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Abstract 

Harvesting flow energy by exploiting transverse galloping of a bluff body attached to a piezoelectric 
cantilever is a prospective method to power the wireless sensing systems. In order to better understand 
the electroaeroelastic behavior and further improve the galloping piezoelectric energy harvester 
(GPEH), an effective analytical model is required, which needs to incorporate both the 
electromechanical coupling and aerodynamic force. Available electromechanical models for GPEH 
include lumped parameter single-degree-of-freedom (SDOF) model, approximated distributed 
parameter model based on Rayleigh-Ritz discretization, and distributed parameter model with 
Euler-Bernoulli beam representation. Each modelling method has its own advantages. The 
corresponding aerodynamic models are formulated using quasi-steady hypothesis (QSH). In this paper, 
SDOF model, Euler-Bernoulli distributed parameter model using single mode and Euler-Bernoulli 
distributed parameter model using multi-modes are compared and validated with experimental results. 
Based on the comparison and validation, the most effective model is employed for the subsequent 
parametric study. The effects of load resistance, wind exposure area of the bluff body, mass of the bluff 
body and length of the piezoelectric sheets on the power output are investigated. These simulations can 
be exploited for designing and optimizing GPEHs for better performance.    

1. Introduction 

Wireless sensing systems have been widely used in structural health monitoring. Due to the 
inconvenience and high cost of replacement of batteries, development of self-powered sensor 
nodes by harvesting ambient energy has been researched explosively in the past few years. 
Ambient mechanical vibrations can be converted to electricity via electrostatic [1], 
electromagnetic [2], piezoelectric [3] and magnetostrictive [4] mechanisms, among which 
piezoelectric transduction has attracted much interest because of its high power density and 
non-reliance on external magnetic field or initial voltage. Many studies have been conducted 
on energy harvesting using piezoelectric materials [5-11]. These studies mainly focus on 
converting the preexisting structural vibrations into electricity. However, piezoelectric energy 
harvesting from small wind has received only limited attention. 
 
When structures are subjected to wind flows, aeroelastic instabilities such as vortex-induced 
vibrations, galloping, flutter and buffeting may occur given specific conditions. The energy of 
such wind-induced vibrations can be beneficially converted into electricity via the 
piezoelectric transduction mechanism. Many studies have been conducted on harnessing wind 
energy by exploiting these aeroelastic instabilities [12-39].  
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Some researchers proposed the energy harvesters with flapping wings to convert aeroelastic 
flutter vibrations into electricity [12-22]. Bryant and Garcia [15] analyzed the flutter boundary 
and limit cycle behavior of a piezoelectric bimorph with a rigid flap connected to the tip. A 
peak power of 2.2mW was obtained at 7.9m/s. Erturk et al. [16] investigated the potential of 
harvesting energy from aeroelastic vibrations with a piezoaeroelastic airfoil. Linear analysis 
of power generation at flutter boundary was performed. Different from the use of flapping 
wings, several other devices with alternative structural designs were proposed to extract 
power from aeroelastic instabilities. Li et al. [23] developed a bio-inspired piezo-leaf 
architecture which generated electricity by cross-flow fluttering motion, gaining a peak power 
of 600μW. Kwon [24] experimentally investigated the power output of a T-shaped 
piezoelectric cantilever, and obtained the empirical formula to calculate the cut-in wind speed. 
Wind energy harvesters employing vortex-induced vibrations were also frequently 
investigated, which were usually designed as a linear mechanical resonator with a cylinder 
placed windward [25-29]. Maximum power output was achieved when the frequency of 
vortex shedding approaches the natural frequency of the harvester. Akaydin et al. [28] tested 
the efficiency of such a harvester and obtained a maximum power of 0.1mW at 1.192m/s. The 
main constraint of such harvesters is the narrow wind speed range for effective power 
generation. Jung and Lee [30] studied the performance of a harvester exploiting wake 
galloping with two paralleled cylinders. Electromagnetic induction was employed other than 
the piezoelectric transduction. Recent progress on wind energy harvesting also includes a 
damped cantilever pipe carrying flowing fluid proposed by Elvin and Elvin [31] and a 
harmonica-type aeroelastic micropower generator developed by Bibo et al. [32].  
 
