mirage

Direct observation and analysis of annealing-induced microstructure at interface and its effect on performance improvement of organic thin film transistors.

DSpace/Manakin Repository

 

Search DR-NTU


Advanced Search Subject Search

Browse

My Account

Direct observation and analysis of annealing-induced microstructure at interface and its effect on performance improvement of organic thin film transistors.

Show full item record

Title: Direct observation and analysis of annealing-induced microstructure at interface and its effect on performance improvement of organic thin film transistors.
Author: Bao, Qiaoliang.; Li, Jun.; Li, Chang Ming.; Dong, Zhili.; Lu, Zhisong.; Qin, Fang.; Gong, Cheng.; Guo, Jun.
Copyright year: 2008
Abstract: For the first time direct observation and analysis of microstructural variations of crystalline domains and grain boundaries at atomic scale in the buried interface of an organic semiconductor thin film of poly(2,6-bis(3-alkylthiophen-2-yl)dithieno[3,2-b;2′,3′-d]thiophene) (PBTDT), a new synthesized solution-processed polymer is achieved for demonstrating a different network nanostructure of crystalline nanofibers at the interface from the outside surface of the film observed. It is also discovered that structural variations of crystalline domains and grain boundaries at an atomic scale caused by annealing, which include larger domains with enhanced crystallinity, reduced π−π stacking distance, reduced disorders in the grain boundaries, and small tilt-angle boundaries well explain the significant performance improvement of the PBTDT based organic thin film transistor (OTFT) after anealing. This work provides a highly resolutioned image on the microstructures at an organic semiconducting interface for deep scientific insights of the OTFT performance improvement through microstructure optimization.
Subject: DRNTU::Engineering::Materials::Microelectronics and semiconductor materials::Thin films.
Type: Journal Article
Series/ Journal Title: Journal of physical chemistry B
School: School of Materials Science and Engineering
Rights: © 2008 American Chemical Society

Files in this item

Files Size Format View

There are no files associated with this item.

   

DOI Query

- Get published version (via Digital Object Identifier)
   

This item appears in the following Collection(s)

Show full item record