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Abstract 

This paper presents a Hermite polynomial interpolation based method to construct 

high-order accuracy finite difference schemes on non-uniform grid. This method can 

achieve arbitrary order accuracy by expanding the grid stencil and involving higher order 

derivatives. The paper first constructs combined compact difference schemes, from which 

compact difference schemes and super-compact difference schemes are shown to be 

derived by linear operations. Explicit schemes are further shown to be particular cases of 

this interpolation method. Using the present derivation method, previously reported 

classical schemes can be constructed on non-uniform grid and a new 5-point combined 

compact difference scheme is developed in particular. A new 2-piecewise function is also 

provided for non-uniform grid generation. The first piece of function stabilizes the 

scheme on Dirichlet boundary by clustering the grid points appropriately and the second 

piece is to stretch the outer grids according to the simulation domain of interest. This new 

scheme with non-uniform grid shows excellent stability properties and high spectral 

resolution as compared with other classical compact and combined compact difference 

schemes. To further demonstrate the present scheme, simulation of boundary layer 

transition problems using the three-dimensional incompressible Navier-Stokes equations 

is performed and good agreement with experimental results is obtained.  

 

Keywords: Compact Difference; Super Compact Difference; Combined Compact 

Difference; non-uniform grid; polynomial interpolation; Navier-Stokes equations; 

boundary layer transition. 
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1. Introduction 

For numerical solution of physical problems dominated by multiple length scales, 

e.g. turbulent flows, stable and accurate numerical methods are needed. Explicit finite 

difference schemes achieve a certain level of accuracy by extending the stencil to match 

more terms in Taylor series. However, Lele has shown that if the schemes involve not 

only the value of the function but also those of its derivatives needed by the simulation, 

spectral-like resolution can be achieved while keeping a small stencil [1]. These schemes 

are known as Compact Difference (CD) schemes. The order of accuracy can be even 

higher if the number and derivative order are increased and such schemes are referred to 

as Combined Compact Difference (CCD) schemes. Another type of scheme, known as 

Super Compact Difference (SCD), also demonstrates high order accuracy and they 

usually involve higher odd or even order of derivatives separately [2]. 

While different kinds of high order finite difference schemes are widely studied 

and applied in computations of Navier-Stokes (NS) equations, there is no reported 

general methodology to construct schemes with arbitrary stencil and accuracy order on 

non-uniform grids. Chu et al. developed a 3-point CCD scheme and later generalized it to 

non-uniform grids [3, 4], but keeping to the 3-point stencil. Shen et al. presented a 

method for solving unknown coefficients in matching Taylor series to arbitrary high 

order, but it is not straightforward to extend to non-uniform grids [5]. The non-uniform 

grid version of a 3-point SCD scheme is derived in [6], but extension of the stencil and 

accuracy order is not obvious. Shukla et al. presented different formulas to derive CD and 

CCD schemes involving up to second order derivatives on non-uniform grid, but does not 

develop the method sufficiently to involve arbitrary higher order derivatives [7]. To 

overcome the limitations of the above methods, this study presents a general method to 

construct finite difference schemes on non-uniform grid which can involve arbitrary 

derivative orders, stencils, and thus achieve arbitrary order of accuracy. The derivation 

method uses the method in [7] as a starting basis but extends the method and incorporates 

further simplifications. 

Another significant problem addressed in this paper is the generation of a non-

uniform grid which avoids numerical instability typically seen with high order boundary 

schemes. Sengupta et al. solved this problem by using a pair of low-order explicit 
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schemes to close the 6
th

-order CCD schemes on uniform grids in [8], while Shukla et al. 

and Hermanns et al. introduced a non-uniform grid to address the instability in the 

boundary region [7, 9]. However, a problem arises when the grid point distribution 

function required to achieve numerical stability does not satisfy grid stretching imposed 

by the exterior flow domain of interest, e.g. achieving clustering near a wall boundary and 

stretching at a far field region using only one function. Therefore, the present study 

develops a piecewise function having one part near the wall boundary for grid clustering 

and a second part for grid stretching.  

