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Approximating the Performance of a  

Batch Service Queue Using the M/Mk/1 Model 
 

Kan Wu, Leon McGinnis, and Bert Zwart 
 

Georgia Institute and Technology, Atlanta, GA 30332 USA 

 

Batching plays an important role in semiconductor fabs, and it can lead to inefficiency if not treated with care. The performance of 

parallel batch processes is often approximated by the G/G/1 based approximate models. By carefully examining the existing models, 

the dependence between queueing time and wait-to-batch time has been identified. A new improved model for parallel batch systems is 

proposed to exploit this dependence. The computation of the new model is still simple and fast, but it gives better approximation by 

reducing the systematic error in earlier models which ignored the dependence between queueing time and wait-to-batch time.  

 

 
Index Terms—Parallel batch, Queueing model, Performance evaluation.  

 

Note to Practitioners: 

Practical manufacturing systems are usually very complex. In order to analyze system behavior, assumptions are made to 

enable the analysis. A decomposition approach is commonly adopted based on an independence assumption. However, any two 

components in a complex manufacturing system are seldom completely independent. When there are real dependencies, we 

should take special care with analyses based on decomposition. This paper examines parallel batch processing and through 

detailed analysis, identifies a particular dependence and proposes an improved model that is validated through experimentation.  

 

I. INTRODUCTION 

 parallel batch is defined as processing a pre-determined 

group of jobs simultaneously without being interrupted by 

other product groups [1]. The job group has no specific 

composition and may consist of a single product or multiple 

products, as long as they use the same recipe. The number of 

jobs, i.e. batch size, is constrained by the process maximum 

batch size (if any).  

Furnaces and ovens are typical examples of parallel batch 

machines. For example, the common physical capacity of a 

furnace in a 300mm semiconductor fab is four lots. However, 

a furnace parallel batch capacity is sometimes reduced to three 

lots due to process quality concerns.  

Modeling parallel batch processing accurately is critical in 

understanding the performance of semiconductor fabs. Batch 

processing has captured researchers’ attention for a long time 

and been rigorously studied. The first paper on this topic may 

be traced back to Bailey [2], who modeled a simple queueing 

process in which customers arrive at a single queue at random, 

and are served in a batch with a fixed maximum batch size.  

Chaudhry and Templeton [3] summarized the state of the art 

up to that time in their book, A First Course in Bulk Queues. 

Two types of batch processing were addressed: bulk-arrival 

queues and bulk-service queues: bulk arrivals correspond to 

transfer batches and bulk services correspond to parallel 

process batches. Because they focused on queueing models 

which can be solved exactly, they did not address G/G
k
/1 

approximate models. Furthermore, models of serial process 

batches were not discussed.  

In the late 1980s, the G/G/1 based approximate models for 

G/G
k
/1 queues were proposed by Bitran and Tirupati [4] and 

Segal and Whitt [6]. Their approximations are based on 

decomposing the cycle time into three parts: wait-to-batch 

time, queueing time and service time, where the queueing time 

is obtained by G/G/1 approximations. This approximate model 

is generally applied to understand the behavior of parallel 

batches in practical manufacturing systems. In the 1990s, 

Hopp and Spearman [1] summarized previous work and 

introduced models for parallel process batches, serial process 

batches and transfer batches. 

The approximate parallel batch model proposed by Bitran 

and Tirupati [4] offers us a flexible and powerful tool for 

describing the behavior of parallel batching machines. 

However, a potential issue of this approach is the assumption 

of independence between wait-to-batch time and queueing 

time, which is not satisfied in general. By carefully examining 

this issue, we develop an improved model to approximate the 

performance of parallel batching machines using the analytical 

solution from the M/M
k
/1 model.  

Our objective is to identify and correct errors in a 

commonly employed approximate cycle time formula for 

single server batch queues. Although we still adopt the 

decomposition approach, we make our decomposed model be 

the same as the M/M
k
/1 model when the arrival process is 

Poisson and the service time is exponential. By assuming the 

variability term and the utilization term in Kingman’s G/G/1 

approximation [5] are approximately independent, the results 

are then further generalized to the G/G
k
/1 queues. The new 

decomposition approximation yields the exact solution for the 

M/M
k
/1 case and, based on the simulation results, gives 

smaller errors for the G/G
k
/1 cases. 

This paper is structured as follows: Section II provides the 

analysis of issues caused by the standard decomposition 

approach. In section III the new approximate model is 
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proposed. Simulation results are given in section IV. 

Extensions to multiple server queues are given in section V 

and conclusion is given in VI. 

