Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/89083
Title: Functional amyloids keep quorum-sensing molecules in check
Authors: Seviour, Thomas
Hansen, Susan Hove
Yang, Liang
Yau, Yin Hoe
Wang, Victor Bochuan
Stenvang, Marcel R.
Christiansen, Gunna
Marsili, Enrico
Givskov, Michael
Chen, Yicai
Otzen, Daniel E.
Nielsen, Per Halkjær
Geifman-Shochat, Susana
Kjelleberg, Staffan
Dueholm, Morten S.
Keywords: Biofilm
DRNTU::Science::Biological sciences
Amyloid
Issue Date: 2015
Source: Seviour, T., Hansen, S. H., Yang, L., Yau, Y. H., Wang, V. B., Stenvang, M. R., . . . Dueholm, M. S. (2015). Functional amyloids keep quorum-sensing molecules in check. Journal of Biological Chemistry, 290(10), 6457-6469. doi:10.1074/jbc.M114.613810
Series/Report no.: Journal of Biological Chemistry
Abstract: The mechanism by which extracellular metabolites, including redox mediators and quorum-sensing signaling molecules, traffic through the extracellular matrix of biofilms is poorly explored. We hypothesize that functional amyloids, abundant in natural biofilms and possessing hydrophobic domains, retain these metabolites. Using surface plasmon resonance, we demonstrate that the quorum-sensing (QS) molecules, 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-L-homoserine lactone, and the redox mediator pyocyanin bind with transient affinity to functional amyloids from Pseudomonas (Fap). Their high hydrophobicity predisposes them to signal-amyloid interactions, but specific interactions also play a role. Transient interactions allow for rapid association and dissociation kinetics, which make the QS molecules bioavailable and at the same time secure within the extracellular matrix as a consequence of serial bindings. Retention of the QS molecules was confirmed using Pseudomonas aeruginosa PAO1-based 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-L-homoserine lactone reporter assays, showing that Fap fibrils pretreated with the QS molecules activate the reporters even after sequential washes. Pyocyanin retention was validated by electrochemical analysis of pyocyanin-pretreated Fap fibrils subjected to the same washing process. Results suggest that QS molecule-amyloid interactions are probably important in the turbulent environments commonly encountered in natural habitats.
URI: https://hdl.handle.net/10356/89083
http://hdl.handle.net/10220/46054
ISSN: 0021-9258
DOI: 10.1074/jbc.M114.613810
Schools: School of Materials Science & Engineering 
School of Biological Sciences 
Organisations: Singapore Centre for Environmental Life Sciences Engineering
Research Centres: Energy Research Institute @ NTU (ERI@N) 
Rights: © 2015 by The American Society for Biochemistry and Molecular Biology, Inc. This paper was published in Journal of Biological Chemistry and is made available as an electronic reprint (preprint) with permission of The American Society for Biochemistry and Molecular Biology, Inc. The published version is available at: [http://dx.doi.org/10.1074/jbc.M114.613810]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCELSE Journal Articles

Files in This Item:
File Description SizeFormat 
Functional amyloids keep quorum sensing molecules in check.pdf3.42 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 5

64
Updated on Mar 26, 2024

Web of ScienceTM
Citations 5

57
Updated on Oct 24, 2023

Page view(s) 50

557
Updated on Mar 28, 2024

Download(s) 50

104
Updated on Mar 28, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.