Translational galloping is another aeroelastic instability phenomenon giving rise to transverse 
oscillations normal to the wind flow direction in structures with weak damping, when the 
wind speed exceeds a critical value. It is a better choice to obtain structural vibrations for 
energy harvesting purpose compared to the vortex-induced vibrations and flutter, for its 
advantage of large oscillation amplitude and the ability of oscillating in infinite range of wind 
velocities [36,45]. Translational galloping was first analyzed by Den Hartog [40], and a 
criterion for galloping stability was introduced. Many researchers have studied the effect of 
various parameters on the galloping stability of different structures, including the angle of 
attack, cross-section geometries, flow turbulence, Reynolds number, etc [41-45]. Barrero-Gil 
et al. [33] theoretically analyzed the potential use of transverse galloping to harvest energy 
using an SDOF model. No specific design of harvester device was proposed. Abdelkefi et al. 
[34] considered a GPEH with a square prism as the bluff body, and investigated the effects of 
Reynolds number and load resistance on the threshold of galloping and the level of harvested 
power. They further theoretically compared the performances of different cross-section 
geometries of the bluff body for GPEHs with linear and nonlinear analysis [35]. An SDOF 
model was employed for these two studies, with the value of electromechanical coupling 
manually specified. Yang et al. [36] experimentally studied the influence of cross-section 
geometry on the performance of GPEHs, and validated the established SDOF model with the 
experimental results. Sirohi and Mahadik [37] studied a GPEH consisting of two piezoelectric 
cantilevers connected to a prism with equilateral triangular section. They also developed 
another GPEH using a composite piezoelectric cantilever connected in parallel to a prism with 
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D-shaped section [38]. For these two harvesters, an approximated distributed parameter 
model based on energy method (Rayleigh-Ritz type of discretization) was used. Abdelkefi et 
al. [39] employed the harvester design of Sirohi and Mahadik [37] and further studied the 
influence of load resistance on the threshold of galloping and harvested power level with an 
Euler-Bernoulli distributed parameter model. Single mode (fundamental mode) was 
considered in their analysis. In all the analytical models mentioned above, the aerodynamic 
forces were formulated based on QSH. Each model method has its own merits, such as the 
simple form and ease of application of the SDOF model, and the accuracy of the distributed 
parameter models. Although many studies have been conducted on the issues of the 
electromechanical models for vibration piezoelectric energy harvesters under base excitation 
[46, 47], more work need to done on the modeling and better designing of GPEH which 
incorporate the aerodynamic forces.  
 
This article compares different modeling methods for GPEHs. SDOF model established in the 
preceding study [36], Euler-Bernoulli distributed parameter model using single mode and 
multi-modes are considered followed by experimental validation. The merits, disadvantages 
and applicability of these methods are discussed. Subsequently, employing the most effective 
model from the comparison, parametric study is performed to study the effects of load 
resistance, wind exposure area of the bluff body, mass of the bluff body and length of the 
piezoelectric sheets on the electroaeroelastic behavior (cut-in wind speed and power output 
level) of GPEHs. The results can be exploited for designing and optimizing GPEHs for better 
power output performance.                  
 
2. Mechanism of galloping 

 

Figure 1. Schematic of a bluff body undergoing galloping 
 
Translational galloping is a self-excited phenomenon giving rise to large amplitude 
oscillations of bluff body when subjected to wind flows. Assume that a bluff body is 
elastically mounted as shown in figure 1. The governing equation of the galloping motion can 
be written as 

)()()()( tFtKwtwCtwM z=++ &&&                         (1) 

where w is the vertical position of the bluff body in z direction; M is the mass of the bluff 
body; C is the damping coefficient; K is the stiffness of the system and Fz is the aerodynamic 
force. The overdot denotes differentiation with respect to time t. Fz can be expressed as [45] 