The developed general scheme derivation and non-uniform grid are further used 

to construct a new 5-point CCD scheme and compared with other classical CD and CCD 

schemes via stability and spectral analyses. It is further validated by its application in 

boundary layer transition problems, specifically applied to the wall-normal direction in 

simulation of the three-dimensional incompressible Navier-Stokes (NS) equations. For 

such flows, it is well-known that Tollmien–Schlichting (TS) wave interacts resonantly 

with its initially small amplitude subharmonic wave to generate three-dimensional 

vortices which break down and finally lead to turbulence. During this transition, high-

shear layers usually arise near the wall before flow randomization. The details of this 

process are discussed in [10-12]. Traditionally, coordinate transform methods for grid 

clustering in the wall-normal direction can be used to resolve this high-shear region as in 

[13, 14]. However, Meitz et al. showed that the construction of finite difference scheme 

on non-uniform grids can give more accurate results and the schemes have been applied 

in boundary layer simulation [15].In this paper, the new CCD scheme is used to simulate 

subharmonic resonance in boundary layer transition. The total number of grid points used 

here is significantly reduced compared with reported simulations in [16].  

The remainder of the paper is set out as follows. Section 2 presents the general 

method for deriving finite difference schemes on non-uniform grid. The classical reported 

high-order schemes are shown to be derived as special cases and a new 5-point 12
th

 order 

CCD scheme is developed. Section 3 presents the new grid generation function. Sections 

4 and 5 analyze the stability properties and spectral resolution of the finite difference 

schemes on the present non-uniform grid and specifically with the new CCD scheme, 

demonstrating better performance than the classical schemes. Section 6 applies the new 
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CCD scheme and non-uniform grid in the wall-normal direction to solve the full 3D 

incompressible NS equations for the simulation of subharmonic resonance in boundary 

layer flows. 

2. Scheme derivation on non-uniform grid 

Scheme construction by interpolation 

This section first introduces the derivation of finite difference schemes in the 

interior domain. The interpolation method described in [7, 17] for deriving finite 

difference scheme on non-uniform grid is generalized for including higher-order 

derivatives of arbitrary order and further simplified by matching the order of polynomial 

interpolation. The approach follows the construction method of Shukla et al. in [7], 

specifically Equations (1) to (9) below which are presented for completeness, and a new 

simpler procedure is used for the remaining part of derivation. The boundary schemes 

and other variations on the schemes are derived and discussed in the following sections.  

Hermite interpolation for a function  ( )  can be written as  

 ( ) = ∑ ∑𝜌𝑑,𝑖( )𝑓
(𝑑)( 𝑖)

𝑖∈𝐼𝑛

𝐷

𝑑=0

+ ∑ 𝑟𝑖( )𝑓( 𝑖)

𝑖∈𝐼𝑚

, (1) 

where    is the point set that defines derivatives 𝑓(𝑑)( 𝑖) up to the  th 
derivative with 

function values 𝑓(0)( 𝑖) = 𝑓( 𝑖), and    is the point set that defines only the function 

values 𝑓( 𝑖), which does not overlap with   . 

The difference schemes can be obtained by differentiating Equation (1)   times 

for  ( )( ): 

 ( )( ) = ∑ ∑𝜌𝑑,𝑖
( )( )𝑓(𝑑)( 𝑖)

𝑖∈𝐼𝑛

𝐷

𝑑=0

+ ∑ 𝑟𝑖
( )( )𝑓( 𝑖)

𝑖∈𝐼𝑚

 for 𝑘 =1, 2, …,   (2) 

Since 

 (𝑑)( 𝑖) = 𝑓(𝑑)( 𝑖) (3) 

Equation (4) and (5) are thus obtained as 
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𝜌𝑑,𝑖
(0)( 𝑗) = {

𝛿𝑖𝑗    𝑑 = 0

0       else
 ∀𝑖 ∈   , ∀𝑗 ∈   ∪    

(4) 

𝜌𝑑,𝑖
(𝑝)

( 𝑗) = {
𝛿𝑖𝑗     𝑑 = 𝑝

0       else
 𝑝 = 1,2… ,  ∀𝑖 ∈   , ∀𝑗 ∈    

and 

𝑟𝑖
(0)( 𝑗) = 𝛿𝑖𝑗 ∀𝑖 ∈   , ∀𝑗 ∈   ∪    

(5) 
𝑟𝑖
(𝑝)

( 𝑗) = 0  ∀𝑖 ∈   , ∀𝑗 ∈    

where 𝛿𝑖𝑗 is the Kronecker delta. 

