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Abstract. Duadic codes ovdf, +uF, are introduced as abelian codes by their
zeros. This is the function field analogue of duadic codes Ayentroduced
recently by Langevin and Sel They produce binary self-dual codes via a suit-
able Gray map. Their binary images are themselves abelian, thus generalizing
a result of van Lint for cyclic binary codes of even length. We classify them in
modest lengths and exhibit interesting non-cyclic examples.

Keywords. Abelian codes, Duadic codes, Self-dual, Isodual, Type Il codes,
Splitting.

1 Introduction

Duadic codes constitute a well-known class of cyclic codes. They provide a
natural way to construct self-dual codes with a rich automorphism group. See
the introduction section of [5] for references and historical perspective. They
were generalized recently #y-codes [7]. In this article they are generalized

to the context of abelian codes over + uF», the function field analogue of

the former alphabet. While linear, the binary image&oft uF,-codes seem

to perform just as well as theit;-analogues. Furthermore they are shown here
to be abelian for a double cover of the group from which their quaternary an-
tecedent is defined. This extends an old result of van Lint for repeated roots
cyclic binary codes [8].
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olis, France. The author would like to thank the institution for the kind hospitality. The research
of this author is partially supported by MOE-ARF research grant R-146-000-018-112.
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The material is organized as follows. Section 2 collects the relevant nota-
tions and definitions. Section 3 develops the algebraic machinery needed to
study abelian codes. Section 4 introduces duadic codes and Section 5 studies
their extensions by a parity-check with respect to self-duality and isoduality.
Section 6 is concerned with Type Il codes in the sense of [6]. Section 7 ex-
plores duadic codes of modest lengths with a special emphasis on non-cyclic
examples.

2 Notations and Definitions

Let R be the commutative ring, + uF» := F»[X]/(X?). This ring is endowed
with the obvious addition and multiplication, with the property that= 0.
The elements ok may be written as (L, « and 1+ «, where 1 and % « are
the only units inR. Therefore R has three idealg0), (1) and(1).

A linear codeC over R of lengthn is an R-submodule ofR". An ele-
ment of C is called a codeword. The Hamming weighy; (c) of a codeword
c is the number of nonzero coordinates. The (Euclidean) inner product of two
codewords = (cy, ..., ¢,) andc = (cy, ..., c,) of R" is defined to be

n

(c,c) = Zcicl’. € R.

i=1

Duality is understood with respect to this inner product. In particular, the dual
codeC+ of C is defined to be

Ct={xeR"|(x,c)=0 forallce C}.

If C € C*, we say thaC is self-orthogonal. IIC = C*, thenC is said to be
self-dual. Two codes are equivalent if one can be obtained from the other by
permuting the coordinates and exchanging 1 ardilin some coordinates.
The Lee weights of 01, u, 1+u € R are definedtobe 0, 1, 2, 1 respective-
ly. The Lee weight of a codeword iR" is the rational integer sum of the Lee
weights of its coordinates. In other words, for a codeword (cy, ..., c,),
if we let ng(c) denote the number of coordinates that are equal to @; (€}
denote the number of coordinates equal to 1 erid and letn,(c) denote the
number of coordinates equaliothen the Lee weighi, (c) of cis defined to
beni(c) + 2n,(c). The Lee distance between two codewardsdc’ is the Lee
weight ofc — C'.
The symmetrised weight enumerator (swe) of a cOd®ver R is

swec(a, b, c) = Z a"0(© pn(© n2(©)
ceC

The MacWilliams identity for codes ovet has been established by Bachoc
[1, Theorem 4.2].
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A codeC overR is isodual if it is equivalent t@+. It is formally self-dual
(fsd, for short) if its swe is invariant by the MacWilliams Transform.

A self-dual code oveRr is said to be of Type Il if the Lee weight of every
codeword is a multiple of 4. Otherwise we say that the self-dual code is of

Type I.
For a code&” over R, we denote by, the extended code, obtained fr@m
by appending to each codeward= (cs, .. ., ¢,) an overall parity check coor-

dinateco, = — Y/, ¢;. The augmented codg is defined to be” + span{1},
wherel is the all-one vector angpan{v} is the R-span ofv. Therefore, the
augmented and extended co@g is the code obtained by first extendiny
followed by augmentation. Wheneveris odd, C,, may also be obtained by
first augmenting_ followed by extension.