II. THE ANALYSIS 

The G/G/1 based approximate models for parallel process 

batches decompose the cycle time into three parts: wait-to-

batch time (WTBT), queueing time (QT) and service time 

(ST). The structure of the model is illustrated in Fig. 1. The 

intention behind this decomposition is to approximate the 

duration of the three time segments. To guarantee the success 

of this decomposition, we need to make sure that each 

segment performs independently of the others. 

 

 B

WTBT QT ST

 B

WTBT QT ST

 

Fig. 1.  The structure of parallel process batches. 

 

Based on this scheme, if the job inter-arrival times are 

independent and identically distributed, Hopp and Spearman 

[1] propose the following model to approximate the average 

cycle time of parallel process batches, 

 
2 2/1 1 1

( )( ) ,
2 2 1

a bc k ck
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where / ,k   and k is the fixed parallel batch size, is 

the arrival rate of jobs (jobs/hour),  is the service rate of the 

batching machine (batches/hour), ca is the coefficient of 

variation (CV) of inter-arrival times, and cb is the CV of batch 

service time.  

The first term, (k-1)/(2), is the expected wait-to-batch time 

experienced by each single job. The second term is the 

expected queueing time from Kingman’s G/G/1 

approximation. Because each batch contains k jobs, and the 

job inter-arrival times are independent and identically 

distributed, the squared CV of batch inter-arrival times is k 

times smaller than the squared CV of job inter-arrival times. 

The third term is the expected batch service time. 

To examine the effectiveness of this approximate model, we 

first compare the results of (1) with an M/M
k
/1 queue, since an 

M/M
k
/1 can be solved exactly [7]. In an M/M

k
/1 queue, job 

arrivals occur as a Poisson process, and service times are 

exponentially distributed with a fixed parallel batch size k. 

The machine will process a batch if the batch size is exactly k. 

If the number of jobs in queue is less than k, they wait until k 

have accumulated. Batches are served on first-come-first-serve 

(FCFS) basis, and there is no limit on the queue length. 

Under the assumption of an M/M
k
/1 queue, (1) simplifies to 
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The queueing time in (2) is calculated based on Kingman’s 

approximation, which is composed of a variability term, 

(1/k+1)/2, and an M/M/1 queueing time. We call the 

variability term a G/G/1 transformer, since it transforms an 

M/M/1 queueing time to a G/G/1 approximate queueing time. 

We call an M/M/1 queueing time a base queueing time (BQT). 

Thus, if the batch size is three, (2) can be illustrated by Fig. 2. 
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Fig. 2.  Graphical illustration of Equation (2) 

 

On the other hand, an M/M
k
/1 queue is analyzed using a 

continuous time Markov chain model, which has a state 

transition rate diagram. When the batch size is three, the 

diagram is depicted in Fig. 3. 

The state diagram of Fig. 3 is approximated by a flow 

equivalent birth and death process in Fig. 2. The reasons for 

the differences between Fig. 2 and Fig. 3 are apparent: one is 

only an approximation, but the other one is the exact analysis. 

Investigating their differences may bring us valuable insight 

for further improvement on the current approximate model. 
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Fig. 3.  The state transition rate diagram of an M/Mk/1 queue 

 

In Fig. 3, since the batch size is three, the durations of states 

1 and 2 are clearly the wait-to-batch times. The durations in 

state 3 and 6 are queueing times, since a complete batch is 

formed at those states which are the multiple of 3. Although 

the classification is clear at the above states, it is not so clear 

for the rest. For example, in states 4, 5 and 7, there are both 

wait-to-batch time and queueing time, since a complete batch 

is not formed yet, but there are some formed batches in queue. 

Wait-to-batch times and queueing times are not 

independent, at least not in states 4, 5, and 7! This observation 

suggests rethinking the suitability of (1), which ignores the 

overlap between wait-to-batch time and queueing time. 

Comparing Fig. 2 and Fig. 3, the transition from state 4 to 

state 1 in Fig. 3 has been ignored in Fig. 2 (similar situation 

for state 5 to state 2, etc.). The state changes can only occur at 

states 3, 6 and 9 in Fig. 2. This implies the queueing time in 

(1) has been overestimated, since it takes longer than it should 

to return to a lower state. Another source of errors comes from 

Kingman’s approximation. As pointed by Shanthikumar and 

Buzacott [8], Kingman’s approximation overestimates the true 

value when the service time coefficient of variation is smaller 
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than 1. However, this error becomes small when utilization is 

high. When service time variability is smaller than 1, both 

approximation errors overestimate the exact cycle time of the 

system. This tendency also can be observed in the simulation 

results of Fowler, et al. [9], where they studied the 

multiproduct G/G/c model with batch processing. 