The following notations are used to derive the expression of unknown 

polynomials 𝜌𝑑,𝑖( ) and 𝑟𝑖( ) in Equation (1), following [7]: 

∏ ( )
 

: = ∏ ( −  𝑖)
𝑖𝜖𝐼𝑚

, ∏ ( )
 

: = ∏ ( −  𝑖)
𝑖𝜖𝐼𝑛

, (6) 

𝑙𝑗
 ( ):= ∏

( −  𝑖)

( 𝑗 −  𝑖)

 

𝑖=1,𝑖≠𝑗

, 𝑙𝑗
 ( ):= ∏

( −  𝑖)

( 𝑗 −  𝑖)

 

𝑖=1,𝑖≠𝑗

. (7) 

Clearly, 

∏ ( 𝑖)
 

= 0, 𝑖𝜖  , ∏ ( 𝑖)
 

= 0, 𝑖𝜖  , (8) 

and 

𝑙𝑗
 ( 𝑖) = 𝛿𝑖𝑗 𝑖𝜖  , 

𝑙𝑗
 ( 𝑖) ≠ 0 𝑖𝜖  , 

𝑙𝑗
 ( 𝑖) = 𝛿𝑖𝑗 𝑖𝜖  , 

𝑙𝑗
 ( 𝑖) ≠ 0 𝑖𝜖  . 

(9) 

The above decomposition based on the work of [7, 17] are simplified by exploring 

the polynomial order relationship as follows. The Lagrange polynomial in Equations (7) 

is of order n – 1 with n points. Equation (1), including 𝜌𝑑,𝑖( ) and 𝑟𝑖( ), defined by (D + 

1)n + m grid points should be of order (D + 1)n + m – 1. These, together with Equation (4) 

and (5), lead to the assumption that polynomials 𝜌𝑑,𝑖( ) and 𝑟𝑖( ) can be decomposed to 
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𝜌𝑑,𝑖( ) = 𝜌̅𝑑,𝑖( )
∏ ( ) 

∏ ( 𝑖) 

(𝑙𝑖
 ( ))𝐷+1, (10) 

and  

𝑟𝑖( ) = [
∏ ( ) 

∏ ( 𝑖) 
]

𝐷+1

𝑙𝑖
 ( ). (11) 

In the present method, there is no unknown in Equation (11) and the only 

unknowns in Equation (10) are 𝜌̅𝑑,𝑖( ). Since (𝑙𝑖
 ( ))𝐷+1 is of order (D + 1)(n – 1) and 

∏ ( )𝑚

∏ (  )𝑚
 is of order m, 𝜌̅𝑑,𝑖( ) should be of order D to make 𝜌𝑑,𝑖( ) of order (D + 1)n + m – 

1, i.e. equal to the order of  ( ) in Equation (1). Thus it is only necessary to determine D 

+ 1 polynomials of D
th

-order. For each polynomial 𝜌̅𝑑,𝑖( ), there are (D + 1) unknowns, 

which can be determined by the corresponding (D + 1) equations in Equations (4). 

Equation (10) can be differentiated   times to obtain 

𝜌𝑑,𝑖
(1)( ) = 𝜌̅𝑑,𝑖( )

∏ ′( ) 

∏ ( 𝑖) 
(𝑙𝑖

 ( ))
𝐷+1

+
∏ ( ) 

∏ ( 𝑖) 
[𝜌̅𝑑,𝑖

(1)( )(𝑙𝑖
 ( ))

𝐷+1
+ 𝜌̅𝑑,𝑖( )( + 1)(𝑙𝑖

 ( ))
𝐷
𝑙𝑖
 ′( )] (12a) 

𝜌𝑑,𝑖
(2)( ) = 𝜌̅𝑑,𝑖( )

∏ ′′( ) 

∏ ( 𝑖) 
(𝑙𝑖

 ( ))
𝐷+1

+ 2
∏ ′( ) 

∏ ( 𝑖) 
[𝜌̅𝑑,𝑖

(1)( )(𝑙𝑖
 ( ))

𝐷+1
+ 𝜌̅𝑑,𝑖( )( + 1)(𝑙𝑖

 ( ))
𝐷
𝑙𝑖
 ′( )]

+
∏ ( ) 

∏ ( 𝑖) 
[𝜌̅𝑑,𝑖

(2)( )(𝑙𝑖
 ( ))

