mirage

Multi-associative neural networks and their applications to learning and retrieving complex spatio-temporal sequences.

DSpace/Manakin Repository

 

Search DR-NTU


Advanced Search Subject Search

Browse

My Account

Multi-associative neural networks and their applications to learning and retrieving complex spatio-temporal sequences.

Show full item record

Title: Multi-associative neural networks and their applications to learning and retrieving complex spatio-temporal sequences.
Author: Wang, Lipo.
Copyright year: 1999
Abstract: Based on the previous work of a number of authors, we discuss an important class of neural networks which we call multi-associative neural networks (MANNs) and which associate one pattern with multiple patterns. As a computationally efficient example of such networks, we describe a specific MANN, that is, a multi-associative, dynamically generated variant of the counterpropagation network (MCPN). As an application of MANNs, we design a general system that can learn and retrieve complex spatio-temporal sequences with any MANN. This system consists of comparator units, a parallel array of MANNs, and delayed feedback lines from the output of the system to the neural network layer. During learning, pairs of sequences of spatial patterns are presented to the system and the system learns-to associate patterns at successive times in sequence. During retrieving, a cue sequence, which may be obscured by spatial noise and temporal gaps, causes the system to output the stored spatio-temporal sequence. We prove analytically that this system is capable of learning and generating any spatio-temporal sequences within the maximum complexity determined by the number of embedded MANNs, with the maximum length and number of sequences determined by the memory capacity of the embedded MANNs. To demonstrate the applicability of this general system, we present an implementation using the MCPN. The system shows desirable properties such as fast and accurate learning and retrieving, and ability to store a large number of complex sequences consisting of nonorthogonal spatial patterns
Subject: DRNTU::Engineering::Electrical and electronic engineering.
Type: Journal Article
Series/ Journal Title: IEEE transactions on systems, man, and cybernetics – Part B: cybernetics
School: School of Electrical and Electronic Engineering
Rights: © 1999 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: [http://dx.doi.org/10.1109/3477.740167].
Version: Accepted version

Files in this item

Files Size Format View
38. Multi-assoc ... tio-temporal sequences.pdf 200.8Kb PDF View/Open
   

DOI Query

- Get published version (via Digital Object Identifier)
   

This item appears in the following Collection(s)

Show full item record

Statistics

Total views

All Items Views
Multi-associative neural networks and their applications to learning and retrieving complex spatio-temporal sequences. 265

Total downloads

All Bitstreams Views
38. Multi-associative neural networks and their applications to learning and retrieving complex spatio-temporal sequences.pdf 114

Top country downloads

Country Code Views
United States of America 51
Singapore 29
China 9
Russian Federation 6
Canada 2

Top city downloads

city Views
Mountain View 38
Singapore 28
Redwood City 4
Boisbriand 1
Eysines 1