames∕s), including 10 dif-
ferent activities (the numbers in parentheses signify the
respective number of videos): bending (9), jumping-jack (9),
jumping forward on two legs (9), jumping in place on two
legs (9), running (10), galloping sideways (9), skipping (10),
walking (10), one-hand waving (9), and two-hands waving
(9). The videos are colorful, and the actors are of both gen-
ders. Some sample frames from the database are shown in
Fig. 6, and the resultant VEIs with respect to each style of
activity are shown in Fig. 7.

Fig. 6 Sample frames from the 10 activities in the Weizmann data set: (a) bend, (b) jack, (c) jump, (d) p-jump, (e) run, (f) side, (g) skip, (h) walk,
(i) wave 1, (j) wave 2.
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5.2 Activity Recognition with mRVM1 and mRVM2

As depicted in Sec. 3, the normalized silhouette sequence is
used to generate the VEI, from which the activity features are
extracted. Next, we will use the mRVM1 and the mRVM2

discussed in Sec. 4 to finish the recognition task.

5.2.1 Results with the mRVM1

The mRVM1 is applied to classify the activity features.
We perform a 10 times three-fold cross-validation procedure
in order to minimize any result variance produced by
improper folds. The bandwidth of the Gaussian kernel is
an important parameter, which has great influence on the
recognition performance. A simple method was used to
determine the optimal bandwidth. We increased its value
with a constant step of 0.05 over the range of [0.05, 1]
and trained the mRVM1 classifier over the whole training
set. The bandwidth maximizing the classification accuracy
was chosen for the following experiments. Figure 8 shows
the training performance of the mRVM1 with different band-
widths, from which we can see the best bandwidth parameter
is 0.25. Certainly, the gradient descent methods or other
similar optimization methods with variable step size may
be used to further improve the classification performance,
and this will be considered in our future work.

Figure 9 shows the recognition results with the mRVM1 in
terms of percentage accuracy, which includes the worst, the
mean, and the best recognition rates of the 10 times valida-
tions. The horizontal axis specifies the iteration numbers
while the vertical coordinate represents the recognition
rates. It can be seen that all the recognition rates initially
increase rapidly as the iteration number grows, and after 60
iterations the mean recognition rate gradually becomes con-
stant. A noticeable fact is that the recognition rates witness
a heavy fluctuation during the first five iterations, which
can be interpreted as a data set-dependent phenomenon.
After 120 iterations, the worst, the mean, and the best recog-
nition rates are 89.28%, 94.5%, and 98.19%, respectively. The
difference between the worst and the best recognition rates
is even as high as 8.91%, which means the train/test split
would have great influence on the recognition performance.
This phenomenon also suggests that the recognition might
be more robust if we can find the optimal training set through
multi-times cross-validation.

Figure 10 shows the number of retained relevance vectors
(RVs) associated with given iteration numbers, including
the minimal, the mean, and the maximal number of RVs
in the 10 times validations. Since themRVM1 is based on the
constructive strategy, the RVs start with a single sample and
then new RVs are gradually accepted or abandoned as the

Fig. 7 VEIs for the ten activities: (a) bend, (b) jack, (c) jump, (d) p-jump, (e) run, (f) side, (g) skip, (h) walk, (i) wave 1, (j) wave 2.

Fig. 8 The training performance of mRVM1 with different bandwidths.
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Fig. 9 Recognition rate with mRVM1.
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iteration progresses. The number of RVs always keeps
increasing during the first 20 iterations, and then the number
of retained RVs seems to drop with a slight tendency. Mean-
while, the fluctuation in number of retained RVs is also
observed. After 120 iterations, the minimal, the mean, and
the maximal number of RVs are 15, 17.89, and 20, respec-
tively, i.e., the fluctuation range in the number of retained
RVs is six, due to a different train/test split.

The confusion matrix is commonly used as a good measure
for the multiclass discrimination performance.3,6,28 Table 1
gives the confusion matrix associated with all the types of
activities. Specifically, the data located at the intersection
of the i’th row and the j’th column represents the percentage
of class i activity being recognized as class j. In other words,
the main diagonal of the confusion matrix relates to the recog-
nition accuracy of different activities while the remaining cells
correspond to the percentages of misclassification.