Fztipaz CUSF 2

2
1 ρ=                             (2) 
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where ρa is the air density; Stip is the exposure area facing the flow; U is the wind speed and 
CFz is the total aerodynamic force coefficient in z direction. QSH is employed here, which 
considers that the aerodynamic force during galloping oscillation is equal to that when the 
bluff body is steady with the corresponding angle of attack. This hypothesis is applicable 
when the oscillation is slow enough, which requires that the characteristic timescale of the 
flow is much smaller than the characteristic timescale of the oscillation, corresponding to the 
character of galloping phenomenon. The larger the wind speed, the safer to use QSH. QSH 
has been confirmed to be able to successfully model galloping in many studies [40,41,45]. For 
a specific cross-section geometry, CFz is a function of the angle of attack α (figure 1), and can 
be determined through experiments [40-45]. It is common to express CFz as a polynomial 
expansion as  

∑
=

=
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r

r
rFz AC α                              (3) 

where Ar are empirical coefficients for the polynomial fitting [33,45]. If the bluff body 
undergoes only translational oscillation without rotation, α can be expressed as 
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Substituting Eqs. (2-4) into Eq. (1), and dividing both sides by M yields 
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where ζ is the damping ratio and ωn is the natural frequency of the system. The aerodynamic 
force can be considered as an effective nonlinear damping as shown in Eq.(5), rendering the 
galloping “self-excited”. The criterion for galloping instability, which is identified by Den 
Hartog [40], is expressed as  
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The criterion requires A1>0. For arbitrarily small w& , the system is controlled by the linear 

damping 
12

12 UAS
M tipan ρςω − , which is positive, thus the oscillations will be damped to the 

zero equilibrium. When U increases and exceeds a certain value, the linear damping becomes 
negative, giving rise to galloping oscillations of the bluff body (Hopf bifurcation). When w&  
is large enough due to the increasing oscillation amplitude, the nonlinear damping 
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non-negative. Limit cycle oscillation will occur when the damping reaches zero. Due to the 
self-excited and self-limiting characteristics of galloping, it is a prospective energy source for 
energy harvesting.  
 
3. Comparison of modelling methods for galloping piezoelectric energy harvester 
A typical GPEH is usually designed as a piezoelectric cantilever attached with a bluff body at 
the free end, as shown in Figure 2. The bluff body, which is with a specific cross section, 
oscillates in the direction normal to the incoming flow due to galloping. Two piezoelectric 
sheets are bonded to each side of the substrate beam, generating electricity from the 
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mechanical strain which is developed due to the bluff body oscillation. The analytical model 
of a GPEH should consider both the electromechanical coupling effect and the aerodynamic 
force acting on the bluff body. Commonly used models for GPEHs include the SDOF model, 
approximate distributed parameter model with Rayleigh-Ritz type of discretization, and 
Euler-Bernoulli distributed parameter model with exact analytical mode shapes. The main 
difference between these models lies in the representation of the electromechanical coupling 
term. This section will compare the merits, disadvantages and applicabilities of the lumped 
parameter and distributed parameter models. The aerodynamic forces are all formulated based 
on quasi-steady hypothesis, although their representation formulas are various due to the 
different mechanical parameters employed in the corresponding electromechanical equations. 
The power storage technique is not considered in this paper, so the simple electric circuit only 
consists of an external resistive load RL.  

 
Figure 2. Schematic of a typical GPEH 

 
3.1. SDOF model 
In the preceding study, a simple SDOF model was established to simulate the 
electroaeroelastic behavior of a GPEH [36]. In that model, the harvester was considered to 
oscillate close to the fundamental frequency, which was confirmed with visual observation 
during the experiment. The governing equations are given as 
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where w(L,t) is the displacement of the bluff body in the direction normal to the wind flow; 
Ceff and Keff are the effective damping and stiffness of the harvester; V(t) is the generated 
voltage across ; CP is the total capacitance of two piezoelectric sheets with parallel 
connection; Θ is the electromechanical coupling term; h and ltip are the frontal dimension and 
length of the bluff body, the product of which equals to Stip; and Meff is the effective mass 
approximated as Meff=33/140Mb+Mtip, where Mb and Mtip are the mass of the cantilever and 
the bluff body. Θ is determined easily though experiments by 

Peffnscnoc CM)( 22 ωω −=Θ                       (8) 
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where ωnoc and ωnsc are the open circuit and short circuit resonant frequencies of the harvester. 
CFz is expressed as in Eq. (3), and the attack angle is modified to α=�(L,t)/U+w'(L,t), where 
w'(L,t) is the rotation angle at the free end due to the deflection of the beam, approximated as 
w'(L,t)=3w(L,t)/2L.  
By defining a state vector X: 
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the governing equations can be written in the state space form as 
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(10) 
where 2ζωn=Ceff/Meff and ωn=ωnsc. Eq. (10) can then be numerically solved in MATLAB using 
the solver like ode45 to determine the vibration response of the beam, cut-in wind speed, and 
generated voltage across RL. The average power Pave is related with the root mean square 
(RMS) voltage VRMS as Pave=V2 

RMS/RL. 
 
