mirage

Characteristics of the nanostructures in thermal sprayed hydroxyapatite coatings and their influence on coating properties.

DSpace/Manakin Repository

 

Search DR-NTU


Advanced Search Subject Search

Browse

My Account

Characteristics of the nanostructures in thermal sprayed hydroxyapatite coatings and their influence on coating properties.

Show full item record

Title: Characteristics of the nanostructures in thermal sprayed hydroxyapatite coatings and their influence on coating properties.
Author: Li, H.; Khor, Khiam Aik.
Copyright year: 2006
Abstract: There are generally two methods for depositing nanostructured coatings, retaining the nanostructures from starting feedstock and forming novel nanostructures through quenching. The present study utilized spray-dried nanostructured hydroxyapatite (nSD-HA) feedstock for coating/splat deposition. The nanostructures were characterized by transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). Results revealed that the rod-shaped nano-grains in the starting HA particles (< 500 nm in length and 40–70 nm in diameter) encountered two major experiences: enlargement due to unmelt state and reorganization due to melting–solidification. The molten part of the particles results in formation of spherical nanosized particles with grain sizes of 30–110 nm. TEM observation of the HA splats demonstrates consistent nanostructures. The unmelted part of individual nSD-HA particles showed significantly enlarged grains along radial direction (< 550 nm in length and < 400 nm in diameter). In addition, individual hexagonal grains were observed in the HVOF coating made from 30 ± 10 μm powder. The grains have the size of < 250 nm in height and < 50 nm in side length and are perpendicular to the coating/substrate interface. The nanostructures within the coatings contribute to an increased Young's modulus with up to 60.11 GPa, however, they showed detrimental effect on adhesion of the coatings. In vitro cell culturing revealed marked attachment and proliferation of the osteoblast cells on the nanostructured coatings. However, the results suggest that the nanostructures possess less importance than the phases (preferably high content of crystalline HA) on enhancing the cell proliferation.
Subject: DRNTU::Engineering::Materials::Nanostructured materials.
Type: Journal Article
Series/ Journal Title: Surface and coatings technology
School: School of Mechanical and Aerospace Engineering
Rights: © 2006 Elsevier B.V. This is the author created version of a work that has been peer reviewed and accepted for publication by Surface and Coatings Technology, Elsevier B.V. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI: http://dx.doi.org/10.1016/j.surfcoat.2006.03.024].
Version: Accepted version

Files in this item

Files Size Format View
20. Characteris ... Sprayed Hydroxyapatite.pdf 701.7Kb PDF View/Open
   

DOI Query

- Get published version (via Digital Object Identifier)
   

This item appears in the following Collection(s)

Show full item record

Statistics

Total views

All Items Views
Characteristics of the nanostructures in thermal sprayed hydroxyapatite coatings and their influence on coating properties. 206

Total downloads

All Bitstreams Views
20. Characteristics of the Nanostructures in Thermal Sprayed Hydroxyapatite.pdf 106

Top country downloads

Country Code Views
United States of America 42
Singapore 14
China 9
India 6
United Kingdom 4

Top city downloads

city Views
Mountain View 32
Singapore 11
London 4
Beijing 3
Pathankot 2

Downloads / month

  2014-05 2014-06 2014-07 total
20. Characteristics of the Nanostructures in Thermal Sprayed Hydroxyapatite.pdf 0 0 8 8