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Abstract. Duadic codes overF2+uF2 are introduced as abelian codes by their
zeros. This is the function field analogue of duadic codes overZ4 introduced
recently by Langevin and Solé. They produce binary self-dual codes via a suit-
able Gray map. Their binary images are themselves abelian, thus generalizing
a result of van Lint for cyclic binary codes of even length. We classify them in
modest lengths and exhibit interesting non-cyclic examples.
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1 Introduction

Duadic codes constitute a well-known class of cyclic codes. They provide a
natural way to construct self-dual codes with a rich automorphism group. See
the introduction section of [5] for references and historical perspective. They
were generalized recently toZ4-codes [7]. In this article they are generalized
to the context of abelian codes overF2 + uF2, the function field analogue of
the former alphabet. While linear, the binary images ofF2 + uF2-codes seem
to perform just as well as theirZ4-analogues. Furthermore they are shown here
to be abelian for a double cover of the group from which their quaternary an-
tecedent is defined. This extends an old result of van Lint for repeated roots
cyclic binary codes [8].
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olis, France. The author would like to thank the institution for the kind hospitality. The research
of this author is partially supported by MOE-ARF research grant R-146-000-018-112.
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The material is organized as follows. Section 2 collects the relevant nota-
tions and definitions. Section 3 develops the algebraic machinery needed to
study abelian codes. Section 4 introduces duadic codes and Section 5 studies
their extensions by a parity-check with respect to self-duality and isoduality.
Section 6 is concerned with Type II codes in the sense of [6]. Section 7 ex-
plores duadic codes of modest lengths with a special emphasis on non-cyclic
examples.

2 Notations and Definitions

LetR be the commutative ringF2 +uF2 := F2[X]/(X2). This ring is endowed
with the obvious addition and multiplication, with the property thatu2 = 0.
The elements ofR may be written as 0,1, u and 1+ u, where 1 and 1+ u are
the only units inR. Therefore,R has three ideals:(0), (u) and(1).

A linear codeC over R of lengthn is anR-submodule ofRn. An ele-
ment ofC is called a codeword. The Hamming weightwH(c) of a codeword
c is the number of nonzero coordinates. The (Euclidean) inner product of two
codewordsc = (c1, . . . , cn) andc′ = (c′

1, . . . , c
′
n) of Rn is defined to be

〈c, c′〉 =
n∑

i=1

cic
′
i ∈ R.

Duality is understood with respect to this inner product. In particular, the dual
codeC⊥ of C is defined to be

C⊥ = {x ∈ Rn | 〈x, c〉 = 0 for all c ∈ C}.
If C ⊆ C⊥, we say thatC is self-orthogonal. IfC = C⊥, thenC is said to be
self-dual. Two codes are equivalent if one can be obtained from the other by
permuting the coordinates and exchanging 1 and 1+ u in some coordinates.

The Lee weights of 0,1, u,1+u ∈ R are defined to be 0, 1, 2, 1 respective-
ly. The Lee weight of a codeword inRn is the rational integer sum of the Lee
weights of its coordinates. In other words, for a codewordc = (c1, . . . , cn),
if we let n0(c) denote the number of coordinates that are equal to 0, letn1(c)
denote the number of coordinates equal to 1 or 1+ u and letn2(c) denote the
number of coordinates equal tou, then the Lee weightwL(c) of c is defined to
ben1(c)+2n2(c). The Lee distance between two codewordsc andc′ is the Lee
weight ofc − c′.

The symmetrised weight enumerator (swe) of a codeC overR is

sweC(a, b, c) =
∑
c∈C

an0(c)bn1(c)cn2(c).

The MacWilliams identity for codes overR has been established by Bachoc
[1, Theorem 4.2].
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A codeC overR is isodual if it is equivalent toC⊥. It is formally self-dual
(fsd, for short) if its swe is invariant by the MacWilliams Transform.

A self-dual code overR is said to be of Type II if the Lee weight of every
codeword is a multiple of 4. Otherwise we say that the self-dual code is of
Type I.

