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Abstract This paper presents a two-level geometric calibration method for the permanent magnet

(PM) spherical actuator to improve its motion control accuracy. The proposed actuator is com-

posed of a stator with circumferential coils and a rotor with multiple PM poles. Due to the assembly

and fabrication errors, the real geometric parameters of the actuator will deviate from their design

values. Hence, the identification of such errors is critical for the motion control tasks. A two-level

geometric calibration approach is proposed to identify such errors. In the first level, the calibration

model is formulated based on the differential form of the kinematic equation, which is to identify

the geometric errors in the spherical joint. In the second level, the calibration model is formulated

based on the differential form of torque formula, which is to calibrate the geometric parameters of

the magnetization axes of PM poles and coils axes. To demonstrate the robustness and availability

of the calibration algorithm, simulations are conducted. The results have shown that the proposed

two-level calibration method can effectively compensate the geometric parameter errors and

improve the positioning accuracy of the spherical actuator.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.
Open access under CC BY-NC-ND license.
1. Introduction

Multi-degree-of-freedom (multi-DOF) spherical motion has
wide application in aviation and aerospace areas such as satel-
lite attitude control, helicopter, inertial navigation system,

astronaut’s training device, etc. Traditionally, multi-DOF
spherical motion is realized by the combination of several
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single-axis actuators. This method has some drawbacks such
as backlash and friction existing in the external mechanism,

kinematic singularities in the workspace, and lack of dexterity
in orientation control. Thus, it is difficult for these multi-DOF
actuators to achieve high dynamic response and precise motion

control. Therefore, the need to develop a spherical actuator
that can produce multi-DOF spherical motion in one joint is
arising.

The history of multi-DOF actuators can be dated back to
the mid-1950s. The first multi-DOF actuator was designed
by Williams et al.1 It has two DOFs motion ability. So far,

spherical actuators based on electromagnetic effect, piezoelec-
tric effect, and mechanical methods have been proposed.2 We
focused on the 3-DOF PM spherical actuators here, which
have been paid more and more attention recently because of
SAA & BUAA. Open access under CC BY-NC-ND license.

mailto:whchen@buaa.edu.cn
http://dx.doi.org/10.1016/j.cja.2014.02.001
http://www.sciencedirect.com/science/journal/10009361
http://dx.doi.org/10.1016/j.cja.2014.02.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1 CAD model of spherical actuator.

Table 2 Stator parameters.

Parameter Value

Radius of inner stator shell (mm) 100

Radius of outer stator shell (mm) 117

Cylindrical coil Radius (mm) 12

Height (mm) 34

No. of coil turns 1600

Wire type AWG27 copper wire

Table 1 Rotor parameters.

Parameter Value

Rotor radius (mm) 56.5

Thickness of iron hoop (mm) 3

Cylindrical PM pole Radius (mm) 10

Height (mm) 20

Type N35UH

Remanence of PM pole (T) 1.21
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their simplicity in structure, fast response, and compact in
design.3 The PM spherical actuator’s applications in industrial

and aerospace areas, such as spacecraft attitude control, preci-
sion assembling and manufacturing, always require high mo-
tion control accuracy.4 To achieve accurate operation of the

spherical actuator, many research works have been done on
magnetic field and torque modeling,2,5–9 orientation measure-
ment,10,11 dynamic modeling and control algorithm.3,4,12–14