There is a natural isomorphism betwed’ (Lee distance) andzé", Ham-
ming distance) that is aR,-linear isometry, called the Gray map. It is given
by

¢ . R" — F%”
X+uy — (Y, X+Y),

wherex, y € F5.
There are two binary linear codes that are naturally associated with a given
linear codeC over R. They are the residue code

Cay=1{xeF;|3dyeF, suchthak+uy e C}

and the torsion code
C(z) ={xe Fg | ux € C}.

Clearly,C1y € C(p. Let ks be the dimension of the binary codg;, and let
k1 + k» be the dimension of the binary codg,,. We then say that the code
overR is of type 412k,

3 Abedlian Codes

An abelian code over of lengthn is defined to be an ideal in the group ring
R[G], whereG is a finite abelian group of ordar We assume throughout this
paper thak is odd and that the grou@ is written additively. Every element
of R[G] can be written uniquely in the forrﬁ:geG ceX¢ (cg € R). The addi-
tion in R[G] is the obvious componentwise addition. This identifs;] with

R" naturally as groups. The multiplication RG] is the convolution product
given by

(Z chXh> (ZCZXZ> = d X¢,

heG teG geG

where
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_ /
d, = E ChCy.

h+l=g

Let GR(R, d) be the unique Galois extension Bfof degreed. This ring
has been studied in [3, Section 2.1]. It may be regarded as a ring of the form
R[X]/(f), wheref is a monic basic irreducible polynomial ®{ X] of degree
d. For the definition and discussion of Galois extensions of local commutative
rings in a more general setting, we refer the reader to [9, Chapter XV].

In particular, we recall that

GR(R,d) = Fy 4+ uFo, 1)

whereF,. is the unique finite field (up to isomorphism) of 2lements. The
only ideals inGR(R, d) are(0), (1) and («). In the notation of (1), we may
write these ideals as

0 = (0) +u(0),

D =@D +u),

) = (O0) +u(d).

Here, the ideals on the left hand side are ideas R(R, d), while the ideals on
the right hand side are idealska.. Moreover, forx = x; + ux, € GR(R, d),
the Frobenius map' is defined as

F(x) = x? + ux3.

Let m denote the exponent @f. Letd be the order of 2 modula. Then
F.« contains a primitiventh root of unity, which we fix and denote ky By
the Fundamental Theorem of finitely generated abelian groups, we may write

t
G~[]zn
i=1

Every elemeng € G can hence be regarded as-aple (as, ..., a;), where
a; € Z,,. For elements, b € G, define
[a,b] = ¢,
where
t
e = Zaibi(m/ni).

i=1
Here,q;, b;, which are actually elements &f,,, are viewed as rational integers
such that 0O< q4;, b; < n; — 1. The sume is computed as an integer sum. In
fact, since; is anmth root of unity, the suna may also be regarded as a sum
modulom.
The mapb +— [a, b] is a character o0& with values inF,.. Moreover, we
have
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[a, b] = [b, a],
[a, 2b] = [2a, b] = [a, b]?,
Y egla. x] = ndg .
The Fourier Transform for binary codes is well-known. For a worg
> eec €2 X® € F2[G], its Fourier Transform is defined to lbe= Y, . & X",

where
é/’L = ch[g’ h]
geG

For R[G], we can write each word as
C=C+uCy, C,C € Fz[G].

We define the Fourier Transform ofas¢; + uC,. It is easy to verify that the
following hold:

e forallc,¢ € R[G] and allh € G, we haverc’), = &,&);
e forall c € R[G] and allh € G, we haveF (¢,) = Co.

Denote byOy, Oy, ..., O, the orbits ofG under the map +— 2x. Letd;
denote the size 0b;. Using exactly the same argument as in [7, Section 5],
together with (1), we obtain the following results:

Theorem 3.1 Thereisaring isomorphism between R[G] and the product
R X GR(R,dy) x --- Xx GR(R, dy).
Hence, R[G] isisomorphicasaringto
(Fo x Foap x « -« X Foae) +u(Fo X Foap x -+ X Fou).
Consequently, every ideal I of R[G] can be expressed as
IoxI1 x---x I,
withI; = J; +uK;, where J;, K ; areidealsinF,, and J; C K.