For a codeC overR, we denote byC∞ the extended code, obtained fromC
by appending to each codewordc = (c1, . . . , cn) an overall parity check coor-
dinatec∞ = −∑n

i=1 ci . The augmented codeC is defined to beC + span{1},
where1 is the all-one vector andspan{v} is theR-span ofv. Therefore, the
augmented and extended codeC∞ is the code obtained by first extendingC
followed by augmentation. Whenevern is odd,C∞ may also be obtained by
first augmentingC followed by extension.

There is a natural isomorphism between (Rn, Lee distance) and (F2n
2 , Ham-

ming distance) that is anF2-linear isometry, called the Gray map. It is given
by

φ : Rn −→ F2n
2

x + uy �−→ (y, x + y),

wherex, y ∈ Fn
2.

There are two binary linear codes that are naturally associated with a given
linear codeC overR. They are the residue code

C(1) = {x ∈ Fn
2 | ∃y ∈ Fn

2 such thatx + uy ∈ C}
and the torsion code

C(2) = {x ∈ Fn
2 | ux ∈ C}.

Clearly,C(1) ⊆ C(2). Let k1 be the dimension of the binary codeC(1) and let
k1 + k2 be the dimension of the binary codeC(2). We then say that the codeC
overR is of type 4k12k2.

3 Abelian Codes

An abelian code overR of lengthn is defined to be an ideal in the group ring
R[G], whereG is a finite abelian group of ordern. We assume throughout this
paper thatn is odd and that the groupG is written additively. Every element
of R[G] can be written uniquely in the form

∑
g∈G cgX

g (cg ∈ R). The addi-
tion inR[G] is the obvious componentwise addition. This identifiesR[G] with
Rn naturally as groups. The multiplication inR[G] is the convolution product
given by (∑

h∈G

chX
h

)(∑
�∈G

c′
�X

�

)
=
∑
g∈G

dgX
g,

where
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dg =
∑

h+�=g

chc
′
�.

Let GR(R, d) be the unique Galois extension ofR of degreed. This ring
has been studied in [3, Section 2.1]. It may be regarded as a ring of the form
R[X]/(f ), wheref is a monic basic irreducible polynomial inR[X] of degree
d. For the definition and discussion of Galois extensions of local commutative
rings in a more general setting, we refer the reader to [9, Chapter XV].

In particular, we recall that

GR(R, d) = F2d + uF2d , (1)

whereF2d is the unique finite field (up to isomorphism) of 2d elements. The
only ideals inGR(R, d) are(0), (1) and(u). In the notation of (1), we may
write these ideals as

(0) = (0) + u(0),
(1) = (1) + u(1),
(u) = (0) + u(1).

Here, the ideals on the left hand side are ideals inGR(R, d), while the ideals on
the right hand side are ideals inF2d . Moreover, forx = x1 + ux2 ∈ GR(R, d),
the Frobenius mapF is defined as

F(x) = x2
1 + ux2

2.

Let m denote the exponent ofG. Let d be the order of 2 modulom. Then
F2d contains a primitivemth root of unity, which we fix and denote byζ . By
the Fundamental Theorem of finitely generated abelian groups, we may write

G �
t∏

i=1

Zni
.

Every elementg ∈ G can hence be regarded as at-uple (a1, . . . , at ), where
ai ∈ Zni

. For elementsa, b ∈ G, define

[a, b] = ζ e,

where

e =
t∑

i=1

aibi(m/ni).

Here,ai, bi , which are actually elements ofZni
, are viewed as rational integers

such that 0≤ ai, bi ≤ ni − 1. The sume is computed as an integer sum. In
fact, sinceζ is anmth root of unity, the sume may also be regarded as a sum
modulom.

The mapb �→ [a, b] is a character ofG with values inF2d . Moreover, we
have
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[a, b] = [b, a],
[a,2b] = [2a, b] = [a, b]2,∑

x∈G[a, x] = nδa,0.

The Fourier Transform for binary codes is well-known. For a wordc =∑
g∈G cgX

g ∈ F2[G], its Fourier Transform is defined to beĉ = ∑
h∈G ĉhX

h,
where

ĉh =
∑
g∈G

cg[g, h].

ForR[G], we can write each word as

c = c1 + uc2, c1, c2 ∈ F2[G].

We define the Fourier Transform ofc asĉ1 + uĉ2. It is easy to verify that the
following hold:

• for all c, c′ ∈ R[G] and allh ∈ G, we havêcc′
h = ĉhĉ

′
h;

• for all c ∈ R[G] and allh ∈ G, we haveF(ĉh) = ĉ2h.