However, the previous work does not take geometric calibra-

tion of the spherical actuator into account. Because of the
assembly and fabrication errors, the nominal geometric
parameters implemented in the control model will differ from

their actual values. 3-DOF rotational motion of the rotor is
realized based on the electromagnetic torque generated by
the current-carrying coils and PM poles, and position vector

errors of the PM poles and coils will affect the torque genera-
tion accuracy. In addition, since the rotor is supported by the
spherical joint, the geometric errors of the spherical joint will

induce the kinematic transformation errors. These errors will
result in an inaccurate kinematic and torque model, and thus
restrict the control quality and lower the positioning accuracy
of the spherical actuator. The geometric calibration has proven

to be an effective approach to overcome this problem.15 Thus,
the goal of this paper is to propose a geometric calibration
algorithm for the spherical actuator to improve its positioning

accuracy.
A number of geometric calibration methods have been

studied and utilized to robot manipulators to improve their

motion control accuracy.16–18 Liu et al.17 analyzed the calibra-
tion of a neurosurgical robot system. By compensating the
joint axes and transmitting error, the positioning accuracy of
this system is successfully improved. Joubair et al.18 introduced

the geometric parameter identification of a XY-Theta preci-
sion table by a simple geometric method. In this work, a
two-level geometric calibration method was designed for the

PM spherical actuator. At the first level, the kinematic param-
eter errors in the spherical joint mechanism are identified. The
calibration model is formulated based on the differential form

of kinematic equation. The second level of calibration is to
identify the geometric position errors in the magnetization axes
of PM poles and coils axes. The calibration model based on the

differential form of the torque model is formulated at this
level. Because the simultaneous identification of all the PM
poles and coils is difficult and may result in complicated com-
putation, each coil is calibrated separately here. It should be

noticed that the spherical joint’s calibration should be done
first to achieve higher calibration accuracy of the PM poles
and coils.
2. PM spherical actuator

2.1. Mechanical description

Fig. 1 shows the CAD model of the spherical actuator. It is
composed of a rotor installed inside the stator. The stator is

fixed on the base. The rotor is supported by the spherical joint.
There are four rods on the lower side of the spherical joint, and
they are fastened onto the base with nuts. Thus, the spherical

joint is connected to the stator through the base. The rotor has
eight cylindrical PM poles along its equator, and the stator has
24 coils which are arranged in two layers. These two layer coils

are symmetrically arranged about the stator equator, and the
coils mounted in the stator are air core, which ensures the
linear relation between the current input and torque output.

The material of the PM poles is rare-earth, which can provide
high magnetic field for the spherical actuator. The orientation
of the spherical actuator is measured by the encoder and two-
axes tilt sensor, which are fixed in the spherical joint. The input

power of this actuator is about 96 W. The specifications of the
spherical actuator are listed in Tables 1 and 2.

2.2. Working principle

Fig. 2 shows three-DOF rotational motion of the spherical
actuator.12 Current-carrying coils act like a current controlled



Fig. 2 3-DOF motion of spherical actuator.12

Fig. 4 Kinematic diagram.
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magnet and establish a magnetic field around it. The electro-
magnetic field intensity is proportional to the current magni-
tude, and the direction depends on the current direction. The

rotor motion is realized based on the electromagnetic torques,
which is produced by the interaction between current-carrying
coils and PM poles. By activating stator coils in longitudinal

directions, tilting motion can be created (Fig. 2(a) and (b)).
Energizing all the coils in order, spinning motion can be gen-
erated (Fig. 2(c)). Thus, by controlling the current inputs of
the spherical actuator, any desirable three-DOF rotational mo-

tion in the workspace can be realized.

3. Calibration of spherical joint

3.1. Kinematic model and error analysis

As shown in Fig. 3, the 3-DOF spherical joint mechanism19 is
comprised of a 1-DOF passive rotary joint in conjunction with
a 2-DOF passive universal joint. It can be decomposed into

three serially connected 1-DOF revolute joints perpendicular
to each other (Fig. 4). The rotation angle of each revolute joint
is detected by the sensors installed in the spherical joint. There

is a 3-DOF rigid-body rotational motion between the stator
and rotor. The three-dimensional transformation matrix from
the rotor frame Fr to the stator frame Fs is