From Theorem 3.1, if a cod€ overR is identified with an ideal of R[G], we
haveJo x Jy x--- x J; € CqyandKg x K1 x - - - x Kg € C(p), whereC ) and
C (2 are the residue and torsion codes respectively. Sifice= |C(y)||C o), it
follows that
Cph=JoxJyx---xJ; C F,[G]
and
C(2)=K0XK1X---XK3 GFz[G].

Moreover,C = Cy) + uCy).
We also have the following result on the Gray image of an abelian code
overR:
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Theorem 3.2 If C is an abelian code in R[G], where G is an abelian group
of order n, then the Gray image ¢ (C) isabinary abelian codein Fo[G x Z3].
Moreover, if C (1) has minimum distance d; and C ) has minimum distance ds,
then ¢ (C) hasminimum distance min{d1, 2d,}. If n isodd and G iscyclic, then
¢ (C) isabinary cyclic code.

Proof. Foranelement =} _;(a;+ (1+u)by)X® € R[G], whereay, b, €
F2, considert’ = Y, ) coxz, Ce.m X$Y", where
_Jb, ifh=0
= \a, if h=1.
Itis clearthat’ € F,[G x Z,] and that it may be identified with the Gray image
of ¢. Itremains to show that (C) = {¢' | c € C} forms anideal if,[G x Z5].

The addition and multiplication b¥ in F,[G x Z;] correspond to the ones
in R[G], so¢(C) is closed under these operations. Multiplicationtogorre-
sponds to the “swap” map defined in [6, Section IX], which in turn corresponds
to multiplication by I4-u in R[G], so¢ (C) is again closed under multiplication
by Y. Henceg(C) is an ideal.

The second assertion follows immediately from the fact¢h@®) is equiv-
alent to the(u|u + v) construction (cf. [10, Section 2]) with € C( and
V € C(l).

The last assertion is obvious @sx Z is cyclic in that case.

Remark. Theorem 3.2 generalises Theorem 1 of [8] and the proofis shorter.

3.1 Duality
Leto denote the permutation df, 1, ..., s} induced by the map — —x on
G and, consequently, onthe orbig, O, ..., O, defined earlier. In particular,

o is the identity if and only if, for every € G, x and—x lie in the same orbit.
For the idealg0), (1) and(u) in a Galois ringG R(R, d), we defing0)? = (1),

(1)° = (0) and (1) = (u). By the same argument as in [7, Section 7] again,
we have the following

Theorem 3.3 Thedual of theideal 7 = Ip x I1 x ---I; C R[G] istheideal
IH =100 X 10q) X -+ X 1.

Therefore, anideal 7 = Iy x I1 x - - - x I issdlf-dual if and only if we have
yy=1foral0=<j<s.

Remark. There is always a trivial self-dual abelian codeRNG] when the
ordern of G is odd, viz. the ideal wherel; = (u) forall0 < j <. Itis easy

to observe that the following analog of [7, Proposition 7.5] is true: there is no
nontrivial abelian self-dual code iR[G] (where the order o is odd) if and
only if o is the identity.
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4 Duadic Codesover R

We say tha{ X, A, B) is a splitting of G given by«, wherewx is an automor-
phism ofG, if XU AU B is a partition ofG such thatX, A andB are unions of
orbits and thatt(A) = B anda(B) = A. It follows therefore thaty(X) = X.

We define a duadic code ovR&rattached to the splittingX, A, B) given byu

to be the idealp x I1 x - -- x I, in R[G] wherel; = (u) if O; € X, I; = (0)

if O; € Aandl; = (1) if O; € B. If we relax the condition o by allowing

it to be any of the ideal€)), (1) or (1), then we say that the code thus obtained
is a generalised duadic code attached to the splitting.

Theorem 4.1 Assumethat o isnot theidentity and that (X, A, B) isasplitting
of G given by —1. Then the duadic code attached to (X, A, B) isself-dual and
the generalised duadic codewith I, = (0) isself-orthogonal. Conversely, every
self-dual abelian code over R is a duadic code attached to some splitting of G
given by —1.