3.2. Euler-Bernoulli distributed parameter model 

 
Figure 3. (a) Top view of the considered GPEH and (b) cross-section of the composite beam 

for x1<x<x2. 
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Distributed parameter electromechanical models based on Euler-Bernoulli beam theory have 
been studied a lot for vibration piezoelectric energy harvesters with base-excitations 
[5,46,47]. For a GPEH, the electromechanical equations are developed based on similar 
assumptions: (a) The Euler-Bernoulli beam assumptions are applied to the composite beam; (b) 
The perfectly conductive electrodes fully cover the top and bottom surfaces of the piezoelectric 
sheet inducing uniform electric field through the thickness; (c) Only the z-direction vibration 
(transverse vibration) is considered; (d) The damping mechanisms including the internal strain 
rate damping and external air damping satisfy the proportional damping criterion. The 
schematics of the GPEH showing the coordinate directions and the cross-section of the 
composite beam are presented in figure 3. We consider the parallel connected situation for the 
two piezoelectric sheets. The coupled governing equations for the GPEH can be written as [5, 
39] 
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where w(x, t) is the transverse deflection of the beam in z direction; δ(x) is the Dirac delta 
function; cs and ca are the coefficients of strain rate damping and air damping; m(x) is the 
distributed mass of the beam, being expressed as m(x)=ρshsbs for 0<x<x1 and x2<x<L, and 
m(x)=ρshsbs+2ρphpbp for x1<x<x2, where ρs, hs and bs are the mass density, thickness and 
width of the substrate, respectively, ρp, hp and bp are the corresponding terms of the 
piezoelectric sheet, and x1 and x2 are respectively the starting and ending positions of the 
piezoelectric sheets along the beam; YI(x) is the bending stiffness of the composite beam 
expressed as YI(x)=Ysbshs

3/12 for 0<x<x1 and x2<x<L, and YI(x)= 
Ysbshs

3/12+2Ypbp[(hp+hs/2)3-hs
3/8]/3 for x1<x<x2, where Ys and Yp are the Young’s modulus of 

the substrate and piezoelectric material, respectively; θ is the piezoelectric coupling term 
given by θ=-Ypd31bp(hp+hs), where d31 is the piezoelectric constant; and Cp is the total 
capacitance as in the SDOF model, being given by Cp=2εS 

33bp(x2-x1)/hp ((x2-x1) equals to the 
length of the piezoelectric sheets Lp), where εS 

33 is the permittivity at constant strain. As in the 
SDOF model, Fz is the aerodynamic force due to galloping. 
 
The transverse deflection w(x,t) can be represented as  
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where �r(x) is the mass normalized mode shape for the rth mode of the corresponding 
undamped free vibration problem; and ηr(t) is the modal coordinate. Erturk and Inman 
[5,46,47] presented the procedure for the exact analytical solution of �r(x) for the cantilever 
fully and uniformly covered with piezoelectric materials. As for the cantilever beam which is 
partially covered by piezoelectric sheets (the case for our prototype in the experiment), 
Abdelkefi el al. [39] developed the Euler-Bernoulli distributed parameter model by deriving 
the exact analytical mode shape function to analyze the electroaeroelastic behavior of a 
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GPEH. Yet such analytical solution for the segmented mode shapes is quite cumbersome. 
Single mode (fundamental mode only) was considered in their analysis. In this paper, we 
obtain �r(x) and �r’ (x) easily by finite element method in Matlab. Hermite cubic functions 
are employed as the interpolation functions for the beam element. 
 