Denote byO0,O1, . . . , Os the orbits ofG under the mapx �→ 2x. Let di

denote the size ofOi . Using exactly the same argument as in [7, Section 5],
together with (1), we obtain the following results:

Theorem 3.1 There is a ring isomorphism between R[G] and the product

R × GR(R, d1) × · · · × GR(R, ds).

Hence, R[G] is isomorphic as a ring to

(F2 × F2d1 × · · · × F2ds ) + u(F2 × F2d1 × · · · × F2ds ).

Consequently, every ideal I of R[G] can be expressed as

I0 × I1 × · · · × Is,

with Ij = Jj + uKj , where Jj ,Kj are ideals in F2dj and Jj ⊆ Kj .

From Theorem 3.1, if a codeC overR is identified with an idealI of R[G], we
haveJ0 ×J1 ×· · ·×Js ⊆ C(1) andK0 ×K1 ×· · ·×Ks ⊆ C(2), whereC(1) and
C(2) are the residue and torsion codes respectively. Since|C| = |C(1)||C(2)|, it
follows that

C(1) = J0 × J1 × · · · × Js ⊆ F2[G]

and

C(2) = K0 × K1 × · · · × Ks ∈ F2[G].

Moreover,C = C(1) + uC(2).
We also have the following result on the Gray image of an abelian code

overR:
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Theorem 3.2 If C is an abelian code in R[G], where G is an abelian group
of order n, then the Gray image φ(C) is a binary abelian code in F2[G × Z2].
Moreover, if C(1) has minimum distance d1 and C(2) has minimum distance d2,

then φ(C) has minimum distance min{d1,2d2}. If n is odd and G is cyclic, then
φ(C) is a binary cyclic code.

Proof. For an elementc = ∑
g∈G(ag + (1+u)bg)X

g ∈ R[G], whereag, bg ∈
F2, considerc′ = ∑

(g,h)∈G×Z2
c(g,h)X

gY h, where

c(g,h) =
{
bg if h = 0
ag if h = 1.

It is clear thatc′ ∈ F2[G×Z2] and that it may be identified with the Gray image
of c. It remains to show thatφ(C) = {c′ | c ∈ C} forms an ideal inF2[G×Z2].

The addition and multiplication byX in F2[G×Z2] correspond to the ones
in R[G], soφ(C) is closed under these operations. Multiplication byY corre-
sponds to the “swap” map defined in [6, Section IX], which in turn corresponds
to multiplication by 1+u in R[G], soφ(C) is again closed under multiplication
by Y . Hence,φ(C) is an ideal.

The second assertion follows immediately from the fact thatφ(C) is equiv-
alent to the(u|u + v) construction (cf. [10, Section 2]) withu ∈ C(2) and
v ∈ C(1).

The last assertion is obvious asG × Z2 is cyclic in that case.

Remark. Theorem 3.2 generalises Theorem 1 of [8] and the proof is shorter.

3.1 Duality

Let σ denote the permutation on{0,1, . . . , s} induced by the mapx �→ −x on
G and, consequently, on the orbitsO0,O1, . . . , Os defined earlier. In particular,
σ is the identity if and only if, for everyx ∈ G, x and−x lie in the same orbit.
For the ideals(0), (1) and(u) in a Galois ringGR(R, d), we define(0)o = (1),
(1)o = (0) and(u)o = (u). By the same argument as in [7, Section 7] again,
we have the following

Theorem 3.3 The dual of the ideal I = I0 × I1 × · · · Is ⊆ R[G] is the ideal
I⊥ = I o

σ(0) × I o
σ(1) × · · · × I o

σ(s).
Therefore, an ideal I = I0 × I1 ×· · ·× Is is self-dual if and only if we have

I o
σ(j) = Ij for all 0 ≤ j ≤ s.