20

R ¼ ex̂1q1 ex̂2q2 ex̂3q3 ; x̂i ¼
0 �xi;3 xi;2

xi;3 0 �xi;1

�xi;2 xi;1 0

264
375 ð1Þ

where x1,x2, and x3 are three-dimensional unit vectors which

represent the direction of three revolute joint axes, x̂i 2 soð3Þ
Fig. 3 Spherical joint.19
is the cross-product matrix of xi ¼ xi;1 xi;2 xi;3½ �T, and
q1,q2, and q3 are the rotation angles of three revolute joints. This
transformation matrix R provides a unique mapping between

the rotor orientation and three revolute joints’ rotation angles.
From Eq. (1), we can find that the error sources are the

machining and the assembly errors existing in the spherical

joint mechanism, which are indicated by the errors in the axes
of three decomposed revolute joints (dx1, dx2, dx3) and the
joint offsets (dq1, dq2, dq3). These errors will result in position-

ing errors directly if nominal values are implemented in the
controller. Therefore, the spherical joint calibration is pro-
posed in the following text to solve this problem.

3.2. Spherical joint calibration algorithm

The nominal kinematics model R defined by Eq. (1) is a func-

tion of x and q, where x = [x1 x2 x3]
T, q= [q1 q2 q3]

T.
Mathematically,

R ¼ fðx; qÞ ð2Þ

By linearizing the kinematic model, the kinematic calibration
equation can be given as21

dRR�1 ¼ oR

ox
dxþ oR

oq
dq

� �
R�1 ð3Þ

where dRR�1 2 so(3) denotes the orientation error resulting

from the kinematic parameters x and q. We express the nom-
inal, calibrated and actual values with the subscript ‘‘n’’, ‘‘c’’
and ‘‘a’’, respectively. Then, Ra is the actual rotor orientation
obtained from the external measurement devices, and Rn is the
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nominal rotor orientation obtained by calculating the Eq. (1).

dRR�1 is also given by

dRR�1 ¼ ðRa � RnÞR�1n ¼ RaR
�1
n � I3 ð4Þ

Eq. (4) can be rewritten as22

dRR�1 ¼ lnðRaR
�1
n Þ ð5Þ

The objective of the spherical joint calibration is to deter-
mine the optimal values of dx and dq based on the measure-
ment data at several rotor orientations which minimize the

cost function:

min dRR�1 � oR

ox
dxþ oR

oq
dq

� �
R�1

���� ����2 ð6Þ

Eq. (3) is further expressed as

dRR�1 ¼ dðex̂1q1Þe�x̂1q1 þ ex̂1q1dðex̂2q2Þe�x̂2q2 e�x̂1q1

þ ex̂1q1 ex̂2q2dðex̂3q3Þe�x̂3q3 e�x̂2q2 e�x̂1q1 ð7Þ
J ¼ x1 R0;1x2 R0;2x3 q1
R 1

0
ex̂1q1sds q2R0;1

R 1

0
ex̂2q2sds q3R0;2

R 1

0
ex̂3q3sds

h i
dðex̂iqiÞe�x̂iqi is expanded as

dðex̂iqiÞe�x̂iqi ¼
Z 1

0

ex̂iqisdðx̂iqiÞe�x̂iqisds

¼ qi

Z 1

0

ex̂iqisdx̂ie
�x̂iqisds

þ
Z 1

0

ex̂iqisx̂idqie
�x̂iqisds

¼ qi

Z 1

0

ex̂iqisdðxiÞds
� �^

þ x̂idðqiÞ ð8Þ

where (Æ)^ is a replacement expression of the operator ‘‘� ’’ de-
fined in Eq. (1). The ‘‘� ’’ operator defines an inverse transfor-