To gain better understanding of the structured errors caused 

by (1), we have compared the approximate results from (2) 

and the exact results from an M/M
k
/1 queue by a numerical 

example. Based on Gross and Harris [7], the procedure to 

analyze an M/M
k
/1 model is as follows: 

 

(1) Solve for x in the characteristic equation (where 0 < x < 1): 

 
1 ( ) 0.kx x         (3) 

 

(2) Calculate the limiting probabilities p0 and pn, 
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(3) Calculate WIP, cycle time (CT), wait to batch time 

(WTBT), and queueing time (QT), 

 

1

,n

n

WIP np




  

/ ,CT WIP   (4) 

1
,

2

k
WTBT




  

.QT CT WTBT ST    

 

The definitions of parameters are the same as the 

parameters in (1). Rather than calculate p0, and pn, we may 

also get cycle time directly as follows, 

 
2 1

2

1

( 1) (1 )

2 (1 )1
.

( 1)

1 (1 )

k

k

k k x x

x
CT

k k x k x

x x

  

 





  
 

 
 
   

  

 (5) 

 

One disadvantage of the above procedure is that it can only 

be solved numerically instead of explicitly, since we need 

solve (3) first. An alternative is to approximate x by a two 

term Taylor series expansion as follows, 
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 (6) 

 

Eq. (6) can greatly reduce the calculation effort, and gives 

accurate results when utilization is high. In the cases which we 

have examined, the errors of average cycle time are less than 

3% as long as utilization is higher than 30%. The derivation of 

(6) is given in the Appendix. 

In the example, we assume the batch size (k) is 10, and  is 

300 min. Both service times and inter-arrival times are 

exponentially distributed. The results are shown in Table I. 

 
TABLE I 

COMPARISON BETWEEN TWO MODELS WHEN K = 10 (UNIT: MIN) 

Arrival HCT

Interval WTBT HQT HCT WTBT QT CT ST Error %

10% 300.0 1350.0 18.3 1668.3 1350.0 0.3 1650.3 300 1.09%

20% 150.0 675.0 41.3 1016.3 675.0 5.6 980.6 300 3.63%

30% 100.0 450.0 70.7 820.7 450.0 21.4 771.4 300 6.39%

40% 75.0 337.5 110.0 747.5 337.5 50.5 688.0 300 8.66%

50% 60.0 270.0 165.0 735.0 270.0 97.6 667.6 300 10.10%

60% 50.0 225.0 247.5 772.5 225.0 174.8 699.8 300 10.39%

70% 42.9 192.9 385.0 877.9 192.9 306.3 799.1 300 9.85%

80% 37.5 168.8 660.0 1128.8 168.8 577.0 1045.8 300 7.93%

90% 33.3 150.0 1485.0 1935.0 150.0 1418.5 1868.5 300 3.56%

95% 31.6 142.1 3135.0 3577.1 142.1 3049.3 3491.4 300 2.45%

Hopp and SpearmanUtiliza-

tion
M/M

k
/1

 
 

In Table I, HQT and HCT are the queueing time and cycle 

time calculated based on (1). We first find that the error 

percentages of HCT, (HCT-CT)/CT, are all positive, which is 

consistent with our previous observation that (1) tends to 

overestimate the cycle times. Furthermore, the errors are 

smaller when the utilization becomes high or low. This means 

(1) may give us good approximations when the utilization is 

very high or very low. Understanding this regular pattern of 

errors will provide insight for a better approximate model. 

The errors in (1) mainly come from two sources:  

Kingman’s heavy traffic approximation; and the missing 

transitions in Fig. 3, which are represented as dashed lines in 

Fig. 4. The reader may refer to (2) and Fig. 2 for a better 

understanding of the two sources of errors. 
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Fig. 4.  The state transition rate diagram of an M/Mk/1 queue 

 

If a job arrives when the batch processing machine is idle, it 

will cause no errors in (1), since the machine is in states 0, 1 

or 2, (not in 4, 5 and 7, etc.). This implies lower utilization 

would lead to less error, since machine has longer idle time at 

lower utilization. On the other hand, Kingman’s 

approximation exhibits larger errors in queueing time at lower 

utilization. However, the error percentages (i.e. queueing time 

errors / cycle time) from Kingman’s approximation are 

relatively small compared with WTBT and service times, 

since queueing time itself is short. Therefore, these two 

sources of errors both tend to be small at low utilization. 

If a job arrives when the machine is busy, the probability 

that it finds the machine in state 3t or 3t+1 is substantially 

greater than the probability it finds the machine in state 3t+2, 

where t is a natural number. If it arrives when the machine is 
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in state 3t+2, it causes no errors, since all the transitions in 

3t+3 are considered in (2). However, if it arrives when the 

machine is in state 3t or 3t+1, the state will become 3t+1 or 

3t+2, respectively, which may cause errors, since compared 

with Fig. 2, some of the transitions (presented by the dashed 

lines) are missing in those states. States 3t or 3t+1 are 

therefore called incomplete states. 

