mirage

Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties

DSpace/Manakin Repository

 

Search DR-NTU


Advanced Search Subject Search

Browse

My Account

Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties

Show full item record

Title: Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties
Author: Xiong, Shenglin; Chen, Jun Song; Lou, David Xiong Wen; Zeng, Hua Chun
Copyright year: 2012
Abstract: In this work, a novel hydrothermal route is developed to synthesize cobalt carbonate hydroxide, Co(CO3)0.5(OH)·0.11H2O. In this method, sodium chloride salt is utilized to organize single-crystalline nanowires into a chrysanthemum-like hierarchical assembly. The morphological evolution process of this organized product is investigated by examining different reaction intermediates during the synthesis. The growth and thus the final assembly of the Co(CO3)0.5(OH)·0.11H2O can be finely tuned by selecting preparative parameters, such as the molar ratio of the starting chemicals, the additives, the reaction time and the temperature. Using the flower-like Co(CO3)0.5(OH)·0.11H2O as a solid precursor, quasi-single-crystalline mesoporous Co3O4 nanowire arrays are prepared via thermal decomposition in air. Furthermore, carbon can be added onto the spinel oxide by a chemical-vapor-deposition method using acetylene, which leads to the generation of carbon-sheathed CoO nanowire arrays (CoO@C). Through comparing and analyzing the crystal structures, the resultant products and their high crystallinity can be explained by a sequential topotactic transformation of the respective precursors. The electrochemical performances of the typical cobalt oxide products are also evaluated. It is demonstrated that tuning of the surface texture and the pore size of the Co3O4 products is very important in lithium-ion-battery applications. The carbon-decorated CoO nanowire arrays exhibit an excellent cyclic performance with nearly 100% capacity retention in a testing range of 70 cycles. Therefore, this CoO@C nanocomposite can be considered to be an attractive candidate as an anode material for further investigation.
Subject: DRNTU::Science::Medicine::Biomedical engineering
Type: Journal Article
Series/ Journal Title: Advanced functional materials
School: School of Chemical and Biomedical Engineering
Rights: © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Files in this item

Files Size Format View

There are no files associated with this item.

   

DOI Query

- Get published version (via Digital Object Identifier)
   

This item appears in the following Collection(s)

Show full item record