mirage

Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials

DSpace/Manakin Repository

 

Search DR-NTU


Advanced Search Subject Search

Browse

My Account

Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials

Show full item record

Title: Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials
Author: Zhang, Xiang; Velmurugan Thavasi; Mhaisalkar, Subodh Gautam; Seeram Ramakrishna
Copyright year: 2012
Abstract: Hollow mesoporous one dimensional (1D) TiO2 nanofibers are successfully prepared by co-axial electrospinning of a titanium tetraisopropoxide (TTIP) solution with two immiscible polymers; polyethylene oxide (PEO) and polyvinylpyrrolidone (PVP) using a core–shell spinneret, followed by annealing at 450 °C. The annealed mesoporous TiO2 nanofibers are found to having a hollow structure with an average diameter of 130 nm. Measurements using the Brunauer–Emmett–Teller (BET) method reveal that hollow mesoporous TiO2 nanofibers possess a high surface area of 118 m2 g−1 with two types of mesopores; 3.2 nm and 5.4 nm that resulted from gaseous removal of PEO and PVP respectively during annealing. With hollow mesoporous TiO2 nanofibers as the photoelectrode in dye sensitized solar cells (DSSC), the solar-to-current conversion efficiency (η) and short circuit current (Jsc) are measured as 5.6% and 10.38 mA cm−2 respectively, which are higher than those of DSSC made using regular TiO2 nanofibers under identical conditions (η = 4.2%, Jsc = 8.99 mA cm−2). The improvement in the conversion efficiency is mainly attributed to the higher surface area and mesoporous TiO2 nanostructure. It facilitates the adsorption of more dye molecules and also promotes the incident photon to electron conversion. Hollow mesoporous TiO2 nanofibers with close packing of grains and crystals intergrown with each other demonstrate faster electron diffusion, and longer electron recombination time than regular TiO2 nanofibers as well as P25 nanoparticles. The surface effect of hollow mesoporous TiO2 nanofibers as a photocatalyst for the degradation of rhodamine dye was also investigated. The kinetic study shows that the hollow mesoporous surface of the TiO2 nanofibers influenced its interactions with the dye, and resulted in an increased catalytic activity over P25 TiO2 nanocatalysts.
Subject: DRNTU::Engineering::Materials.
Type: Journal Article
Series/ Journal Title: Nanoscale
School: School of Materials Science and Engineering
Rights: © 2012 The Royal Society of Chemistry. This is the author created version of a work that has been peer reviewed and accepted for publication by Nanoscale, Royal Society of Chemistry. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI: http://dx.doi.org/10.1039/C2NR11251E ]
Version: Accepted version

Files in this item

Files Size Format View
accepted_Novel_ ... Materials-_Zhang_et_al.pdf 989.0Kb PDF View/Open
   

DOI Query

- Get published version (via Digital Object Identifier)
   

This item appears in the following Collection(s)

Show full item record

Statistics

Total views

All Items Views
Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials 487

Total downloads

All Bitstreams Views
accepted_Novel_Hollow_Porous_1D_TiO2_Nanofibers_as_Photovoltaic_and_Photocatalytic_Materials-_Zhang_et_al.pdf 230
Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and.pdf 8

Top country downloads

Country Code Views
United States of America 70
China 30
Singapore 22
India 19
Thailand 14

Top city downloads

city Views
Mountain View 55
Singapore 21
New Delhi 10
Bangkok 6
Chiang Mai 6