Remark. There is always a trivial self-dual abelian code inR[G] when the
ordern of G is odd, viz. the idealI whereIj = (u) for all 0 ≤ j ≤ s. It is easy
to observe that the following analog of [7, Proposition 7.5] is true: there is no
nontrivial abelian self-dual code inR[G] (where the order ofG is odd) if and
only if σ is the identity.
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4 Duadic Codes over R

We say that(X,A,B) is a splitting ofG given byα, whereα is an automor-
phism ofG, if X∪A∪B is a partition ofG such thatX,A andB are unions of
orbits and thatα(A) = B andα(B) = A. It follows therefore thatα(X) = X.
We define a duadic code overR attached to the splitting(X,A,B) given byα
to be the idealI0 × I1 × · · · × Is in R[G] whereIj = (u) if Oj ⊆ X, Ij = (0)
if Oj ⊆ A andIj = (1) if Oj ⊆ B. If we relax the condition onI0 by allowing
it to be any of the ideals(0), (u) or (1), then we say that the code thus obtained
is a generalised duadic code attached to the splitting.

Theorem 4.1 Assume that σ is not the identity and that (X,A,B) is a splitting
of G given by −1. Then the duadic code attached to (X,A,B) is self-dual and
the generalised duadic code with I0 = (0) is self-orthogonal. Conversely, every
self-dual abelian code over R is a duadic code attached to some splitting of G
given by −1.

Proof. The first statement follows from the definitions of duadic codes and
generalised duadic codes, as well as Theorem 3.3. Conversely, ifI = I0 × I1 ×
· · · × Is is a self-dual abelian code inR[G], by settingX to be the union of the
Oj for which Ij = (u), A to be the union of theOj for which Ij = (0) andB
to beG\(A ∪ X), it follows that(X,A,B) is a splitting ofG given by−1.

Remark. Note that the trivial self-dual abelian code corresponds to the degen-
erate splitting(G,∅,∅) of G.

Let τ be the permutation on{0,1, . . . , s} induced byα. In particular, if
α = −1, we haveτ = σ . For any idealI = I0 × I1 × · · ·× Is of R[G], we call
the idealIα := Iτ(0) × Iτ(1) × · · · × Iτ(s) the image ofI under the multiplierα.
It is in fact the image ofI under the isometry

∑
cgX

g �→ ∑
cgX

α∗g, whereα∗,
an automorphism ofG, is the adjoint ofα with respect to the pairing [,] defined
in Section 3. The idealI is said to be isodual by the multiplierα if Iα = I⊥.

Theorem 4.2 Assume thatσ is the identity and that there is a splitting (X,A,B)

of G. Then the duadic code attached to the splitting (X,A,B) is isodual. Con-
versely, every abelian code over R isodual by a multiplier is a duadic code
attached to a splitting of G.

The proof of Theorem 4.2 is analogous to the one for Theorem 4.1.

5 Augmented and Extended Abelian Codes

5.1 Self-Duality

We first show in this section that the augmented and extended code of a gen-
eralised duadic code overR is self-dual. Then we show that if the augmented
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and extended code of an abelian codeC overR is self-dual, thenC is actually
a generalised duadic code.

Theorem 5.1 Let G be an abelian group of order n, let (X,A,B) be a splitting
of G given by −1 and let C be an attached generalised duadic code over R.
Then C∞ is self-dual.

Proof. We first note thatC∞ has exactly 2n+1 elements. Note also that the
choice of the idealI0 is irrelevant when we consider the augmented and ex-
tended code. Therefore, we may assumeC to be a duadic code (henceI0 = (u)).
In particular,C is self-dual.

For codewordsc, c′ ∈ C, we have the following:

〈(c, c∞), (c′, c′
∞)〉 = 0, (2)

〈(c, c∞), (1,1)〉 = 0, (3)

〈(1,1), (1,1)〉 = 0. (4)

Equation (2) is true becauseC is self-dual andc∞, c′
∞ ∈ (u); equation (3) fol-

lows from the definition of the extended code; while (4) is true becausen + 1
is even andR has characteristic 2.

By theR-linearity of the inner product, it follows thatC∞ is self-orthogo-
nal. SinceC∞ has 2n+1 elements, it follows that it is self-dual. This completes
the proof of Theorem 5.1.

Next we letC denote an abelian code overR of lengthn. Suppose thatC∞
is self-dual.

Theorem 5.2 Let C be an abelian code in R[G], where G is an abelian group
of order n. Suppose that C∞ is self-dual. Then n is odd and C is a generalised
duadic code over R attached to a splitting (X,A,B) of G given by −1. In
particular, any self-dual augmented and extended abelian code over R is the
augmented and extended code of a duadic code over R attached to a splitting
(X,A,B) of G given by −1.