Proof. The first statement follows from the definitions of duadic codes and
generalised duadic codes, as well as Theorem 3.3. Converseby, Ify x I; x

--- x I; is a self-dual abelian code R[G], by settingX to be the union of the

O; for whichI; = (u), A to be the union of th®; for which 7; = (0) andB

to beG\(A U X), it follows that(X, A, B) is a splitting of G given by—1.

Remark. Note that the trivial self-dual abelian code corresponds to the degen-
erate splitting G, @, 9) of G.

Let ¢ be the permutation ofD, 1, ..., s} induced byx. In particular, if
o =—1,we haver =o.Foranyideal = Iy x I, x --- x I; of R[G], we call
the ideall* := I x I;1) x - - - X I(5) the image off under the multiplietx.
Itis in fact the image of under the isometry_ ¢, X¢ > " ¢, X% ¢, wherex*,
an automorphism af;, is the adjoint ofr with respect to the pairing]defined
in Section 3. The ideal is said to be isodual by the multiplierif 7% = I+.

Theorem 4.2 Assumethat o istheidentity andthat thereisasplitting (X, A, B)
of G. Then the duadic code attached to the splitting (X, A, B) isisodual. Con-
versely, every abelian code over R isodual by a multiplier is a duadic code
attached to a splitting of G.

The proof of Theorem 4.2 is analogous to the one for Theorem 4.1.
5 Augmented and Extended Abelian Codes
5.1 Sdf-Duality

We first show in this section that the augmented and extended code of a gen-
eralised duadic code ové is self-dual. Then we show that if the augmented
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and extended code of an abelian cateverR is self-dual, therC is actually
a generalised duadic code.

Theorem 5.1 Let G beanabeliangroup of order n, let (X, A, B) beasplitting
of G given by —1 and let C be an attached generalised duadic code over R.
Then C, is self-dual.

Proof. We first note thaiC,, has exactly 2! elements. Note also that the
choice of the ideal is irrelevant when we consider the augmented and ex-
tended code. Therefore, we may assume be a duadic code (henfg= (u)).

In particular,C is self-dual.

For codewords, ¢’ € C, we have the following:

(€, c0), (¢, i) =0, (2)
(€, c0), (1, 1)) =0, (3)
((1,1),(@1,1)=0. (4)

Equation (2) is true becauseis self-dual and«, c., € (u); equation (3) fol-
lows from the definition of the extended code; while (4) is true becausel
is even andR has characteristic 2.

By the R-linearity of the inner product, it follows thai,, is self-orthogo-
nal. SinceC,, has 2+1 elements, it follows that it is self-dual. This completes
the proof of Theorem 5.1.

Next we letC denote an abelian code overof lengthn. Suppose that,,
is self-dual.

Theorem 5.2 Let C bean abelian codein R[G], where G isan abelian group
of order n. Suppose that C, is self-dual. Then n isodd and C is a generalised
duadic code over R attached to a splitting (X, A, B) of G given by —1. In
particular, any self-dual augmented and extended abelian code over R isthe
augmented and extended code of a duadic code over R attached to a splitting
(X, A, B) of G given by —1.

Proof. Since(1, 1) is in Cw, the self-duality olC,, implies that: + 1 is even.

Write C aslp x I1 x - -- x I. Itis clear thaiC = C + span{1} is an ideal
of R[G]. In fact, it is the ideaFo x Iy x --- x I, wherely = (1). Recall also
thatC* is the ideall? o) x - - - x IZ

Considerthe orblts |G\{0} LetX’ denote the union of the orbi3; where
I; = (u); let A be the union of the orbit®; with I; = (0) and IetB be the
union of the orbitsO; with 7; = (1).
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Forc e C andc e C1, recall thatc,, = —¢g € I andc., € Ig. Then we
have

(€, c0), (€, cl)) = 0. ®)

By definition of the extension, we have

(L, D), (¢, ) =0. (6)

Therefore(C1)s € (Cx)t = Cs, from which it follows thatC+ < C, since
n is odd and hence augmentation and extension of a code commute.