mation of ‘‘� ’’, which forms a vector in R
3 out of a given

matrix in so (3).
Substituting Eq. (8) into Eq. (7), we get

ðdRR�1Þ_ ¼ x1dq1 þ ex̂1q1x2dq2 þ ex̂1q1 ex̂2q2x3dq3 þ q1

�
Z 1

0

ex̂1q1sdsdx1 þ q2e
x̂1q1

Z 1

0

ex̂2q2sdsdx2

þ q3e
x̂1q1 ex̂2q2

Z 1

0

ex̂3q3sdsdx3 ð9Þ

whereZ 1

0

ex̂iqisds ¼
Z 1

0

I3 þ
x̂i

kxik
sinðkxikqisÞ

�
þ x̂2

i

kxik2
ð1� cosðkxikqisÞÞ

#
ds

¼ I3 �
x̂i

kxik2qi
ðcosðkxikqiÞ � 1Þ

þ x̂2
i

kxik3qi
ðkxikqi � ðsin kxikqiÞÞ
Substituting Eq. (9) into Eq. (5), we get
ln ðRaR
�1
n Þ
_ ¼ x1dq1 þ ex̂1q1x2dq2 þ ex̂1q1 ex̂2q2x3dq3 þ q1

�
Z 1

0

ex̂1q1sdsdx1 þ q2e
x̂1q1

Z 1

0

ex̂2q2sdsdx2

þ q3e
x̂1q1 ex̂2q2

Z 1

0

ex̂3q3sdsdx3 ð10Þ
Eq. (10) above can be expressed in the following form:
y ¼ Jx ð11Þ
where
x ¼ dq1 dq2 dq3 dx1 dx2 dx3½ �T 2 R12�1

y ¼ ln ðRaR
�1
n Þ
_ 2 R3�1;R0;i ¼ ex̂1q1 ex̂2q2 � � � ex̂iqi

Generally, we need to measure many different rotor orien-

tations to guarantee the calibration accuracy. Suppose that n
measured orientation data are made. Combining the orienta-
tion errors and the Jacobians, we have

½y1 y2 � � � yn�
T ¼ ½J1 J2 � � � Jn�Tx ð12Þ

Eq. (12) can be written aseY ¼ eJx ð13Þ

The least square solution for x is

x ¼ ðeJTeJÞ�1eJT eY ð14Þ

Beginning with the nominal geometric parameters, x is

solved through iterative substitution, and is updated after each
step (Fig. 5). If K denotes the original geometric parameters,
the updated geometric parameter values K0 can be given as

K0 ¼ Kþ x ð15Þ

At each step of iteration, the Jacobian matrix eJ is computed by
the current geometric parameters. A deviation metric is defined
to evaluate the calibration result, which is given as

e1 ¼
1

n

Xn
i¼1
k ln ðR�1a;iRc;iÞ

_k ð16Þ

where Ra,i is the actual rotor orientation of the ith orientation,
Rc,i is the calibrated rotor orientation, e1 expresses the average
deviation existing in the real and calibrated orientations. This
iterative procedure ends until e1 approaches a certain limit e.
After calibration, the kinematic equation of the spherical actu-

ator becomes



Fig. 5 Calibration process of spherical joint.

Table 4 Identified kinematic errors of joint axes.

No. of

iterations

dxc,1 dxc,2 dxc,3

1 �0:001146
�0:015610
0:030657

24 35 0:016574
�0:000512
�0:023153

24 35 0:015599
0:010636
�0:000048

24 35

2
�0:000594
�0:015708
0:031401

24 35 0:017521
�0:000347
�0:020914

24 35 0:015711
0:010470
�0:000180

24 35

3
�0:000620
�0:015700
0:031410

24 35 0:017450
�0:000370
�0:020941

24 35 0:015710
0:010470
�0:000180

24 35

4
�0:000620
�0:015700
0:031410

24 35 0:017450
�0:000370
�0:020940

24 35 0:015710
0:010470
�0:000180

24 35
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Rc ¼
Y3
i¼1

eðx̂iþdx̂c;iÞðqiþdqc;iÞ ð17Þ
Fig. 6 Identified joint zero-position errors.
3.3. Simulation

In this section, simulation studies are conducted on the spher-

ical joint. The kinematic parameters of the spherical actuator
are x1 = [1 0 0]T, x2 = [0 1 0]T, and x3 = [0 0 1]T.