Proof. Since(1,1) is inC∞, the self-duality ofC∞ implies thatn+ 1 is even.

Write C asI0 × I1 × · · · × Is . It is clear thatC = C + span{1} is an ideal
of R[G]. In fact, it is the idealI 0 × I1 × · · · × Is , whereI 0 = (1). Recall also
thatC⊥ is the idealI o

σ(0) × · · · × I o
σ(s).

Consider the orbits inG\{0}. LetX′ denote the union of the orbitsOj where
Ij = (u); let A be the union of the orbitsOj with Ij = (0) and letB be the
union of the orbitsOj with Ij = (1).
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For c ∈ C andc′ ∈ C⊥, recall thatc∞ = −ĉ0 ∈ I0 andc′
∞ ∈ I o

0 . Then we
have

〈(c, c∞), (c′, c′
∞)〉 = 0. (5)

By definition of the extension, we have

〈(1,1), (c′, c′
∞)〉 = 0. (6)

Therefore,(C⊥)∞ ⊆ (C∞)⊥ = C∞, from which it follows thatC⊥ ⊆ C, since
n is odd and hence augmentation and extension of a code commute.

The index ofC in C is 1, 2 or 4, depending on whetherI0 = (1), (u) or
(0). The size ofC is 2n+1 sinceC∞ is self-dual. Therefore, together with the
fact thatC⊥ ⊆ C, it follows that the index ofC⊥ in C is 4, 2 or 1 respectively.
This means in particular thatI o

σ(j) = Ij for all 1 ≤ j ≤ s. This means that
(X′ ∪ {0}, A, B) is a splitting ofG given by−1 andC is a generalised duadic
code attached to this splitting.

The final statement of the theorem follows immediately since the choice of
I0 is irrelevant when we consider the augmented and extended code.

This completes the proof of Theorem 5.2.

5.2 Isoduality

For an abelian codeC in R[G], a multiplier α acts onC by permutation of
the coordinates. In particular, the parity-check coordinate of a codewordc
remains the same as that of its imagecα under the multiplier. We define the
action of a multiplierα on the augmented and extended codeC∞ by the rule
(c, c∞) �→ (cα, c∞). Therefore,(C∞)α = ((C)α)∞. We say that the augmented
and extended codeC∞ is isodual by a multiplierα if (C∞)⊥ = ((C)α)∞. We
have the following results on isoduality. We continue to assume thatσ is the
identity.

Theorem 5.3 Let G be an abelian group of order n, let (X,A,B) be a splitting
of G given by α and let C be an attached generalised duadic code over R. Then
C∞ is isodual by the multiplier α.

Theorem 5.4 Let C be an abelian code in R[G], for some abelian group G of
order n, such that C∞ is isodual by a multiplier α. Then n is odd and C is a
generalised duadic code attached to a splitting (X,A,B) of G given by α. In
particular, any augmented and extended abelian code over R that is isodual by
a multiplier α is the augmented and extended code over a duadic code attached
to a splitting (X,A,B) of G given by α.

The proofs of these two theorems are essentially the same as those for Theorems
5.1 and 5.2, using the following observations:
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1. a multiplier leaves the parity-check coordinate of every codeword unchanged
while acts as a permutation on the other coordinates;

2. thec′ in the proof of Theorem 5.1 should be taken to be inCα;
3. due to the isoduality ofC∞ by the multiplierα, the containmentC⊥ ⊆ C in

the proof of Theorem 5.2 is now replaced byCα ⊆ C
α
. The same argument

then yieldsIτ(j) = I o
j for all 1 ≤ j ≤ s, a condition needed for the existence

of the required splitting given byα.

6 Type II Codes

In this section, we give a criterion for self-dual augmented and extended abelian
codes overR to be of Type II.