Since the probability for a state to increase from t to t+1 is 

/(+) for t equal or greater than 3, the state will have higher 

probability to increase instead of decreasing when  is larger. 

This transition will cause no errors, since it has been 

considered in Fig. 2 (by considering the effect of 's in Fig. 4 

into the /3 in Fig. 2). However, on the other hand, if a job 

arrives at an incomplete state and its state decreases (with 

probability /(+)), it will cause errors, since this transition 

is missing in Fig. 2. This observation suggests that higher 

utilization leads to smaller errors. At the same time, 

Kingman’s approximation has smaller errors for higher 

utilizations. Therefore, the two sources of errors both tend to 

be small at high utilization. 

From the above analysis, we know that there are two 

opposite forces which affect the error percentages. To get 

smaller errors, one force prefers higher utilization, and the 

other prefers lower utilization. This explains why the error 

percentages become smaller at both high and low utilizations 

in Table I. 

When parallel batch size becomes larger, an incoming job 

may see an idle machine with higher probability, especially at 

lower utilization, which leads to smaller errors. Likewise, the 

errors from Kingman’s approximation also become smaller 

due to the relatively longer WTBT. On the other hand, an 

incoming job may also drop into the incomplete states with 

higher probability, which leads to larger errors. However, 

when utilization is high, the incoming state tends to increase 

(towards right), which would cause no errors, even if the job 

arrives at an incomplete state. At the same time, Kingman’s 

approximation also gives smaller errors at high utilization. 

 
TABLE II 

COMPARISON BETWEEN TWO MODELS WHEN K = 5 (UNIT: MIN) 

Arrival HCT

Interval WTBT HQT HCT WTBT QT CT ST Error %

10% 600.0 1200.0 20.0 1520.0 1200.0 1.3 1501.3 300 1.25%

20% 300.0 600.0 45.0 945.0 600.0 10.6 910.6 300 3.78%

30% 200.0 400.0 77.1 777.1 400.0 31.2 731.2 300 6.28%

40% 150.0 300.0 120.0 720.0 300.0 65.5 665.5 300 8.19%

50% 120.0 240.0 180.0 720.0 240.0 118.9 658.9 300 9.28%

60% 100.0 200.0 270.0 770.0 200.0 203.5 703.5 300 9.45%

70% 85.7 171.4 420.0 891.4 171.4 349.4 820.8 300 8.61%

80% 75.0 150.0 720.0 1170.0 150.0 645.5 1095.5 300 6.80%

90% 66.7 133.3 1620.0 2053.3 133.3 1543.5 1976.8 300 3.87%

95% 63.2 126.3 3420.0 3846.3 126.3 3332.9 3759.2 300 2.32%

Utiliza-

tion
M/M

k
/1Hopp and Spearman

 
 

Therefore, when batch size increases, the errors at the 

middle utilization range will increase due to the increase of the 

incomplete states. The impact on low and high utilization will 

not be so significant. This phenomenon can be seen in Table 

II, where the batch size is 5. The errors in the mid-range 

loading regime are smaller than the errors in Table I (reducing 

from 10.39% to 9.45% at 60% utilization) as expected. 

III. THE NEW APPROXIMATE MODEL 

The previous G/G/1 based approximate model is 

convenient. However, systematic errors caused by overlap 

between waiting time and batching time exist in the model 

even for the M/M
k
/1 case, where exact solutions are available. 

A new approximate model is proposed based on this new 

piece of information.  

When the arrival process is Poisson and the service time is 

exponential, instead of getting the base queueing times from 

an M/M/1 model, we get the base queueing times (BQT) from 

the M/M
k
/1 model by using (2) and (4) as follows, 

 

1 1/ 1 1
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k k k
CT M M BQT
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In this equation, we treat BQT as the unknown variable. 

CT(M/M
k
/1) can be obtained from (5), where x can be 

determined by solving either (3) or (6). Therefore, 
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By assuming the variability term and the base queueing 

time in Kingman’s equation are independent, queueing times 

(QT) and cycle times (CT) can be obtained as follows, 
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       (10) 

 

The definitions of parameters are the same as in (1). In (9), 

queueing times are the product of the base queueing times and 

the G/G/1 transformer. 

Although the new approximation does not completely avoid 

the dependence between wait-to-batch time and queueing 

time, the error (caused by the dependence) will be zero in the 

M/M
k
/1 case. Thus, one can expect that the errors in the 

G/G
k
/1 cases can be reduced relative to previous models. The 

performance of this approximation will be tested by 

simulations in the next section. 