Fz is still in the form as in the SDOF model (Eq. (7)), but the attack angel is here expressed in 
modal coordinates:  
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Subsequently, introducing Eqs. (12) and (13) into Eq. (11) yields the coupled governing 
equations in modal coordinates:  

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=−+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+×=+++

∑

∑ ∑
∑

∞

=

=

∞

=

∞

=

0)()()(

)()('
)()(

2
1)()()()(2)(

1

...2,1 1

122

r
rrp

L

i

i

r
rr

r
rr

itiparrrrrrrr

ttVC
R

tV

tL
U

tL
AUhlLtVttt

ηχ

ηφ
ηφ

ρφχηωηωζη

&&

&

&&&              

(14) 
where ζr is the modal mechanical damping; ωr is the undamped natural frequency of the rth 
vibration mode; and χr is the modal electromechanical coupling term written as χr=θ[�r'(x2)- 
�r'(x1)]. Before proceeding to solve Eq. (14), a short explanation of how to evaluate ζr is 
presented here. As mentioned in assumption (d), the mechanical damping which includes the 
internal strain rate damping and external air damping is treated with the proportional damping 
(Rayleigh damping) assumption. For a uniform piezoelectric beam of which the flexural 
rigidity YI and mass per unit length m are both uniformly distributed [5,46,47], ζr can be 
simply expressed as ζr= csIωr/2YI+ca/2mωr. Once the damping ratios for two separate 
vibration modes are known, the two unknown constant damping coefficients cs and ca can be 
mathematically calculated. Yet for non-uniform piezoelectric beam which is partially covered 
by piezoelectric sheets as in our case, cs and ca are no longer constant along the beam length. 
Whereas, we can still assume that csI(x) and ca(x) are stiffness proportional and mass 
proportional, respectively, and obtain two constant values of (csI/YI)ave and (ca/m)ave. However, 
to avoid the calculation of these coefficients as well as the inaccuracy caused by the 
proportional damping assumption, we can obtain ζr experimentally using the logarithmic 
decrement method and proceed to numerical solution of Eq. (14) for the mechanical and 
electric responses of the GPEH. 
 
Assume the first nth modes are considered. Again, we introduce the state vector: 



Page 9 of 19 
 

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=

+

−

)(

)(
)(

)(
)(

1

1

12

2

12

2

1

tV

t
t

t
t

X

X
X

X
X

r

r

n

r

r

M

&

M

&

M

M

η
η

η
η

X
    )...2,1( nr =                       (15) 

The governing equations can then be written in the state space form as 
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(16)   

Like the SDOF model, Eq. (16) can be solved in MATLAB using ode45. Two cases with 
different numbers of modes employed will be considered in the following model comparison 
section. Firstly, we only consider the fundamental mode by letting n equal to 1 in Eq.(16), 
since a GPEH is oscillating near its fundamental frequency [37, 38]. Secondly, in order to get 
a more accurate expression for the galloping aerodynamic force, we take into account the first 
three modes (n=3) to investigate how the higher modes influence the overall responses of a 
GPEH. 
 
4. Model comparison based on experimental validation 
4.1. Experimental setup 

    
Figure 4. (a) Fabricated prototype and the installation in wind tunnel. (b) Experimental setup 

 
Table 1. Parameters of cantilever beam and piezoelectric sheets [36] 
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Properties Beam 
Piezoelectric 

sheets 
Properties Beam 

Piezoelectric 
sheets 

Length (mm) 150 61 Mass Density (kg m-3） 2700 3825 
Width (mm) 30 30 Capacitance (nF) --- 90 

Thickness (mm) 0.6 0.5 Young’s Modulus (GPa) 69 23.3 

Material Aluminum 
DuraAct 

P-876.A12 
Piezoelectric Constant 

d31 (pm V-1)  
--- -174 

 
Table 2. Parameters of the bluff body for the three configurations 

Properties Configuration 1 Configuration 2 Configuration 3 
Cross-section square square square 

Section dimensions (mm2) 40×40 40×40 40×40 
Length ltip (mm) 150 150 100 
Mass Mtip (kg) 0.0268 0.0228 0.0268 

