Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique

DSpace/Manakin Repository


Search DR-NTU

Advanced Search Subject Search


My Account

Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique

Show simple item record

dc.contributor.author Kong, Ling Bing
dc.contributor.author Zhang, T. S.
dc.contributor.author Ma, Jan
dc.contributor.author Boey, Freddy Yin Chiang
dc.date.accessioned 2012-03-22T03:37:05Z
dc.date.available 2012-03-22T03:37:05Z
dc.date.copyright 2007
dc.date.issued 2012-03-22
dc.identifier.citation Kong, L. B., Zhang, T. S., Ma, J. & Boey, F. Y. C. (2008). Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique. Progress in Materials Science, 53(2), 207-322.
dc.identifier.uri http://hdl.handle.net/10220/7657
dc.description.abstract Ferroelectric ceramics are important electronic materials that have found a wide range of industrial and commercial applications, such as high-dielectric constant capacitors, piezoelectric sonar or ultrasonic transducers, pyroelectric security sensors, medical diagnostic transducers, electro-optical light valves, and ultrasonic motors, to name a few. The performances of ferroelectrics are closely related to the ways they are processed. The conventional solid state reaction method requires high calcination and sintering temperatures, resulting in the loss of lead, bismuth or lithium components due to their high volatilities, thus worsening the microstructural and subsequently the electrical properties of the ferroelectric materials. Various wet chemistry based routes have been developed to synthesize ultra-fine and even nano-sized ferroelectric powders. However, most of the chemistry based routes still involve calcinations, although at relatively lower temperatures. High energy mechanochemical milling process has shown that some ferroelectric materials can be synthesized directly from their oxide precursors in the form of nano-sized powders, without the need for the calcination at intermediate temperatures, thus making the process very simple. A large number of ferroelectric materials, including lead-containing ferroelectrics, antiferroelectrics and relaxors, and bismuth-containing Aurivillius families, have been synthesized by the high-energy milling process. Some ferroelectrics, such as barium titanate (BaTiO3 or BT), lead iron tungstate [Pb(Fe2/3W1/3)O3 or PFW], and several bismuth-containing materials, that cannot be directly produced from their oxide mixtures, have been formed at relatively low temperatures. Ferroelectric ceramics derived from the activated precursors demonstrated better microstructure and electrical properties than those without mechanochemical treatment. This review presents an overview of the recent progress in the synthesis of ferroelectric ceramic powders using various high-energy milling techniques. The progress includes several aspects: (i) direct synthesis of nano-sized powders with better sinterability, (ii) promoted reactive sintering due to the modification of the precursors, (iii) amorphization of the precursors, and (iv) refinement of the precursors with high homogeneity. The underlying mechanisms of mechanochemical synthesis of ferroelectric materials are discussed. Further research emphasises on issues related to the synthesis of ferroelectric ceramic powders are suggested.
dc.format.extent 144 p.
dc.language.iso en
dc.relation.ispartofseries Progress in materials science
dc.rights © 2007 Elsevier. This is the author created version of a work that has been peer reviewed and accepted for publication by Progress in Materials Science, Elsevier. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI: http://dx.doi.org/10.1016/j.pmatsci.2007.05.001].
dc.subject DRNTU::Engineering::Materials::Functional materials.
dc.title Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique
dc.type Journal Article
dc.contributor.school School of Materials Science and Engineering
dc.identifier.doi http://dx.doi.org/10.1016/j.pmatsci.2007.05.001
dc.description.version Accepted version

Files in this item

Files Size Format View
125. Progress i ... hanochemical Technique.pdf 3.277Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record


Total views

All Items Views
Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique 808

Total downloads

All Bitstreams Views
125. Progress in Synthesis of Ferroelectric Ceramic Materials via High-Energy Mechanochemical Technique.pdf 2525

Top country downloads

Country Code Views
India 537
United States of America 472
China 206
Singapore 196
Iran 84

Top city downloads

city Views
Mountain View 337
Singapore 186
New Delhi 76
Beijing 71
Bangkok 53