The simulation is conducted according to Fig. 5. Here, it is
assumed that no measurement noise exists. Each joint are

assigned with kinematic errors as given in Table 3. Based
on the definition of revolute joint, the condition
kxi + d xik= 1 should be satisfied in assigning the errors.

The actual rotor orientation is computed by

Ra ¼
Y3
i¼1

eðx̂iþdx̂a;iÞðqiþdqa;iÞ ð18Þ

The number of randomly selected measured orientations is
set to five. The identified kinematic errors of joint axes are

listed in Table 4, and the joint zero-position errors are shown
in Fig. 6. It can be seen that the kinematic errors are fully
recovered within three to four iterations. Fig. 7 shows the

mean errors e1 (defined in Eq. (16)) during the iterative proce-
dure, which is driven from an initial value of 0.051811 to
values approximate to zero. The results mean that under the

calibrated kinematic parameters description, the actual kine-
matic transformation matrix can be precisely described, and
thus the positioning accuracy can be enhanced.

In consideration of the measurement noise in practical

applications, the influence of the measurement noise on the
calibration results is studied. The uniformly distributed noise
is added to each measurement. Specifically, the measurement

result of the rotor orientation is given by
Table 3 Preset kinematic errors.

i dxa,i dqa,i(rad)

1 ½ �0:00062 �0:01570 0:03141 �T 0.0300

2 ½ 0:01745 �0:00037 �0:02094 �T 0.0250

3 ½ 0:01571 0:01047 �0:00018 �T 0.0200
eRa ¼ Rae
ĵ

where j ¼ ½ d~a d~b d~c �T denotes the added noise, which uni-
formly distributes in the range [�0.001,0.001] rad. The simula-
tion results are given in Fig. 8, and the results show that the

mean error e1 is stable and smaller than the added noise when
the number of orientations used for identification is greater
than 10. Hence, the proposed kinematic algorithm is robust
against the measurement noise.
Fig. 7 Mean errors during iterative procedure.



Fig. 8 Mean errors vs number of measurements.
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4. Calibration of PM poles and coils

4.1. Torque model and error analysis

The unit vector on the magnetization axes of PM poles in the
rotor frame is

rri ¼
cos hi cosui

cos hi sinui

sin hi

264
375 ði ¼ 1; 2; � � � ;mÞ ð19Þ

where hi and ui are the polar and azimuth angle of the magne-
tization axis of the ith PM pole.

Similarly, the unit vector on the coils axes in the rotor

frame is

srj ¼ ðRcÞ�1
cos gj cos/j

cos gj sin/j

sin gj

264
375 ðj ¼ 1; 2; � � � ; lÞ ð20Þ

where gj and /j are the polar and azimuth angle of the jth coil
axis, and Rc is the calibrated kinematic transformation matrix

from rotor frame to the stator frame.
The torque model is formulated in rotor frame in the previ-

ous research,12 which is given by

T ¼
Xm
i¼1

Xl

j¼1

~fðwi;jÞdijIj

 !
ð21Þ

where Ij is the jth coil’s current input, dij denotes the direction
of the torque element produced by the jth coil and ith PM pole,

which is given by

dij ¼ ð�1Þi�1
rri � srj
krri � srjk

ð22Þ

the positive and negative coefficients of dij are determined by

the PM pole’s magnetization direction. ~fðwi;jÞ is the torque

curve fit function which is given by
A ¼ oT

oh1

oT

oh2

� � � oT

ohm

oT

ou1

oT

ou2

� � � oT

oum

oT

og1

oT

og2

�

dP ¼ ½dh1 dh2 � � � dhm du1 du2 � � � dum dg1 dg2
~fðwi;jÞ ¼
X6
n¼0

pnw
n
i;j ð23Þ

where wi;j ¼ arccosðrri � srj Þ is the separation angle between the
axes of jth coil and ith PM pole, and the calculation results

of the coefficients are p0 = �5.40 · 10�3 NÆm/A, p1 = 5.18 ·
10�2 NÆm/A, p2 = �3.73 · 10�6 NÆm/A, p3 = �4.2 · 10�4