 
A prototype device is fabricated and tested in the wind tunnel following the same 
experimental setup procedure with the preceding study [36], and the measured results are 
presented to validate the aforementioned SDOF and distributed parameter models. The 
effectiveness of the models are compared based on the agreement between their predictions 
and experiments. The cantilever beam is the same with the one in [36], which is composed of 
a aluminium substrate with two piezoelectric sheets (DuraAct P-876.A12 from Physik 
Instrumente) bonded to each side of the root, being connected in parallel with the total 
capacitance Cp=180nF. A metal support is employed to fix the root of the cantilever in the 
wind tunnel. A bluff body is attached to the free end. According to the preceding experimental 
study on the cross-section geometry of the bluff body [36], a square section is employed for 
its best performance over other geometries in the laminar flow with the lowest cut-in wind 
speed and the largest output power. Three configurations are tested in the wind tunnel with 
different bluff body properties for adequate model comparisons. The properties of the beam 
and piezoelectric sheets are listed in Table 1, while those of the bluff body are shown in Table 
2. The prototype and the installation in the wind tunnel are shown in Figure 4(a). Prior to the 
wind tunnel test, some parameters like ζ, ωnsc and ωnoc need to be measured under base 
excitations. The damping ratio ζ for the SDOF model is the same as ζ1 in the distributed 
parameter model. For Configuration 1, ζ1=0.005[36], ζ2=0.015 and ζ3=0.034; for 
Configuration 2, ζ1=0.008, ζ2=0.019 and ζ3=0.041; for Configuration 3, ζ1=0.004 ζ2=0.012, 
ζ3=0.031.   During the wind tunnel test, the wind speed is measured by a pitot tube 
anemometer, and the voltage across the load resistance is measured by the NI 9229 DAQ 
module. Overall experimental setup is presented in Figure 4(b). 
 
4.2. Model comparison 
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Figure 5. (a) Measured and predicted average power Pave versus load resistance RL for 

configuration 1 at U=4, 5 and 6m/s. (b) Measured and predicted average power Pave versus 
wind speed U for three configurations at the respective optimum RL. 

 
The measured and predicted values of average power Pave versus load resistance RL are first 
compared in Figure 5(a). The data presented are obtained for configuration 1 at three different 
wind speeds. As shown in the picture, for U=4, 5 and 6m/s, Pave initially increases with RL 
until reaches an optimum value, then decreases when RL continues growing. The optimum RL 
barely changes for the three wind speeds, which are all around 105~120kΩ. All the three 
models can capture this trend well, yet with some discrepancies. Also, both the single mode 
distributed parameter model (shorted for Distri. (mode 1) here and hereafter) and multiple 
mode distributed parameter model (shorted for Distri. (mode 1-3) here and hereafter) predict a 
shallow valley around the optimum RL for U=4m/s, which is an important aspect for the 
influence of RL on Pave and will be addressed in the next section. Moreover, no obvious 
difference is observed between the predictions of Distri. (mode 1) and Distri. (mode 1-3). 
Figure 5(b) shows the measured and predicted Pave versus wind speed U for the three different 
GPEH configurations at RL=105 kΩ. It is noted that Pave increases monotonically with U. 
Again, all the three models can predict consistent results with the experiments. As for the 
cut-in wind speed Ucr, the SDOF model predicts better results for all the three configurations, 
while as for the harvested power level, no obvious superiority is observed for one model over 
the others since small discrepancies exist for all the three models. The main source of the 
error is probably the unavoidable small turbulence in the wind tunnel which disturbs the bluff 
body to start oscillating before the wind speed reaches the real cut-in speed. In general, the 
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three models can successfully predict the electroaeroelastic behavior with good agreement 
with the experiments. The SDOF model is advantageous for its simplicity and ease of 
obtaining the coupling coefficient for a fabricated prototype, while the distributed models 
own their merits in the better representation of the aerodynamic force and ease for parametric 
study. In the following study about the effects of different parameters on the output power, 
Distri. (mode 1) is employed to obtain the simulation results.   
 
5. Parametric study using distributed parameter model (1st mode) 
In this section, a parametric study is presented in order to better understand the 
electroaeroelastic behavior of the GPEH. The effects of load resistance RL, wind exposure 
area Stip, mass of the bluff body Mtip, and length of the piezoelectric sheets Lp on the cut-in 
wind speed as well as the output power level are investigated.   
 