As has been shown from Table 1, the averaged recogni-
tion accuracy has reached about 94.5%. However, there is a
clear discrepancy among different activities, i.e., some activ-
ities, such as “bend” and “wave 1” both own recognition
rates of 100% whereas for other activities, such as “run”
and “skip” the related recognition rates are below 90%
(85% and 87%, respectively). In addition, the misclassifica-
tion rates are distributed in an unbalanced way. For instance,

the confusion mainly occurs in three pairs: “run” and “walk,”
“skip and run,” and “walk and run” (the corresponding mis-
classification rates are 9%, 9%, and 8%, respectively), which
can be explained by their relative similarity. For the other
pairs, the individual misclassification rates are less than
6%. Meanwhile, it is worth noting that the values of the
obtained confusion matrix are non-systematic, which may
reveal that the boundary of decision function is somewhat
biased and still has the potential to be further optimized.
More importantly, the above results suggest that even better
recognition accuracy may be expected if we devise the
feature model more intentionally, i.e., paying more attention
to the prominent pairs with high misclassification rates (refer
to the confusion matrix).

5.2.2 Results with the mRVM2

For a fair comparison between mRVM1 and mRVM2, here
we use the same kernel function and bandwidth parameter as
in the previous section.

Figure 11 shows the recognition results of mRVM2. It
can be seen that the mean recognition rate increases rapidly
in the first five iterations, and after five iterations it reaches
up to 96.37%. After 120 iterations, the worst, the mean, and
the best recognition rates are 96.7%, 98.2%, and 100%,
respectively, i.e., the fluctuation in recognition rates caused
by variations in the training set is relatively small (only
about 3.3%).

Figure 12 shows the number of retained relevance vectors
(RVs) associated with given iteration numbers. Since the
mRVM2 is based on the top-down strategy, the RVs start
with the whole training set and subsequently prune down
the most irrelevant samples during each iteration. The num-
ber of active samples decreases sharply during the first 10
iterations and then drops more slowly. After 120 iterations,
the minimal, the mean, and the maximal number of RVs are
11, 12.33, and 13, respectively, i.e. the size of retained RVs
even approaches the number of classes (this paper involves a
total of 10 classes of activities), and the fluctuation range in it
is as small as three. Figures 11 and 12 show that as the itera-
tion progresses, the size of retained RVs gradually reduces
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Fig. 10 Number of retained RVs with mRVM1.

Table 1 Confusion matrix with mRVM1.

Bend Jack Jump P-jump Run Side Skip Walk Wave 1 Wave 2

Bend 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Jack 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Jump 0.00 0.00 93.3 4.50 0.00 0.00 2.20 0.00 0.00 0.00

P-jump 0.00 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00

Run 0.00 0.00 0.00 0.00 85.0 2.00 4.00 9.00 0.00 0.00

Side 0.00 0.00 0.00 0.00 3.30 91.1 0.00 5.50 0.00 0.00

Skip 0.00 0.00 1.00 0.00 9.00 0.00 87.0 3.00 0.00 0.00

Walk 0.00 0.00 0.00 0.00 8.00 2.00 0.00 90.0 0.00 0.00

Wave 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 0.00

Wave 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.10 98.9
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while the mean recognition rate improves with each iteration.
It demonstrates that the recognition rate deteriorates if the
uninformative samples are included in the RVs.

Table 2 gives the resultant confusion matrix. ThemRVM2

achieves the average recognition rate of 98.2%, which is
3.5% higher compared with the mRVM1. In addition, the
most serious confusion occurs in two situations: the

misclassification rates between “walk” and “run,” “run and
“walk” are 8% and 6%, respectively. These situations can be
alleviated by introducing a velocity feature.

The experimental results show that the mRVM2 outper-
forms the mRVM1 both in terms of recognition rate and
sparsity of RVs. However, further investigations are needed
to examine the universality of this conclusion, i.e., experi-
ments should be done on extensive human activity data sets.