NÆm/A, p4 = 2.39 · 10�5 NÆm/A, p5 = �5.07 · 10�7 NÆm/A,

p6 = 3.78 · 10�9 NÆm/A.
It can be found from Eq. (21) that there are two error

sources influencing the accuracy of the torque model. The

first source is the errors in the kinematic transformation ma-
trix, which have been calibrated at the first level of calibra-
tion. The second source is the errors in the magnetization
axes of PM poles (dhi, dui) and coils axes (dgj, d/j). To en-

sure the motion control accuracy, these geometric errors
should be identified and included in the torque formula.
Thus, the second level of calibration is discussed in detail

to compensate the position vector errors of PM poles and
coils in Section 4.2.

4.2. Calibration model

The nominal spherical actuator’s torque model defined by Eq.
(21) is an equation of the position vector of the coils axes and

PM poles magnetization axes. The calibration model is ac-
quired based on the torque model’s differential form, which
is given by

dT ¼
Xm
i¼1

oT

ohi

dhi þ
Xm
i¼1

oT

oui

dui þ
Xl

j¼1

oT

ogj

dgj þ
Xl

j¼1

oT

o/j

d/j ð24Þ

where dT expresses the toque error in rotor frame which results
from the position errors in magnetization axes of PM poles (hi,
ui) and coils axes (gj, /j). The partial derivative of the torque
function about ui is
oT

oui

¼
Xm
i¼1

Xl

j¼1

o~fðwi;jÞ
oui

dijIj þ ~fðwi;jÞ
odij

oui

Ij

 !

¼
Xm
i¼1

Xl

j¼1

X6
k¼1

kpkw
k�1
i;j dijIj

owi;j

oui

þ
X6
k¼0

pkw
k
i;jIj

odij
oui

 !
ð25Þ

The partial derivatives of the torque function about other geo-
metric parameters are similar.

Expressing Eq. (24) in the matrix form as
dT ¼ AdP ð26Þ

where

dT ¼ Ta � Tn
� � � oT

ogl

oT

o/1

oT

o/2

� � � oT

o/l

�

� � � dgl d/1 d/2 � � � d/l�
T



Fig. 9 Calibration process of PM poles and coils.
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Tn is the nominal torque value, and Ta the actual (measured)

torque obtained from the external measurement device.
The calibration of the coils and PM poles requires compar-

ing the difference between the actual and nominal torque out-

puts of the spherical actuator. In order to ensure the
calibration accuracy, many different rotor orientations are al-
ways required to measure. Assuming that we select wmeasured
torque data, combining the error vectors and the Jacobian ma-

trix into a single equation:

deT ¼ eAdP ð27Þ

where deT ¼ ½dTT
1 dTT

2 � � � dTT
w�

T 2 R3w�1 eA ¼ ½ AT
1 AT

2

� � � AT
w�

T 2 R3w�ð2mþ2lÞ, dP is solved by the least-squares

method:

dP ¼ ðeAT ~AÞ
�1 eATdeA ð28Þ

where ðeAT eAÞ�1 eAT is the pseudoinverse of eA. In order to eval-
uate the calibration result, the convergence accuracy is defined
mathematically as

e2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

w
ðdeTTdeTÞr

ð29Þ

where e2 is the average quantified deviation between the mea-
sured torques and nominal torques. dP is updated by iterative
substitution, and the procedure is repeated until the conver-
gence accuracy e2 is less than the required accuracy e.