5.1. Effects of the load resistance RL 

Figure 6(a) shows the variation of the average output power Pave with the wind speed U for 
different load resistance RL. Here, Configuration 1 is considered and its properties are shown 
in Table 1 and Table 2. It can be seen that the growth rate of Pave is greatly affected by RL. The 
growth rate of Pave firstly increases with RL until 105kΩ, then decreases when RL is further 
increasing. An enlarged view is provided to show this trend more clearly around the threshold 
of galloping. It is noted that the value of RL which owns the largest growth rate of Pave also 
gives the largest cut-in wind speed Ucr. The variation of Ucr with RL is presented in Figure 
6(b).  As can be seen from this curve, Ucr increases with RL up to the maximum value then 
decreases with RL. As for the harvested power level, the largest power is obtained with RL 
around 105kΩ for U>4m/s. Features of the optimum RL can be seen from Figure 6(c) which 
displays the variation of Pave with RL at different wind speeds. For U=2m/s, Pave is zero 
between 20 and 800kΩ since this speed is lower than the respective Ucr for these RL values 
(Figure 6(b)).  When U is slightly larger than Ucr (i.e., U=3 and 4m/s), a shallow valley 
exists around 105kΩ. When U continues growing (i.e., U=5~8m/s), there is a peak for Pave 
between 100 and 120kΩ, where lies the optimum RL =105kΩ. It is worth mentioning that RL 
for the valley and peak of Pave overlap with each other, corresponding to that with the largest 
Ucr. Here onwards, we regard RL as the optimum one if the largest Ucr and power growth rate 
are achieved in the response of Pave versus U (i.e., the curve for RL=105kΩ in Figure 6(a)). At 
the optimum RL, either a valley or a peak appears in the response of Pave versus RL at a 
specific U.  
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Figure 6. (a) Variation of the average power Pave with the wind speed U for different load 
resistance. (b) Variation of the average power Pave with the load resistance RL for different 

wind speeds. (c) Variation of the cut-in wind speed Ucr with the load resistance. 
 
5.2. Effects of the wind exposure area of the bluff body Stip 

Figure 7 shows the effects of the wind exposure area of the bluff body Stip (h×ltip) on the 
electroaeroelastic behavior of the GPEH. Harvester properties are the same with those listed 
in Table 1 and Table 2 (Configuration 1) except the length of the bluff body ltip. Figure 7(a) is 
obtained with U=6m/s. It is determined that the optimum RL for the various Stip are equal to 
each other, which is reasonable since the natural frequencies are the same with equal Mtip. The 
variation of Pave with U at the optimum RL for different Stip is shown in Figure 7(b). With 
increasing Stip, the cut-in wind speed decreases while the harvested power increases, both 
beneficial for harvesting the wind power. This can be expected since the increasing wind 
exposure area results in an increase in the aerodynamic force. Moreover, the growth rate of 
power is not much affected by Stip.                                                                 
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Figure 7. Variation of (a) the average power Pave with the load resistance RL at 6m/s and (b) 
the average power Pave with the wind speed U at the optimum RL for different wind exposure 

areas of the bluff body Stip.  
 

5.3. Effects of the mass of the bluff body Mtip (or fundamental frequency of the GPEH) 
Figure 8 shows the effects of the mass of the bluff body Mtip on the electroaeroelastic behavior 
of the GPEH. Harvester properties are the same with those list in Table 1 and Table 2 
(Configuration 1) except Mtip. The most obvious change due to varying Mtip is in the 
fundamental frequency of the harvester as indicated in the legend. Figure 8(a) shows the 
variation of Pave with RL for U=6m/s, from which the respective optimum RL can be obtained 
for each Mtip. It is noted that the optimum RL varies with different Mtip (i.e., different 
fundamental frequency ω1). With the respective optimum RL, the variation of Pave with U is 
displayed in Figure 8(b). As can be seen from this figure, the cut-in wind speed increases and 
the harvested power decreases with the increasing Mtip (or the decreasing of ω1). Moreover, 
the growth rate of the harvested power also decreases with the increasing Mtip. It can 
summarized that for the GPEH with a specific piezoelectric cantilever, reducing Mtip can 
achieve a better performance on extracting power from the wind.  
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Figure 8. Variation of (a) the average power Pave with the load resistance RL at 6m/s and (b) 
the average power Pave with the wind speed U at the respective optimum RL for different 

masses of the bluff body Mtip. 
 