IV. SIMULATION EXPERIMENTS 

The improvement of the new approximate models is 

demonstrated in three cases. In all three cases, the mean batch 

service times are 300 min, and the parallel batch size is 10. To 

demonstrate the true improvement from the new model itself, 

and avoid errors from other factors, the M/M
k
/1 cycle times 

are calculated based on the results from the standard procedure 

(i.e. (3)) instead of the Taylor series expansion (i.e. (6)). 

However, when using Taylor series expansion, except for very 

low utilizations, only small errors are introduced. 

The first case examined has Poisson arrivals and constant 

service times. The results are shown in Table III. As in Table 

I, HQT and HCT are the queueing times and cycle times 
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calculated based on (1). SWTBT, SQT and SCT are the wait-

to-batch times, queueing times and cycle times from 

simulation. 

 
TABLE III 

SIMULATION RESULTS FOR POISSON ARRIVAL AND CONSTANT SERVICE TIMES 

(CASE 1) 
Arrival

Interval SWTBT 95% CI SQT 95% CI SCT WTBT HQT HCT WTBT QT CT

10% 300.0 1350.2 ±0.05% 0.0 ±198.4% 1650.2 1350.0 1.7 1651.7 1350.0 0.0 1650.0

20% 150.0 674.8 ±0.06% 0.0 ±27.26% 974.8 675.0 3.8 978.8 675.0 0.5 975.5

30% 100.0 450.1 ±0.05% 0.0 ±5.81% 750.1 450.0 6.4 756.4 450.0 1.9 751.9

40% 75.0 337.4 ±0.06% 0.3 ±2.17% 637.8 337.5 10.0 647.5 337.5 4.6 642.1

50% 60.0 270.0 ±0.05% 1.4 ±1.14% 571.5 270.0 15.0 585.0 270.0 8.9 578.9

60% 50.0 224.9 ±0.05% 4.6 ±0.68% 529.5 225.0 22.5 547.5 225.0 15.9 540.9

70% 42.9 192.9 ±0.05% 12.5 ±0.51% 505.4 192.9 35.0 527.9 192.9 27.8 520.7

80% 37.5 168.8 ±0.05% 32.9 ±0.59% 501.7 168.8 60.0 528.8 168.8 52.5 521.2

90% 33.3 150.1 ±0.06% 103.3 ±0.88% 553.3 150.0 135.0 585.0 150.0 129.0 579.0

95% 31.6 142.1 ±0.05% 250.8 ±1.53% 692.9 142.1 285.0 727.1 142.1 277.2 719.3

Utiliza-

tion

Hopp and SpearmanSimulation New Approximation

 
 

At each specific utilization level, each reported WTBT, 

SQT and SCT is the mean of 100 replications. In each 

replication, we collected data for 200,000 jobs after a 50 year 

warm-up period (thus, the number of jobs discarded in the 

warmup can be approximated as “50 years * 365 days * 1440 

min / arrival-interval”). The above parameters are chosen to 

reduce the confidence intervals, but with a tolerable simulation 

run time. The half-width of 95% confidence intervals (CI) are 

listed right after the corresponding simulation values. Service 

times are omitted in the table, since they are all about 300 min, 

and the 95% CI are all smaller than 0.1%. The units of wait-

to-batch times, queueing times, and cycle times are minutes. 

Since the service times are constant (cb is 0), the queueing 

times tend to be small compared with the mean service times, 

even at high utilization. 

 
TABLE IV 

SIMULATION RESULTS FOR POISSON ARRIVAL AND ERLANG-2 SERVICE TIMES 

(CASE 2) 
Arrival

Interval SWTBT 95% CI SQT 95% CI SCT WTBT HQT HCT WTBT QT CT

10% 300.0 1350.4 ±0.05% 0.0 ±18.14% 1650.3 1350.0 10.0 1660.0 1350.0 0.2 1650.2

20% 150.0 675.1 ±0.05% 1.1 ±2.54% 976.0 675.0 22.5 997.5 675.0 3.1 978.1

30% 100.0 450.1 ±0.05% 6.1 ±1.19% 756.4 450.0 38.6 788.6 450.0 11.7 761.7

40% 75.0 337.4 ±0.05% 17.9 ±0.87% 655.6 337.5 60.0 697.5 337.5 27.5 665.0

50% 60.0 269.9 ±0.05% 39.7 ±0.87% 609.5 270.0 90.0 660.0 270.0 53.2 623.2

60% 50.0 225.1 ±0.05% 77.8 ±0.67% 602.9 225.0 135.0 660.0 225.0 95.3 620.3

70% 42.9 192.9 ±0.05% 147.0 ±0.82% 639.8 192.9 210.0 702.9 192.9 167.1 659.9

80% 37.5 168.7 ±0.05% 290.6 ±0.86% 759.2 168.8 360.0 828.8 168.8 314.7 783.5

90% 33.3 150.0 ±0.04% 733.5 ±1.48% 1183.5 150.0 810.0 1260.0 150.0 773.7 1223.7

95% 31.6 142.1 ±0.04% 1626.6 ±2.42% 2068.6 142.1 1710.0 2152.1 142.1 1663.3 2105.4