The total number of parameter errors that need to be iden-
tified is 64. The simultaneous identification of all these param-
eters is difficult. To solve this problem, each coil is calibrated

separately here, which is realized by controlling the current in-
put. Specifically, only one coil is supplied with current input in
each calibration cycle. Assuming that only the jth coil is ex-

cited, Eq. (24) is simplified as

dT ¼
Xm
i¼1

oT

ohi

dhi þ
Xm
i¼1

oT

oui

dui þ
oT

ogj

dgj þ
oT

o/j

d/j ð30Þ

By doing so, the calibration model is greatly simplified. In

addition, the identification accuracy is higher and the identifi-
cation velocity of the error parameters is faster. The total cal-
ibration is divided into two situations:

Situation 1: The parameters of eight PM poles and one coil
are identified simultaneously. This process needs one calibra-
tion cycle.

Situation 2: Each coil is calibrated separately, this process
needs 23 calibration cycles.

It should be noticed that the first situation should be con-
ducted first, because only after the calibration of PM poles,

can the coils be calibrated separately with sufficient accuracy.
The calibration process of one cycle in two situations is sim-

ilar, which is given as follows:

(1) Select w1 groups of different orientations in the work-
space of rotor, and only the jth coil is excited with cur-

rent input. Calculate the nominal torque output Tn and
error Jacobian matrix A. The actual torque is measured
at every selected orientation.

(2) Calculate the bias deT between the actual (measured) tor-

ques and the nominal torques.
(3) Compute the parameter errors dP by Eq. (28).
(4) The parameters P are updated by P = P + dP.
(5) As given in Fig. 9, the iterative process starts with the

nominal parameters, and is updated with the solution
of dP in each iterative process. This process is repeated
until the convergence accuracy is satisfied.

4.3. Simulation

Based on the above calibration algorithm, simulation studies
are presented to demonstrate the effectiveness and robustness
of the proposed algorithm. In the simulation research of the cal-
ibration of PM poles and coils, we assume that the spherical

joint has been calibrated, and the calibrated value of the kine-
matic transformationmatrixRc is given by its nominal valueRn.

4.3.1. Simulation study on the first situation

The torque generated at 30 orientations is used for identifica-
tion here, and the current input is set to 2 A. The calibration
is based on the interaction between the PM poles and coils.

Since only one coil is supplied with current, to ensure that
all the PM poles can be identified, the selected orientation
set should guarantee that each PM pole can generate force

with the excited coil at some orientation.
Table 5 shows the nominal, actual parameters and the iden-

tified results. The assigned initial position errors can be ac-

quired by comparing the nominal and actual values. We can
see that the given errors are fully recovered at the end of the
eighth iteration. The simulation results demonstrate the accu-

racy of the calibration model. Fig. 10 shows the calibration
convergence plot with assigned errors, and e2 is driven from
an initial value of 6.3 · 10�4 to 6.3 · 10�7 within eight
iterations.

To study the effect of measurement noise on the identifica-
tion results, extensive simulations are carried out. In the simu-
lation, measurement noise uniformly distributed in (�0.0005,
0.0005) NÆm is injected into each measurement, and torques
generated at 30 orientations with noise are utilized for identi-
fication. The simulation results are presented in Table 5. We

can see that the identified values of the parameters are



Fig. 10 Calibration convergence.

Table 5 Nominal, actual and identified parameters.

Parameter Nominal value (rad) Actual value (rad) Identified result (rad)

Without noise With noise

h1 0 0.0200 0.0200 0.0197

u1 0 0.0150 0.0150 0.0157

h2 0 0.0200 0.0200 0.0197

u2 0.7854 0.8004 0.8004 0.8003

h3 0 0.0100 0.0100 0.0105

u3 1.5708 1.5808 1.5808 1.5810

h4 0 0.0200 0.0200 0.0204

u4 2.3562 2.3762 2.3762 2.3768

h5 0 0.0100 0.0100 0.0095

u5 3.1416 3.1566 3.1566 3.1567

h6 0 0.0100 0.0100 0.0097

u6 3.9270 3.9520 3.9520 3.9523

h7 0 0.0200 0.0200 0.0195

u7 4.7124 4.7224 4.7224 4.7225

h8 0 0.0150 0.0150 0.0151

u8 5.4978 5.5178 5.5178 5.5181

g1 0.2618 0.2818 0.2818 0.2815

/1 0 0.0200 0.0200 0.0202

Fig. 11 Convergence accuracy vs number of measurements.