𝐷+1
+ 2( + 1)𝜌̅𝑑,𝑖

(1)( )(𝑙𝑖
 ( ))

𝐷
𝑙𝑖
 ′( )

+ 𝜌̅𝑑,𝑖( ) ( + 1)(𝑙𝑖
 ( ))

𝐷−1
(𝑙𝑖

 ′( ))
2
+ 𝜌̅𝑑,𝑖( )( + 1)(𝑙𝑖

 ( ))
𝐷
𝑙𝑖
 ′′( )] 

(12b) 

𝜌𝑑,𝑖
(3)( ) = 𝜌̅𝑑,𝑖( )

∏ ( )
(3)
 

∏ ( 𝑖) 
(𝑙𝑖

 ( ))
𝐷+1

+ 3
∏ ( )

(2)
 

∏ ( 𝑖) 
[𝜌̅𝑑,𝑖

(1)( )(𝑙𝑖
 ( ))

𝐷+1
+ 𝜌̅𝑑,𝑖( )( + 1)(𝑙𝑖

 ( ))
𝐷
𝑙𝑖
 ′( )]

+
∏ ′( ) 

∏ ( 𝑖) 
[3𝜌̅𝑑,𝑖

(2)( )(𝑙𝑖
 ( ))

𝐷+1
+ 6( + 1)𝜌̅𝑑,𝑖

(1)( )(𝑙𝑖
 ( ))

𝐷
𝑙𝑖
 ′( )

+ 3𝜌̅𝑑,𝑖( ) ( + 1)(𝑙𝑖
 ( ))

𝐷−1
(𝑙𝑖

 ′( ))
2
+ 3𝜌̅𝑑,𝑖( )( + 1)(𝑙𝑖

 ( ))
𝐷
𝑙𝑖
 ′′( )]

+
∏ ( ) 

∏ ( 𝑖) 
[𝜌̅𝑑,𝑖

(3)
( )(𝑙𝑖

 ( ))
𝐷+1

+ 3( + 1)𝜌̅𝑑,𝑖
(2)

(𝑙𝑖
 ( ))

𝐷
𝑙𝑖
 ′( )

+ 3( + 1)𝜌̅𝑑,𝑖
(1)

( ) ( (𝑙𝑖
 ( ))

𝐷−1
(𝑙𝑖

 ′( ))
2
+ (𝑙𝑖

 ( ))
𝐷
𝑙𝑖
 ′′( ))

+ 𝜌̅𝑑,𝑖( ) ( + 1)(( − 1)(𝑙𝑖
 ( ))

𝐷−2
(𝑙𝑖

 ′( ))
3
+ 3(𝑙𝑖

 ( ))
𝐷−1

𝑙𝑖
 ′( )𝑙𝑖

 ′′( ))

+ 𝜌̅𝑑,𝑖( )( + 1)(𝑙𝑖
 ( ))

𝐷
𝑙𝑖
 ′′′( )] 

(12c) 

up to 𝜌𝑑,𝑖
(𝐷)( ) as shown in Equation (12) for   = 3 

Since 𝜌̅𝑑,𝑖( ) is a  th order polynomial, it can be expressed with the unknowns 

𝜌̅𝑑,𝑖
( )( 𝑖), where 𝑘 = 0, 1 ,2 , ...,  , as 
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𝜌̅𝑑,𝑖( ) = ∑
1

𝑘 

𝐷

 =0

𝜌̅𝑑,𝑖
( )( 𝑖)( −  𝑖)

  (13) 

By substituting Equation (13) into Equations (12a) to (12c) and together with 

Equations (4), one can solve 𝜌̅𝑑,𝑖
( )( 𝑖) (𝑑, 𝑘 = 0, 1, 2, ... ,  ). To keep to a finite scope, the 

present study gives the schemes in detail only up to   = 3. The resulting equations of 

𝜌̅𝑑,𝑖
( )( 𝑖) are given in Table 1. 

 

𝑑 
 

0 1 2 3 ... 