Let C = I0 × · · · × Is be a generalised duadic code overR attached to a
splitting(X,A,B) of an abelian groupG given by−1, withI0 = (0). We recall
from Section 3 and Theorem 3.1 thatC = C(1) + uC(2), whereC(1), C(2) are
the residue and torsion codes respectively. If we writeC(1) = J0 ×· · ·×Js and
C(2) = K0 × · · · × Ks , thenJ0 = (0). Moreover, note thatJj = (0) whenever
Oj ⊆ X. It is easy to verify thatC(1) is a binary split group code attached to the
splitting (X,A,B) of G given by−1, in the sense of [5, Section II.B]. (In the
notation of [5], it is the codeCZ

0 attached to the splitting(Z,X0, X1) of G.) [5,
Theorem IV.4] shows thatC(1) is self-orthogonal and that the Hamming weight
of every codeword inC(1) is congruent to 0 modulo 4.

Lemma 6.1 Suppose n + 1 ≡ 0 mod 4. Then (C(1))∞ is self-orthogonal, con-
tains the codeword (1,1) and the Hamming weight of every word in (C(1))∞ is
a multiple of 4.

Proof. By definition,(1,1) ∈ (C(1))∞.

Let 〈·, ·〉 denote the usual Euclidean inner product inFn
2. (We allow our-

selves this abuse of notation in this proof since we work strictly overF2 and
hence no confusion will arise.)

For c, c′ ∈ C(1), sincec∞ = −ĉ0 ∈ J0 = (0), by the self-orthogonality of
C(1), we have

〈(c, c∞), (c′, c′
∞)〉 = 0. (7)

The definition of the extended code yields

〈(c, c∞), (1,1)〉 = 0. (8)

Sincen + 1 is even,

〈(1,1), (1,1)〉 = 0. (9)

As the inner product isF2-linear, it therefore follows from (7), (8) and (9) that
(C(1))∞ is self-orthogonal.
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As we have already observed, every wordc ∈ C(1) has Hamming weight
congruent to 0 modulo 4, hence so does every word(c, c∞) = (c,0) ∈ (C(1))∞.
Sincen+ 1 ≡ 0 mod 4, every word of the form(c, c∞)+ (1,1) also has Ham-
ming weight congruent to 0 modulo 4. Hence Lemma 6.1 is proved.

Lemma 6.2 We have C∞ = (C(1))∞ + u(C(2))∞.

Proof. SinceC = C(1) + uC(2), we haveC∞ = (C(1))∞ + u(C(2))∞ ⊆
(C(1))∞ + u(C(2))∞. Since(1,1) ∈ (C(1))∞ + u(C(2))∞ clearly, together with
cardinality consideration, the lemma follows.

Lemma 6.3 We have (C(2))∞ = ((C(1))∞)⊥ as binary codes.

Proof. As in the proof of Lemma 6.1, we abuse notation by using〈·, ·〉 to
denote the usual Euclidean inner product inFn

2.

From the description ofC(1) andC(2) in Section 3, it is clear thatC(2) ⊆
(C(1))

⊥. Therefore, forc ∈ C(1) andc′ ∈ C(2), noting thatc∞ = 0, we have the
following identities:

〈(c′, c′
∞), (c, c∞)〉 = 0,

〈(1,1), (1,1)〉 = 0,
〈(1,1), (c, c∞)〉 = 0.

Hence,(C(2))∞ ⊆ ((C(1))∞)⊥. The equality required in the lemma follows by
considering cardinalities of these two codes.

We are now ready to prove the main result of this section:

Theorem 6.4 A self-dual augmented and extended abelian code over R of
length n is of Type II if and only if n + 1 ≡ 0 mod 4.

Proof. If C is an abelian code overR of lengthn such that its augmented and
extended code is of Type II, then by considering the Lee weight of(1,1), we
must haven + 1 ≡ 0 mod 4.

Conversely, suppose thatn + 1 ≡ 0 mod 4 and thatC is an abelian code
overR of lengthn such thatC∞ is self-dual. By Theorem 5.2, we may assume
thatC is a generalised duadic codeI0 × I1 ×· · ·× Is , whereI0 = (0). We need
to show that every codeword inC∞ has Lee weight congruent to 0 modulo 4.