5.3 Comparative Evaluation

In this section we first compare the recognition perfor-
mances of our proposed feature representation and some
other feature representation techniques. The evaluation is
performed on the Weizmann data set, and the same classifier
techniques—mRVM1 and mRVM2—are employed. The
comparison results are listed in Table 3, which shows that
the Zernike moments clearly relate to higher accuracy
than the Hu moments. The reason may be that the Zernike
moments have native rotational invariance and are far more
robust to noise than Hu moments. It also shows the combi-
nation of Hu and Zernike can even achieve better recognition
performance, which approximately equals the recognition
accuracy associated with our proposed feature representa-
tion. However, our proposed features would be much simpler
in implementation and thus more appropriate for real appli-
cation when considering the relative high computational
complexity accompanied with moment representations.

We subsequently compared the recognition performances
between the mRVM classifiers and some other main classi-
fication techniques. The evaluation was also performed on
the Weizmann data set, and the same feature model (VEI)
was employed. In general, recognition accuracy is sensitive
to the parameters of classifiers. For fair comparison, it is
desirable to adopt optimal parameters for each kind of clas-
sifier. Specifically, as to the k-NN classifier, we set k ¼ 3
since in this paper we can achieve the highest recognition
accuracy under this condition. For the mRVM classifiers
the Gaussian kernel was employed, and a nearly optimal
bandwidth value (0.25) was adopted. For the SVM classifier,
the Gaussian kernel was also employed, and the optimal
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Fig. 11 Recognition rate with mRVM2.
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Fig. 12 Number of retained RVs with mRVM2.

Table 2 Confusion matrix with mRVM2.

Bend Jack Jump P-jump Run Side Skip Walk Wave 1 Wave 2

Bend 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Jack 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Jump 0.00 0.00 96.6 0.00 0.00 0.00 0.00 3.40 0.00 0.00

P-jump 0.00 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00

Run 0.00 0.00 0.00 0.00 94.0 0.00 0.00 6.00 0.00 0.00

Side 0.00 0.00 0.00 0.00 0.00 100 0.00 0.00 0.00 0.00

Skip 0.00 0.00 0.00 0.00 0.00 0.00 100 0.00 0.00 0.00

Walk 0.00 0.00 0.00 0.00 8.00 0.00 0.00 92.0 0.00 0.00

Wave 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 0.00

Wave 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100
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values of two controlling parameters, i.e., bandwidth and
regularizing parameter C, were also fixed with the same
searching strategy as in mRVM (in this paper, the optimal
bandwidth and regularizing parameters are set to be 0.2
and 10, respectively). The comparison results are listed in
Table 4, which shows that the mRVM classifiers, especially
the mRVM2, can yield much higher recognition accuracy
than other classifier techniques.

Finally, we also compared the performance of our method
with other existing methods on the same data set but with
different classification techniques and different feature mod-
els. The quantitative results have been shown in Table 5. It
can be seen that our method outperformed the other methods
in terms of recognition rate, especially when the mRVM2

was applied. Particularly, in the paper of Zhou et al.29 both
the SVM and the NN classifiers are employed (while the
chosen feature models are absolutely the same), and the
recognition performance of the former is much better than
the latter. This consequence is as per our expectation since
the SVM is a nonlinear classifier whereas NN is a linear clas-
sifier, i.e. the SVM inherently has stronger discriminative

ability. Additionally, the pLSA classifier used in Ref. 30
is nonlinear. Our proposed feature extraction process is
also simpler to implement. Specifically, the feature model
in Ref. 29 includes 208 descriptive parameters that have been
deduced from the time series data. In Ref. 30 the interest
points are detected frame by frame to form a spatio-temporal
cub, the dimension of which is subsequently reduced to
100 with the PCA algorithm. In Ref. 28 both the three-
dimensional gradient and the orientation information are cal-
culated at each pixel, and then a descriptor of 256 length and
2048 dimensions is generated. However, in our method the
dimension of features is only 11, which is one or two orders
smaller than the aforementioned methods. All the features
are calculated merely from the spatio-temporal image (VEI
or AME); thus, our method would be much less time-
consuming during the feature extraction stage. In Ref. 13
the reported recognition accuracy value is approximate to
that of mRVM1 but clearly lower than that of mRVM2.
Moreover, that method needs to train multiple RVM classi-
fiers for the multiclass problems. In contrast, the mRVM
shows admirable sparsity and possesses the multiclass
discriminative ability with a single classifier; thus, the com-
putation cost during the classification stage is likely to be
remarkably reduced. As a result, our method would have
advantages in real-time applications.