0 1 −( + 1)𝑙𝑖
 ′( 𝑖)

−
∏ ( 𝑖)

′
 

∏ ( 𝑖) 
 

−
∏ ′′( 𝑖) 

∏ ( 𝑖) 
+ 2 [

∏ ′( 𝑖) 

∏ ( 𝑖) 
]

2

+ 2( + 1)
∏ ( 𝑖)

′
 

∏ ( 𝑖) 
𝑙𝑖
 ′( 𝑖)

+ ( + 1)( + 2)[𝑙𝑖
 ′( 𝑖)]

2

− ( + 1)𝑙𝑖
 ′′( 𝑖) 

−
∏ ( 𝑖)

(3)
 

∏ ( 𝑖) 
+ 3

∏ ( 𝑖)
(2)
 

∏ ( 𝑖) 

∏ ( 𝑖)
′
 

∏ ( 𝑖) 

−
∏ ′( 𝑖) 

∏ ( 𝑖) 
[3𝜌̅0,𝑖

(2)( 𝑖) + 6( + 1)𝜌̅0,𝑖
(1)( 𝑖)𝑙𝑖

 ′( )

+ 3 ( + 1) (𝑙𝑖
 ′( 𝑖))

2
+ 3( + 1)𝑙𝑖

 ′′( 𝑖)]

− 3( + 1)𝜌̅0,𝑖
(2)( 𝑖)𝑙𝑖

 ′( 𝑖)

− 3( + 1)𝜌̅0,𝑖
(1)( 𝑖) ( (𝑙𝑖

 ′( 𝑖))
2
+ 𝑙𝑖

 ′′( 𝑖))

−  ( + 1)(( − 1) (𝑙𝑖
 ′( 𝑖))

3
+ 3𝑙𝑖

 ′( 𝑖)𝑙𝑖
 ′′( 𝑖))

− ( + 1)𝑙𝑖
 ′′′( 𝑖) 

  

1 0 1 
−2( + 1)𝑙𝑖

 ′( 𝑖) − 2
∏ ( 𝑖)

′
 

∏ ( 𝑖) 
 −3

∏ ( 𝑖)
(2)
 

∏ ( 𝑖) 
− 2

∏ ′( 𝑖) 

∏ ( 𝑖) 
[1. 𝜌̅1,𝑖

(2)( 𝑖) + 3( + 1)𝑙𝑖
 ′( 𝑖)]

− 3( + 1)𝜌̅1,𝑖
(2)( 𝑖)𝑙𝑖

 ′( 𝑖)

− 3( + 1)( (𝑙𝑖
 ′( 𝑖))

2
+ 𝑙𝑖

 ′′( 𝑖)) 

  

2 0 0 1 
−3

∏ ′( 𝑖) 

∏ ( 𝑖) 
− 3( + 1)𝑙𝑖

 ′( 𝑖) 
  

3 0 0 0 1   
            

Table 1. Coefficients  ̅ , 
( )(  ) of the CCD scheme on a non-uniform grid. 

 

The polynomials 𝑟𝑖
( )( ) are similarly obtained by differentiating Equation (11)   times: 
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𝑟𝑖
(1)( ) = ( + 1) [

∏ ( ) 

∏ ( 𝑖) 
]

𝐷

[
∏ ( ) 

∏ ( 𝑖) 
]

,

𝑙𝑖
 ( ) + [

∏ ( ) 

∏ ( 𝑖) 
]

𝐷+1

𝑙𝑖
 ′

( ) (14 a) 

𝑟𝑖
(2)( ) = { ( + 1) [

∏ ( ) 

∏ ( 𝑖) 
]

𝐷−1

[
∏ ( ) 

∏ ( 𝑖) 
]

,2

+ ( + 1) [
∏ ( ) 

∏ ( 𝑖) 
]

𝐷

[
∏ ( ) 

∏ ( 𝑖) 
]

,,

} 𝑙𝑖
 ( )

+ 2( + 1) [
∏ ( ) 

∏ ( 𝑖) 
]

𝐷

[
∏ ( ) 

∏ ( 𝑖) 
]

,

𝑙𝑖
 ′( ) + [

∏ ( ) 

∏ ( 𝑖) 
]

𝐷+1

𝑙𝑖
 ′′( ) 

(14 b) 

𝑟𝑖
(3)( ) = { ( + 1)( − 1) [

∏ ( ) 

∏ ( 𝑖) 
]

𝐷−2

[
∏ ( ) 

∏ ( 𝑖) 
]

,3

+ 3 ( + 1) [
∏ ( ) 

∏ ( 𝑖) 
]

𝐷−1

[
∏ ( ) 

∏ ( 𝑖) 
]

(1)

[
∏ ( ) 

∏ ( 𝑖) 
]

(2)