From Lemmas 6.2 and 6.3,C∞ = (C(1))∞ + u((C(1))∞)⊥. From Lemma
6.1,(C(1))∞ is a binary self-orthogonal code containing(1,1) and whose code-
words all have Hamming weights congruent to 0 modulo 4. It then follows from
[6, Proposition 5.1] thatC∞ is a self-dual Type II code overR.
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7 Examples

For a given integern, all the finite abelian groupsG of ordern can be easily
determined. For each of such groups, the orbits of the mapx �→ 2x can then
be easily computed. It is then routine to observe if the group admits a split-
ting (X,A,B) with a givenα. We explore the duadic code overR for lengths
up to 31.

7.1 Cyclic Self-Dual Codes

For lengths up to 31, such codes have been studied and classified by Bonnecaze
and Udaya [3]. We note that there are four, not three as said in [3, Section
3.1.1], nontrivial cyclic self-dual codes in length 21. This “missing” code is
obtained, in the notation of [3], by lettingf = f3f6, g = f4f5 andh = f1f2.
The Lee distance of this code is 8, yielding by the Gray map a [42, 21, 8] binary
extremal (in the sense of [4] where it is mentioned) cyclic self-dual code, with
an automorphism group of order 214 · 35 · 52 · 72.

7.2 Cyclic Isodual Codes

For n ≤ 31, the only length that gives rise to cyclic isodual duadic codes is
n = 17. In this case, the only code obtained is the quadratic residue code over
R of length 17.

7.3 Noncyclic Isodual Codes

Forn ≤ 31, there are 3 values ofn, viz.n = 9, 25 and 27, which are of interest.

7.3.1 n = 9

Forn = 9, onlyZ3 × Z3 gives rise to duadic codes. This group can be realised
as the underlying additive group forF9 = F3(i), with i2 = −1. The orbits are
then

{(0), (±1), (±i), (±(1 + i)), (±(1 − i))}.
HereQ = {±1,±i}, andN = {(±(1 + i)), (±(1 − i))}. In Table 1 the codes
are specified by their components on each of the 5 orbits which are labelled in
the above order. For instance 2− 1 − 1 − 0 − 0 is the supplemented quadrat-
ic residue (SQR) codeSQ. We denote byq, r, s, t the following elements of
GL(2,3).
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q =
(

1 −1
1 1

)
, r =

(
1 1
1 −1

)
, s =

(
1 1

−1 1

)
, t =

(
0 1
1 0

)
.

There are nine nontrivial duadic codes. The four nontrivial orbits can be thought
of as the points ofPG(1,3). It is known thatPGL(2,3) is 3-transitive on
PG(1,3) ([2, Theorem 6.6]). This shows that the codes listed in Table 1 are
all isodual. In fact, it can be shown that the first, fourth and sixth codes are
multiplier-equivalent to one another, and that the remaining six codes are again
multiplier-equivalent to one another. Hence, there are only two non multiplier-
equivalent duadic codes.

7.3.2 n = 25

For n = 25, onlyZ5 × Z5 gives rise to duadic codes. This group can be rea-
lised as the underlying additive group ofF25 = F5(j) with j2 + j + 1 = 0.
There are six nonzero orbits all of size 4 and of the shapeCa := (±a,±2a)
with a ranging over{1, j,1± j,1± 2j}. With these notations the squares and
nonsquares are:

Q = C1

⋃
Cj

⋃
C1+j

N = C1−j

⋃
C1+2j

⋃
C1−2j .

It is easy to observe that there are only three types of codes, viz. those of types
41221, 44217 and 4829, depending on the number of orbits inX of the splitting
(X,A,B) of Z5 × Z5.

The six nontrivial orbits can be thought of as the points ofPG(1,5). The
zeros of a code of type 41221 comprise exactly three such projective points.
The same is true for its nonzeros. SincePGL(2,5) is 3-transitive ([2, Theorem
6.6]) there is a multiplier that takes the zeros to the nonzeros. This shows that
the code is duadic and hence isodual. Similarly, there is a multiplier that takes

Table 1. Duadic Codes of length 9

CodeC Type dL(C) α

2 − 1 − 1 − 0 − 0 4421 4 q

2 − 0 − 2 − 2 − 1 4225 4 r

2 − 2 − 0 − 2 − 1 4225 4 s

2 − 1 − 0 − 1 − 0 4421 4 s

2 − 2 − 2 − 0 − 1 4225 4 t

2 − 1 − 0 − 0 − 1 4421 4 s

2 − 0 − 2 − 1 − 2 4225 4 s

2 − 2 − 1 − 0 − 2 4225 4 r

2 − 0 − 1 − 2 − 2 4225 4 t
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Table 2. Duadic Codes of length 25

CodeC Type dL(C)

Class 1 41221 6
Class 2 44217 4
Class 3 4829 8

one such code to another of the same type. Hence all such codes of this type
are equivalent.