In summary, the experiment results demonstrate that the
mRVM exhibits considerable sparsity and strong discrimina-
tion in the multiclass activity recognition, which reveals its
applicability to large-scale activity recognition problems.
Furthermore, the proposed method is quite promising for
real-time applications because: a. the mRVM classifiers,
especially the mRVM2, show considerable sparsity of RVs,
i.e., the size of retained RVs even approaches the number
of classes, which means the computation cost during the
classification stage can be sharply reduced, b. the proposed
features are quite simple to extract, and, meanwhile, only
frames in a single motion cycle have to be dealt with, i.e.,
the feature extraction process also has relatively low compu-
tation complexity, and c. by using the mRVM, the classifica-
tion procedure becomes more compact, efficient, and stable.
Specifically, as for the traditional multiclass kernel machine
learning algorithms, cascading of classifiers is always una-
voidable. For instance, in Ref. 30 the multiple classifiers are
composed of C SVM classifiers based on the one-against-all
strategy. In Ref. 29, the multiple classifiers are constructed

Table 3 Comparison of recognition performance on Weizmann
data set with the same classifier mRVM1 or mRVM2 but with
different features.

Feature Representation

Classifier Hu Zernike Huþ Zernike Our Features

mRVM1 79.3 89.1 93.8 94.5

mRVM2 86.5 92.7 98.4 98.2

Table 4 Comparison of recognition performance on Weizmann
data set with the same features but different classifiers.

Different classifiers

NN k -NN Bayes SVM mRVM1 mRVM2

Accuracy (%) 81.4 83.6 89.5 92.7 94.5 98.2

Table 5 Comparison of recognition performance on Weizmann data set with different methods.

Methods Feature Extraction Classifier Accuracy (%)

our method VEI model mRVM1 94.5

VEI model mRVM2 98.2

Niebles et al.30 spatial-temporal interest points pLSA 90.0

Scvanner et al.28 three-dimensional SIFT description SVM 84.2

Zhou et al.29 structure-based statistical feature NN 78.3

structure-based statistical features SVM 91.4

Yogameena et al.13 shape discriptions of silhouette points multiple RVMs 94.67
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from CðC − 1Þ∕2 SVM classifiers based on the one-against-
one strategy. By contrast, in the mRVM a single classifier is
sufficient to discriminate all the classes.

6 Conclusion
In this paper we used mRVM classification technology
to recognize human activities. In addition, a new spatio-
temporal template was put forward, from which the activity
features could be extracted in an efficient way. To validate
the recognition performance of the proposed method, the
10 times three-fold cross-validation was carried out on the
Weizmann data set, and the experiment results were given.
Meanwhile, the recognition performance of other methods
was also listed out for comparison. The results demonstrate
that the mRVM classifiers, especially the mRVM2, are ideal
tools for activity recognition problems and have the potential
to be applied on large-scale data sets.

There are mainly two aspects that need further improve-
ments in future work. First, more flexibility can be added to
the kernel function during the training stage. In the proposed
method, the Gaussian kernel function with fixed bandwidth
has been used for simplicity. The other type of kernel
functions can also be considered. Meanwhile, the kernel
parameter learning scheme31 will be incorporated into the
training stage so as to further improve the classification per-
formance of our method. Second, we will put more emphasis
on the design of the feature model. Misclassification situa-
tions still exist with our method, and the misclassification
rates are distributed in an unbalanced way. Accordingly, if
we devise the feature model more intentionally, the specific
style of misclassification might be alleviated. For instance,
the velocity feature might be powerful in distinguishing
“run” from “walk.” On the other hand, all the activities
involved in this paper have strong periodicity. However, in
practice some activities may be non-periodic at the scale of
shot time, or they may be divided into a series of basic activ-
ities. Certainly, these situations would require variations in
the feature model. For instance, we can modify the VEI
by adding motion-direction information so as to strengthen
the adaptability of our method to compound activity recog-
nition. Additionally, extension of our work to the multi-view
situation is also meaningful.
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