Utiliza-

tion

Simulation Hopp and Spearman New Approximation

 
 

In the second case, the arrival process is still Poisson, but 

service times follow an Erlang-2 distribution. The squared 

coefficient of variation (SCV) of service times is 0.5. 

Comparing Case 2 with Case 1, since the service times are 

changed from constant to Erlang-2 distribution, the queueing 

times become considerably longer compared with the mean 

service times. 

In the third case, the service times still follow an Erlang-2 

distribution, but the arrival intervals follow an Erlang-10 

distribution. The SCV of arrival intervals is 0.1. 

 

TABLE V 

SIMULATION RESULTS FOR ERLANG-10 ARRIVALS AND ERLANG-2 SERVICE 

TIMES (CASE 3) 
Arrival

Interval SWTBT 95% CI SQT 95% CI SCT WTBT HQT HCT WTBT QT CT

10% 300.0 1343.3 ±0.99% 0.0 ±198.4% 1643.5 1350.0 8.5 1658.5 1350.0 0.1 1650.1

20% 150.0 675.1 ±0.02% 0.1 ±7.81% 975.3 675.0 19.1 994.1 675.0 2.6 977.6

30% 100.0 448.9 ±0.49% 2.2 ±7.53% 751.2 450.0 32.8 782.8 450.0 9.9 759.9

40% 75.0 337.5 ±0.02% 9.2 ±1.18% 646.7 337.5 51.0 688.5 337.5 23.4 660.9

50% 60.0 270.0 ±0.02% 25.3 ±0.84% 595.5 270.0 76.5 646.5 270.0 45.2 615.2

60% 50.0 225.0 ±0.01% 55.3 ±0.84% 580.3 225.0 114.8 639.8 225.0 81.0 606.0

70% 42.9 192.8 ±0.02% 111.9 ±0.84% 604.6 192.9 178.5 671.4 192.9 142.0 634.9

80% 37.5 168.6 ±0.22% 237.8 ±4.04% 706.3 168.8 306.0 774.8 168.8 267.5 736.3

90% 33.3 150.0 ±0.02% 598.8 ±1.69% 1048.5 150.0 688.5 1138.5 150.0 657.7 1107.7

95% 31.6 142.1 ±0.02% 1370.6 ±3.00% 1812.7 142.1 1453.5 1895.6 142.1 1413.8 1855.9

Utiliza-

tion

Simulation Hopp and Spearman New Approximation

 
 

The errors of estimated queueing times from the old and 

new models are shown in Table VI. HQT error is “HQT/SQT - 

1”, and QT error is “QT/SQT - 1”. Improvement is “HQT 

error/QT error - 1”, which gives the improvement of the new 

model. In all three cases, both old and new models give large 

errors (HQT error and QT error) at low utilization and 

relatively small errors at high utilization, since Kingman’s 

formula is a heavy traffic approximation. 

 
TABLE VI 

ERRORS OF THE THREE MODELS BY USING (3) 

Arrival

Interval

10% 300.0 8124942.8% 127787.1% 98.4% 49125.9% 674.8% 98.6% 400452.9% 6204.7% 98.5%

20% 150.0 344446.7% 46975.6% 86.4% 2035.4% 191.8% 90.6% 15569.3% 2040.9% 86.9%

30% 100.0 16519.6% 4928.6% 70.2% 534.2% 91.9% 82.8% 1413.6% 358.0% 74.7%

40% 75.0 3050.1% 1344.8% 55.9% 234.4% 53.4% 77.2% 454.8% 154.5% 66.0%

50% 60.0 961.5% 527.7% 45.1% 126.6% 34.0% 73.1% 202.4% 78.8% 61.1%

60% 50.0 388.0% 244.7% 36.9% 73.5% 22.5% 69.3% 107.7% 46.7% 56.6%

70% 42.9 179.8% 122.6% 31.8% 42.8% 13.6% 68.2% 59.5% 26.9% 54.8%

80% 37.5 82.2% 59.3% 27.9% 23.9% 8.3% 65.2% 28.7% 12.5% 56.4%

90% 33.3 30.7% 24.8% 19.1% 10.4% 5.5% 47.4% 15.0% 9.8% 34.4%

95% 31.6 13.7% 10.5% 22.8% 5.1% 2.3% 56.0% 6.0% 3.1% 47.9%

QT Error
Improve-

ment
HQT Error

Improve-

ment

Case 1: c a
2 

= 1, c b
2 

= 0 Case 2: c a
2 

= 1, c b
2 

= 0.5 Case 3: c a
2 

= 0.1, c b
2 

= 0.5

QT Error
Improve-

ment
HQT Error QT ErrorHQT Error

Utiliza-

tion

 
 