Fig. 12 Identified errors.
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sufficiently close to the actual values, and the maximum iden-
tification error is about 4.7% of the assigned parameter errors.

This demonstrates the robustness of the proposed calibration
algorithm. Fig. 11 gives the relationship between the conver-
gence accuracy and the number of measurements. It can be

found that when the number of measured torques with noise
exceeds 20, the convergence accuracy becomes stable.
4.3.2. Simulation study on the second situation

The identification studies on the rest coils are similar. Because

the PM poles have been identified before, the calibration cycle

of each separate coil is simpler. For a single coil, the theoretical
least number of measured torques is one. But it is set to four
here for a high accuracy. The selected orientations should en-

sure that large torque is produced by the coil and the PM poles.
The current input is set to 2 A. The initial errors are given by

dg2 ¼ 0:015; d/2 ¼ 0:02

The nominal, actual parameters of the coil are

gn
2 ¼ 0:2618;/n

2 ¼ 0:5236; ga
2 ¼ 0:2768;/a

2 ¼ 0:5436

The identified results are shown in Fig. 12. We can see that at
the end of the fourth iteration, the preset geometric errors are
fully recovered. The calibration’s convergence rate in the sim-

ulation study of the first situation is slow than that in this sim-
ulation example. The relationship between the number of
iterations and the convergence accuracy is shown in Fig. 13.

e2 is driven from an initial value of 0.0039 to 3.2 · 10�6 within
five iterations.



Fig. 14 Simulation results on integrated two-level calibration.

Fig. 13 Convergence accuracy vs number of iterations.

336 L. Zhang et al.
4.3.3. Simulation study on the integrated two-level calibration

In order to verify the effects of the two-level calibration

algorithm on the performance of the spherical actuator, a
simulation is conducted in MATLAB Simulink. The assigned
errors and calibration results of the previous simulation studies

on the first and second level are used here. The positioning
accuracy of the actuator under the models before and after cal-
ibration is compared. In the simulation, the rotor is driven

from the initial upright orientation (q1 = 0 rad, q2 = 0 rad,
q3 = 0 rad) along the trajectory (q1 = pt/48 rad, q2 = 0 rad,
q3 = 0 rad) using the computed torque control method, where
t indicates the time.

The simulation results are shown in Fig. 14. The dash-
dot line represents the desired trajectory. The dashed and
the dotted line indicate the control results by the models be-

fore and after calibration, respectively. From the simulation
results, we can see that before calibration, there are large
movement errors, the maximum steady state tracking error

in one decomposed revolution joint is about 0.06 rad. After
compensated by the two-level calibration results, the
positioning accuracy is greatly enhanced, and the maximum

steady state tracking error is nearly zero. The results demon-
strate that the proposed two-level calibration method can
effectively improve the positioning accuracy of the spherical
actuator.

5. Conclusions

(1) The error sources which affect the kinematic and torque

model of the spherical actuator are analyzed.
(2) The kinematic errors in the spherical joint are calibrated

in the first level of calibration, and the results show that
the preset kinematic errors in the spherical joint can be

fully recovered after calibration.
(3) The calibration model of PM poles and coils are estab-

lished in the second level of calibration. The simulation

results indicate that the assigned errors in the coils axes
and PM poles magnetization axes can be identified, and
thus the accuracy of the torque model can be improved.

(4) The simulation results on the integrated two-level cali-
bration algorithm demonstrate that the positioning
accuracy of the actuator can be enhanced after calibra-
tion. Since the existing PM spherical actuators have sim-

ilar structures and working principle, the results
presented here can also be applied to other PM spherical
actuators.
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