The spectrum of a code of type 44217 comprises exactly an orbit of nonzeros
and another of zeros. By the 2-transitivity of PGL(2,5) we can swap these two.
This shows that such a code is indeed duadic and hence isodual. Similarly, this
shows that there is a multiplier that takes a code of this type to another code of
the same type. Hence all such codes of this type are equivalent.

As for codes of type 4829, calculations on Magma show that this class splits
into two subclasses under the action ofPGL(2,5), and both orbits consist
of duadic and hence isodual codes. Moreover, the codes in each subclass are
multiplier equivalent. It is also possible to show the same result by using the
2-transitivity ofPGL(2,5) and some more tedious analysis, which we omit
here.

7.3.3 n = 27

Forn = 27, there are two groups that give rise to duadic codes.

(A) G = Z3 × Z3 × Z3.

Table 3. Duadic Codes ofR[Z3 × Z3 × Z3]

CodeC Type dL(C)

2 − 2 − 0 − 0 − 0 − 0 − 0 − 0 − 1 − 1 − 1 − 1 − 1 − 1 41223 4
2 − 2 − 0 − 0 − 0 − 0 − 0 − 2 − 2 − 1 − 1 − 1 − 1 − 1 41027 6
2 − 0 − 0 − 0 − 2 − 0 − 0 − 1 − 0 − 1 − 1 − 1 − 1 − 1 41223 6
2 − 2 − 0 − 0 − 0 − 0 − 2 − 2 − 2 − 2 − 1 − 1 − 1 − 1 48211 6
2 − 0 − 0 − 2 − 2 − 0 − 0 − 1 − 0 − 2 − 1 − 1 − 1 − 1 41027 6
2 − 0 − 0 − 1 − 0 − 0 − 0 − 1 − 0 − 2 − 1 − 1 − 1 − 1 41223 6
2 − 2 − 0 − 0 − 0 − 2 − 2 − 2 − 0 − 2 − 1 − 1 − 1 − 1 48211 6
2 − 2 − 0 − 0 − 0 − 2 − 2 − 2 − 2 − 2 − 2 − 1 − 1 − 1 46215 4
2 − 2 − 2 − 0 − 0 − 2 − 0 − 0 − 2 − 1 − 1 − 2 − 1 − 1 48211 6
2 − 0 − 2 − 0 − 2 − 2 − 0 − 2 − 0 − 1 − 1 − 2 − 1 − 1 48211 6
2 − 0 − 2 − 0 − 2 − 2 − 0 − 2 − 2 − 2 − 1 − 2 − 1 − 1 46215 6
2 − 2 − 0 − 2 − 0 − 2 − 0 − 2 − 2 − 2 − 1 − 2 − 1 − 1 46215 6
2 − 2 − 0 − 0 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 1 − 1 44219 4
2 − 0 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 0 − 1 − 1 44219 4
2 − 0 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 1 42223 4
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Table 4. Duadic Codes ofR[Z3 × Z9]

CodeC Type dL(C)

2 − 0 − 2 − 0 − 2 − 1 − 2 − 1 48211 6
2 − 2 − 2 − 0 − 0 − 1 − 2 − 1 48211 6
2 − 2 − 2 − 0 − 2 − 2 − 2 − 1 42223 4
2 − 0 − 2 − 2 − 2 − 1 − 2 − 2 46215 4

All the 14 nonzero orbits are of the shapeCa = {±a} for some nonzeroa.
In Table 3 thea′s are listed in order

000,001,010,011,012,100,101,102,110,111,112,120,121,122.

There are no quadratic residue codes here because 2= −1 is not a quadratic
residue inF27.

(B) G = Z3 × Z9.

There are 7 nonzero orbits. Three have size six and four have size two. The
orbits are by order of representatives

00,01,03,10,11,12,13,16.

We list in Table 4 the four nontrivial non multiplier-equivalent duadic codes.
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