5.4. Effects of the length of the piezoelectric sheets Lp 

 

Figure 9. Variation of (a) the average power Pave with the load resistance RL at 10m/s, (b) the 
average power Pave with the wind speed U at the respective optimum RL and (c) the power 

density with the wind speed U for different lengths of the piezoelectric sheets Lp. 
 

Figure 9 shows the effects of the lengths of piezoelectric sheets Lp on the electroaeroelastic 
behavior of the GPEH. Harvester properties are the same with those list in Table 1 and Table 
2 (Configuration 1) except Lp and Cp since the latter one varies linearly with the former one 
when other parameters are kept unchanged. The respective optimum RL is determined from 
figure 9(a), which varies with Lp because of the change in the total stiffness of the composite 
beam. Figure 9(b) shows the variation of Pave with U at the respective optimum RL. The cut-in 
wind speed as well as the growth rate of the harvested power increases with the increasing Lp. 
The largest Lp can extract the highest power at relatively high wind speeds (>12m/s). A useful 
factor to evaluate the performance of the GPEH is the power density which is calculated as 
power per piezoelectric volume in this paper. Figure 9(c) shows the power density versus the 
wind speed for different Lp. It is noted that the power density is not monotonically increasing 
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with Lp. At high wind speeds the highest power density is obtained by a medium value of Lp, 
which is 100mm among the considered discrete  values. A maximum power density of 
12.96mW/cm3 is achieved at 14m/s with Lp=100mm.  A comparison of the power density 
with other piezoelectric wind energy harvesters is shown in Figure 10. As can be seen from 
this figure, the present GPEH shows good performance in power density, especially at 
relatively high wind speeds. The present GPEH is less advantageous at lower wind speeds 
when compared to the harvesters in [15] and [37]. However, the present GPEH owns the 
largest overall range of wind speed for effective power generation with considerable power 
density. Note that the data for the present GPEH in the figure is not optimized in the aspects 
of Stip, Mtip, etc.   

 
Figure 10. Comparison of the power density with other piezoelectric wind energy harvesters  

 
7. Conclusion 
In this paper, a comparison study is presented on the performance of the modelling methods 
for GPEH, including the SDOF model, single mode and multi-mode Euler-Bernoulli 
distributed parameter models. A typical GPEH consisting of a piezoelectric cantilever 
attached to a square-sectioned bluff body is considered. Procedures for these modelling 
methods are presented, in which the aerodynamic forces are all formulated based on 
quasi-steady hypothesis. Subsequently, wind tunnel experiments for the fabricated prototypes 
are conducted to validate and evaluate these models. The results show that all these models 
can successfully predict the variation of the average power with the load resistance and the 
wind speed with. Quite small difference is observed between the single-mode and multi-mode 
Euler-Bernoulli distributed parameter models. The distributed parameter model owns a more 
rational representation of the aerodynamic force, while the SDOF model gives a better 
prediction on the cut-in wind speed. In general, the SDOF can predict the electroaeroelastic 
behavior of a GPEH device accurately enough with its advantage of simplicity and ease of 
obtaining the electromechanical coupling term.  
  
The influence of the load resistance, wind exposure area and mass of the bluff body, and 
length of the piezoelectric sheets on the cut-in wind speed as well as the output power level of 
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the GPEH are investigated with a single-mode Euler-Bernoulli distributed parameter model. It 
is determined that Ucr and the growth rate of Pave increases first with RL to a certain value, 
then drops with RL. When U is large enough the largest Pave is obtained with the optimum RL, 
which owns the largest Ucr  as well. With the corresponding optimum RL, increasing Stip and 
decreasing Mtip can increase Pave as well as reduce Ucr. For the case of Lp, larger Lp gives 
larger Ucr and larger growth rate of Pave, yet not guarantees larger power density (power per 
piezoelectric volume), which is obtained at a medium Lp. Compared to other piezoelectric 
wind energy harvesters, our present GPEH gives higher power density at high wind speeds 
and owns the largest range of U with considerable power density. Future work involves 
improving the performance of the GPEH at low wind speeds.   
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