The index ofC in C is 1, 2 or 4, depending on wheth&y = (1), () or
(0). The size ofC is 2*! sinceC, is self-dual. Therefore, together with the
fact thatC+ < C, it follows that the index o€+ in C is 4, 2 or 1 respectively.
This means in particular thdf ;) = I; forall 1 < j < s. This means that
(X’ U {0}, A, B) is a splitting of G given by—1 andC is a generalised duadic
code attached to this splitting.

The final statement of the theorem follows immediately since the choice of
Ip is irrelevant when we consider the augmented and extended code.

This completes the proof of Theorem 5.2.

5.2 Isoduality

For an abelian cod€ in R[G], a multiplier « acts onC by permutation of
the coordinates. In particular, the parity-check coordinate of a codeword
remains the same as that of its imagfeunder the multiplier. We define the
action of a multipliere on the augmented and extended cdtle by the rule
(C, Coo) F> (C%, co0). Therefore(Coo)® = ((C)%)s. We say that the augmented
and extended cod€ is isodual by a multiplietr if (Coo)t = ((C)%)so. We
have the following results on isoduality. We continue to assumecthatthe
identity.

Theorem 5.3 Let G bean abelian group of order n, let (X, A, B) beasplitting
of G given by « and let C be an attached generalised duadic code over R. Then
Co isisodual by the multiplier .

Theorem 5.4 Let C bean abelian codein R[G], for some abelian group G of
order n, such that C, isisodual by a multiplier «. Then » isodd and C isa
generalised duadic code attached to a splitting (X, A, B) of G given by «. In
particular, any augmented and extended abelian code over R that isisodual by
amultiplier o isthe augmented and extended code over a duadic code attached
to a splitting (X, A, B) of G given by «.

The proofs of these two theorems are essentially the same as those for Theorems
5.1 and 5.2, using the following observations:
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1. amultiplier leaves the parity-check coordinate of every codeword unchanged
while acts as a permutation on the other coordinates;
thec’ in the proof of Theorem 5.1 should be taken to b€
3. due to the isoduality af ., by the multipliere, the containment+ < C in
the proof of Theorem 5.2 is now replaced®y < C*. The same argument
thenyieldsl, ;) = Ij” forall1 < j < s, acondition needed for the existence
of the required splitting given by.

N

6 Typell Codes

In this section, we give a criterion for self-dual augmented and extended abelian
codes overRr to be of Type II.

LetC = Iy x --- x I; be a generalised duadic code oveattached to a
splitting (X, A, B) of an abelian groug given by—1, with I, = (0). We recall
from Section 3 and Theorem 3.1 that= Cq) + uC(), whereCg), C) are
the residue and torsion codes respectively. If we Wiitg = Jo x - - - x J; and
Ci = Ko x --- x K, thenJp = (0). Moreover, note thaf; = (0) whenever
0; C X.Itis easy to verify thaC|y) is a binary split group code attached to the
splitting (X, A, B) of G given by—1, in the sense of [5, Section I1.B]. (In the
notation of [5], it is the cod€¥ attached to the splittingZ, Xo, X1) of G.) [5,
Theorem IV.4] shows that 4, is self-orthogonal and that the Hamming weight
of every codeword i€y is congruent to 0 modulo 4.

Lemma6.1 Supposen + 1= 0 mod 4 Then (C(1)) is self-orthogonal, con-
tains the codeword (1, 1) and the Hamming weight of every word in (C (1)) IS
a multiple of 4.

Proof. By definition, (1, 1) € (C(1))oo-

Let (-, -) denote the usual Euclidean inner producti (We allow our-
selves this abuse of notation in this proof since we work strictly &geand
hence no confusion will arise.)

Forc, ¢ € Cqy, sinceco, = —¢o € Jo = (0), by the self-orthogonality of
Cq, we have

<(Cv COO)v (C/v Cé@)) = 0 (7)
The definition of the extended code yields
Sincen + 1 is even,
((1,1),1,1)=0. (9)

As the inner product i&,-linear, it therefore follows from (7), (8) and (9) that
(C1)) Is self-orthogonal.
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As we have already observed, every ward C;) has Hamming weight
congruentto 0 modulo 4, hence so does every wardy,) = (¢, 0) € (C(1))o-
Sincen + 1 = 0 mod 4, every word of the forrft, ¢) + (1, 1) also has Ham-
ming weight congruent to 0 modulo 4. Hence Lemma 6.1 is proved.