The improvement percentage of the new model decreases 

with increasing utilization. In Case 1, the improvement from 

the new models decreases from 98% (at 10% utilization) to 

23% (at 95% utilization). Furthermore, among these three 

cases, the improvement increases when either ca or cb is close 

to one. This observation is consistent with our assumptions, 

since we know our approximate model yields exact solutions 

when the service time is exponential and the arrival process is 

Poisson. On the other hand, this new approximation may not 

perform very well when ca and cb are much larger than one.  

However, in practical manufacturing systems, in order to 

maintain competitiveness, service time SCV is desired to be 

small. Therefore, cb
2
 is chosen to be 0 in Case 1 and 0.5 in 

Case 2 and 3. Among the three cases, due to the Palm-

Khintchine theorem, Case 2 may be representative of the 

situations where the machine is fed by multiple upstream 

workstations, and each workstation is composed of multiple 

machines. In this situation, the arrival process can be close to a 

Poisson process [10]. If the machine is only fed by one or two 

upstream machines, the ca
2
 can be small. Case 3 may be 

representative in this situation. As we have seen in Table VI, 

in both cases, the original errors can be around 10% and the 

improvement can be around 50% at high utilization. 

If we use (6), the Taylor series expansion approximation, 

the errors will be larger at low utilization, but almost the same 

at high utilization (see Table VI). In the examined cases, 

because the value of x is overestimated at low utilization by 
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the Taylor series expansion, the estimated queueing time 

indeed becomes negative when utilization is less than 20%. 

However, it causes no significant impact to the overall system, 

since the true queueing time in this situation is less than two 

minutes compared with the WTBT 1350 minutes. 

 
TABLE VII 

ERRORS OF THE THREE MODELS BY THE TAYLOR SERIES EXPANSION 

Arrival

Interval

10% 300.0 8124942.8% -- -- 49125.9% -- -- 400452.9% -- --

20% 150.0 344446.7% -- -- 2035.4% -- -- 15569.3% -- --

30% 100.0 16519.6% 4707.9% 71.5% 534.2% 83.5% 84.4% 1413.6% 337.9% 76.1%

40% 75.0 3050.1% 1704.4% 44.1% 234.4% 91.5% 60.9% 454.8% 217.8% 52.1%

50% 60.0 961.5% 642.2% 33.2% 126.6% 58.5% 53.8% 202.4% 111.5% 44.9%

60% 50.0 388.0% 278.9% 28.1% 73.5% 34.7% 52.8% 107.7% 61.2% 43.1%

70% 42.9 179.8% 134.1% 25.4% 42.8% 19.5% 54.5% 59.5% 33.4% 43.8%

80% 37.5 82.2% 62.5% 24.0% 23.9% 10.5% 56.1% 28.7% 14.7% 48.6%

90% 33.3 30.7% 23.6% 23.1% 10.4% 4.4% 57.5% 15.0% 8.7% 41.6%

95% 31.6 13.7% 10.6% 22.7% 5.1% 2.3% 55.8% 6.0% 3.2% 47.7%

Case 1: c a
2 

= 1, c b
2 

= 0 Case 2: c a
2 

= 1, c b
2 

= 0.5

QT Error
Improve-

ment

Case 3: c a
2 

= 0.1, c b
2 

= 0.5

Utiliza-

tion
HQT Error QT Error

Improve-

ment
HQT Error QT Error

Improve-

ment
HQT Error

 
 

The robustness of the model was tested for service times 

and inter-arrival times that do not belong to the family of 

gamma distributions. The model still gives good 

approximations when the service time is lognormally 

distributed with cb
2
 = 0.1 and the inter-arrival time is 

triangular distributed with lower limit a, mode b and upper 

limit c as shown in Table VIII. The ca
2
 is kept at 0.5 at all 

utilizations. 

