Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/94179
Title: Noncovalent functionalization of single-walled carbon nanotubes
Authors: Zhao, Yanli
Stoddart, J. Fraser
Keywords: DRNTU::Science::Biological sciences::Biochemistry
Issue Date: 2009
Source: Zhao, Y. L., & Stoddart, J. F. (2009). Noncovalent Functionalization of Single-Walled Carbon Nanotubes. Accounts of Chemical Research, 42(8), 1161-1171.
Series/Report no.: Accounts of chemical research
Abstract: Single-walled carbon nanotubes (SWNTs) have attracted much attention on account of their potential to be transformed into new materials that can be employed to address a wide range of applications. The insolubility of the SWNTs in most solvents and the difficulties of handling these highly intractable carbon nanostructures, however, are restricting their real-life applications at the present time. To improve upon the properties of the SWNTs, low-cost and industrially feasible approaches to their modifications are constantly being sought by chemists and materials scientists. Together, they have shown that noncovalent functionalization of the SWNTs can do much to preserve the desired properties of the SWNTs while remarkably improving their solubilities. This Account describes recent advances in the design, synthesis, and characterization of SWNT hybrids and evaluates applications of these new hybrid materials based on noncovalently functionalized SWNTs. Their solubilization enables the characterization of these hybrids as well as the investigation of the properties of the SWNTs using solution-based techniques. Cognizant of the structural properties of the functional molecules on the SWNTs, we present some of the recent work carried out by ourselves and others under the umbrella of the following three subtopics: (i) aromatic small-molecule-based noncovalent functionalization, (ii) biomacromolecule-based noncovalent functionalization, and (iii) polymer-based noncovalent functionalization. Several examples for the applications of noncovalently functionalized SWNT hybrids in the fabrication of field-effect transistor (FET) devices, chemical sensors, molecular switch tunnel junctions (MSTJs), and photovoltaic devices are highlighted and discussed. The blossoming of new methods for the noncovalent functionalization of the SWNTs promises a new generation of SWNT hybrid-based integrated multifunctional sensors and devices, an outcome which is essential for the development of carbon nanotube chemistry that interfaces with physics, materials, biology, and medical science.
URI: https://hdl.handle.net/10356/94179
http://hdl.handle.net/10220/7046
ISSN: 0001-4842
DOI: 10.1021/ar900056z
Schools: School of Physical and Mathematical Sciences 
Rights: © 2009 American Chemical Society
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SPMS Journal Articles

SCOPUSTM   
Citations 1

615
Updated on Mar 19, 2024

Web of ScienceTM
Citations 1

533
Updated on Oct 27, 2023

Page view(s) 5

956
Updated on Mar 27, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.