Lemma 6.2 We have Coo = (C(1)) o0 + 4(C2))oo-

Proof. SinceC = C() + uCp), we haveCy, = (C))oo + u(C2)00 <
(C1))oo + u(C2))00- Since(L, 1) € (C(1))o0 + u(C2)) Clearly, together with
cardinality consideration, the lemma follows.

Lemma 6.3 We have (C2))o0 = ((C(1))s0)* as binary codes.

Proof. As in the proof of Lemma 6.1, we abuse notation by using) to
denote the usual Euclidean inner produdfin

From the description of 1y andC ) in Section 3, it is clear thaf';, <
(Cay)*. Therefore, foc € C(3) andc’ € C ), noting thatc,, = 0, we have the
following identities:

((C, ci)s (€, c0)) =0,
(1.1, 1) =0,
(1, 1), (C.c0)) = 0.

Hence,(C(2)o € ((C(1))e0)*- The equality required in the lemma follows by
considering cardinalities of these two codes.

We are now ready to prove the main result of this section:

Theorem 6.4 A self-dual augmented and extended abelian code over R of
lengthn isof Typell ifand onlyifn + 1= 0 mod 4

Proof. If C is an abelian code ovet of lengthn such that its augmented and
extended code is of Type Il, then by considering the Lee weiglitaf), we
must have: + 1 = 0 mod 4.

Conversely, suppose that+ 1 = 0 mod 4 and tha€ is an abelian code
over R of lengthn such thatC, is self-dual. By Theorem 5.2, we may assume
thatC is a generalised duadic codiex I3 x - - - x I, wherely = (0). We need
to show that every codeword @, has Lee weight congruent to 0 modulo 4.

From Lemmas 6.2 and 6.8, = (C1))oo + u((C1))0)*. From Lemma
6.1,(C@)) is a binary self-orthogonal code containifig 1) and whose code-
words all have Hamming weights congruent to 0 modulo 4. It then follows from
[6, Proposition 5.1] tha€, is a self-dual Type Il code over.
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7 Examples

For a given integen, all the finite abelian group& of ordern can be easily
determined. For each of such groups, the orbits of the map 2x can then

be easily computed. It is then routine to observe if the group admits a split-
ting (X, A, B) with a givena. We explore the duadic code ovRrfor lengths

up to 31.

7.1 Cyclic Saf-Dual Codes

For lengths up to 31, such codes have been studied and classified by Bonnecaze
and Udaya [3]. We note that there are four, not three as said in [3, Section
3.1.1], nontrivial cyclic self-dual codes in length 21. This “missing” code is
obtained, in the notation of [3], by letting = f3fs, ¢ = fafs andh = f1 fo.

The Lee distance of this code is 8, yielding by the Gray map a[42, 21, 8] binary
extremal (in the sense of [4] where it is mentioned) cyclic self-dual code, with
an automorphism group of ordet*2 3% . 52 . 72,

7.2 Cyclic Isodual Codes

Forn < 31, the only length that gives rise to cyclic isodual duadic codes is
n = 17. In this case, the only code obtained is the quadratic residue code over
R of length 17.

7.3 Noncyclic Isodual Codes

Forn < 31, there are 3 values of viz.n = 9, 25 and 27, which are of interest.

731n=9

Forn = 9, onlyZ3 x Z3 gives rise to duadic codes. This group can be realised
as the underlying additive group f&s = F3(i), with i> = —1. The orbits are
then

{(0), (£D), (£0), (£A + 1), (=@ = D)}

HereQ = {£1, £i}, andN = {(=(1 +i)), (=(1 —i))}. In Table 1 the codes

are specified by their components on each of the 5 orbits which are labelled in
the above order. For instance-21 — 1 — 0 — 0 is the supplemented quadrat-

ic residue (SQR) cod¢’ . We denote by, r, s, ¢ the following elements of
GL(2,3).
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=(03) =G ) =) = (R0)

There are nine nontrivial duadic codes. The four nontrivial orbits can be thought
of as the points ofPG(1, 3). It is known thatPGL(2, 3) is 3-transitive on
PG(1, 3) ([2, Theorem 6.6]). This shows that the codes listed in Table 1 are
all isodual. In fact, it can be shown that the first, fourth and sixth codes are
multiplier-equivalent to one another, and that the remaining six codes are again
multiplier-equivalent to one another. Hence, there are only two non multiplier-
equivalent duadic codes.