 
TABLE VIII 

SIMULATION RESULTS WHEN SERVICE TIME IS LOGNORMAL DISTRIBUTED 

WITH CB
2
 = 0.5 AND INTER-ARRIVAL TIME IS TRINGULAR DISTRIBUTED WITH 

CA
2,= 0.1 (CASE 4) 

Arrival

a b c Interval SWTBT 95% CI SQT 95% CI SCT

67.62 300.0 532.4 10% 300.0 1350.0 ±0.02% 0.0 ±23.16% 1649.9 34624.8% 446.6% 98.7%

33.81 150.0 266.2 20% 150.0 674.9 ±0.01% 0.9 ±5.14% 975.4 2128.7% 204.5% 90.4%

22.54 100.0 177.5 30% 100.0 449.9 ±0.01% 4.7 ±2.11% 754.4 590.7% 109.0% 81.6%

16.91 75.0 133.1 40% 75.0 337.5 ±0.02% 14.1 ±1.27% 651.7 260.7% 65.4% 74.9%

13.52 60.0 106.5 50% 60.0 270.0 ±0.02% 32.0 ±1.25% 602.1 138.8% 41.2% 70.3%

11.27 50.0 88.73 60% 50.0 225.0 ±0.02% 62.7 ±1.03% 587.9 83.1% 29.3% 64.7%

9.66 42.9 76.05 70% 42.9 192.9 ±0.02% 120.7 ±1.09% 613.5 47.9% 17.6% 63.2%

8.453 37.5 66.55 80% 37.5 168.7 ±0.02% 242.4 ±1.33% 711.0 26.3% 10.4% 60.4%

7.513 33.3 59.15 90% 33.3 150.0 ±0.02% 613.7 ±1.9% 1063.5 12.2% 7.2% 41.2%

7.118 31.6 56.04 95% 31.6 142.1 ±0.02% 1362.7 ±3.25% 1804.8 6.7% 3.7% 43.8%

Tringular (a, b, c) Utiliza-

tion

Simulation
HQT Error QT Error

Improve

ment

 
 

Comparing Case 3 with Case 4, since the mean and SCV of 

the service times and inter-arrival times are the same, the 

approximate queueing times are the same (not shown in Table 

VIII), and the simulated queueing times in Case 3 and 4 are 

close to each other as expected. Therefore, the HQT errors, 

QT errors and the improvement are similar. 

V. EXTENSION TO MULTIPLE SERVER QUEUES 

In this section, we extend the previous model to a queueing 

system having c homogeneous servers, each with maximum 

parallel batch size k. When one of the servers is available, 

then: (a) If the number in queue > k, then the first k customers 

enter service immediately. (b) If 0 < number in queue <= k, 

then all the waiting customers are taken for service. (c) If 

number in queue = 0, service stops until a new customer 

arrives, after which service resumes immediately.  

Based on Chaudhry and Templeton [3], the procedure to 

analyze the above M/M
k
/c model is as follows: 

 

(1) Solve for x in the characteristic equation (where 0 < x < 1): 

 
1 ( ) 0.k kx c x c         (11) 

 

(2) Calculate the limiting probabilities, 
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where n is the number of customers in the queue (i.e. waiting 

customers) and l is the number of busy servers. n can be 

greater than zero only when all c servers are busy. 

 

(3) Calculate WIP, cycle time (CT) and queueing time (QT), 
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.QT CT WTBT ST    

 

Using (12) to replace the CT(M/M
k
/1) in (7) and (8). We 

can then obtain CT(G/G
k
/c) by (10). 

The above approach is developed based on the observation 

from Sakasegawa [11], who finds the variability term and 

utilization term in Kingman’s equation behave approximately 

independently in a G/G/c queue. 

VI. CONCLUSION 

Through a detailed examination of the earlier G/G/1 based 

approximate models for parallel batch process, the information 

lost during the decomposition process has been identified. By 

partially recovering the lost information, a new approximate 

model has been proposed. The new model shows notable 

improvement over the previous approaches.  

Decomposition is a powerful and convenient technique, 

especially when we want to analyze large complex systems in 

a practical environment. However, in complex manufacturing 

systems, the independence assumption inherent in 

decomposition is often not satisfied.  As a result, the 

approximation errors from decomposition can be significant if 

the potential for information loss is not recognized and dealt 

with, as illustrated in this paper. 

Although we have gained notable improvement by the new 

approach, the new model only considers the case of parallel 

batches. The approximate model considering a workstation 

with the combinations of parallel process batches, serial 

process batches and transfer batches is left for future research. 



 

 

7 

APPENDIX: DERIVATION OF (6)  

From (3),      
1 1( ) 0,   ( ) (1 ),k kx x x x x               

1
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1
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k k
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n

n
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x
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Therefore, ( ) and ( ) .x g f x     

By using Taylor Series Expansion, 
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Therefore, (A.1) becomes 
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