7.32n=25

Forn = 25, onlyZs x Zs gives rise to duadic codes. This group can be rea-
lised as the underlying additive group Bfs = Fs(j) with j2+ j +1 = 0.
There are six nonzero orbits all of size 4 and of the sh@pe= (+a, +2a)

with a ranging ovefl, j, 1+ j, 1+ 2;}. With these notations the squares and
nonsquares are:

Q:ClUCjUCl+j

N=Cy; U C1y2) U Ci12;.

It is easy to observe that there are only three types of codes, viz. those of types
41221 43217 and £2°, depending on the number of orbitsXhof the splitting
(X, A, B)ofZg x Zs.

The six nontrivial orbits can be thought of as the pointaf(1, 5). The
zeros of a code of type!#2! comprise exactly three such projective points.
The same is true for its nonzeros. SIME L(2, 5) is 3-transitive ([2, Theorem
6.6]) there is a multiplier that takes the zeros to the nonzeros. This shows that
the code is duadic and hence isodual. Similarly, there is a multiplier that takes

Table 1. Duadic Codes of length 9

CodeC Type di(C) «
2-1-1-0-0 424 4 q
2-0-2-2-1 &2 4 r
2-2-0-2-1 42 4 s
2-1-0-1-0 424 4 s
2-2-2-0-1 425 4 t
2-1-0-0-1 42 4 s
2-0-2-1-2 & 4 s
2-2-1-0-2 42 4 r
2-0-1-2-2 42 4 t
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Table 2. Duadic Codes of length 25

CodeC Type d; (C)
Class 1 4291 6
Class 2 4217 4
Class 3 82° 8

one such code to another of the same type. Hence all such codes of this type
are equivalent.

The spectrum of a code of typé24’ comprises exactly an orbit of nonzeros
and another of zeros. By the 2-transitivity of PGL(2,5) we can swap these two.
This shows that such a code is indeed duadic and hence isodual. Similarly, this
shows that there is a multiplier that takes a code of this type to another code of
the same type. Hence all such codes of this type are equivalent.

As for codes of type®°, calculations on Magma show that this class splits
into two subclasses under the action®& L(2, 5), and both orbits consist
of duadic and hence isodual codes. Moreover, the codes in each subclass are
multiplier equivalent. It is also possible to show the same result by using the
2-transitivity of PGL(2, 5) and some more tedious analysis, which we omit
here.

7.3.3n=27

Forn = 27, there are two groups that give rise to duadic codes.

(A)G:ZgXZ3XZ3.

Table 3. Duadic Codes oR[Z3 x Z3 x Z3]

CodeC Type d.(C)
41223
41027
41223
48 211
41027
41223
48 211
46 215
48 211
48 211
46 215
46 215
44 219
44 219
42 223

I
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Table 4. Duadic Codes oR[Z3 x Zg]

CodeC Type d.(C)
2-0-2-0-2—-1-2—-1 401 6
2—-2-2-0-0—-1—-2—-1 40U 6
2—-2-2-0-2-2—-2-1 2% 4
2-0-2-2-2-1-2-2 4215 4

All the 14 nonzero orbits are of the shafg = {£a} for some nonzera.
In Table 3 thes's are listed in order

000,001, 010,011, 012 100,101 102 110,111 112 120,121, 122

There are no quadratic residue codes here becasse-2 is not a quadratic
residue inF57.
(B) G = Zg X Zg.

There are 7 nonzero orbits. Three have size six and four have size two. The
orbits are by order of representatives

00,01, 03 10,11, 12, 13 16.

We list in Table 4 the four nontrivial non multiplier-equivalent duadic codes.
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