+ ( + 1) [
∏ ( ) 

∏ ( 𝑖) 
]

𝐷

[
∏ ( ) 

∏ ( 𝑖) 
]

(3)

} 𝑙𝑖
 ( )

+ 3( + 1) { [
∏ ( ) 

∏ ( 𝑖) 
]

𝐷−1

[
∏ ( ) 

∏ ( 𝑖) 
]

,2

+ [
∏ ( ) 

∏ ( 𝑖) 
]

𝐷

[
∏ ( ) 

∏ ( 𝑖) 
]

(2)

} 𝑙𝑖
 ′( )

+ 3( + 1) [
∏ ( ) 

∏ ( 𝑖) 
]

𝐷

[
∏ ( ) 

∏ ( 𝑖) 
]

(1)

𝑙𝑖
 ′′( ) + [

∏ ( ) 

∏ ( 𝑖) 
]

𝐷+1

𝑙𝑖
 (3)( ) 

(14 c) 

up to 𝑟𝑖
(𝐷)( ) for   = 3. 

After the coefficients in Equation (2) are specified, the finite difference schemes 

are expressed as 

𝑓(1)( ) = ∑ ∑𝜌𝑑,𝑖
(1)( )𝑓(𝑑)( 𝑖)

𝑖∈𝐼𝑛

𝐷

𝑑=0

+ ∑ 𝑟𝑖
(1)( )𝑓( 𝑖)

𝑖∈𝐼𝑚

 

(15) 
𝑓(2)( ) = ∑ ∑𝜌𝑑,𝑖

(2)( )𝑓(𝑑)( 𝑖)

𝑖∈𝐼𝑛

𝐷

𝑑=0

+ ∑ 𝑟𝑖
(2)( )𝑓( 𝑖)

𝑖∈𝐼𝑚

 

... 

𝑓(𝐷)( ) = ∑ ∑𝜌𝑑,𝑖
(𝐷)( )𝑓(𝑑)( 𝑖)

𝑖∈𝐼𝑛

𝐷

𝑑=0

+ ∑ 𝑟𝑖
(𝐷)( )𝑓( 𝑖)

𝑖∈𝐼𝑚

 

For completeness, it is noted the particular case of   = 0 has Equation (1) 

reducing to the Lagrange interpolation polynomial. Also the explicit finite difference 

scheme for the  th
 derivative can be obtained via differentiating   times,  

𝑓(𝐷)( ) = ∑𝑟𝑖
(𝐷)( )𝑓( 𝑖)

 

𝑖=1

 (16) 

Interior scheme 

By selecting appropriate point sets    and    in the above method, arbitrary high-

order finite difference schemes can be constructed. Table 2 shows that the present method 
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can be used to construct the classical 3-point centered type schemes on uniform or non-

uniform grids, most of which have been widely studied. In the table, the schemes are 

denoted by: the highest polynomial order,  ,  ,  , and the step size is denoted by   on 

uniform grid. Thus, e.g. (6, 2, 1, 2) is a scheme with 6
th

 order polynomial,   = 2,   = 1, 

and   = 2. As specific cases, the non-uniform grid cases have schemes constructed at   = 

0 with point set   = {−2 ,  } and   = {0} and the step size has been incorporated into 

the coefficients of the derivatives and function values. CD scheme (4, 2, 1, 1) is the 

typical CD scheme, given in [1]. Its non-uniform grid version is found in [7]. CCD 

scheme (6, 2, 1, 2) is the 3-point 6
th

 order CCD scheme, which was first developed in [3] 

and later extended to non-uniform grid in [4]. CCD scheme (8, 2, 1, 3) involving the third 

derivative was first reported in [3] and implemented for driven cavity flow simulation in 

[18]. Its non-uniform grid version can be derived by the present method. In the present 

study, the formulas in Table 3 are generated first by symbolic operation with Python 

SymPy library, and then the grid coordinates are substituted with numerical values to 

give the scheme coefficients, which are next loaded into Fortran for numerical 

computation. 
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 Uniform General non-uniform Non-uniform with    = {-2 , 

 } and    = {0} 

CD  

(4, 2, 1, 1) 

 

−
3

  
𝑓𝑖−1 +

3

  
𝑓𝑖+1 −

1

 
𝑓𝑖−1

  

−𝑓𝑖
 −

1

 
𝑓𝑖+1

 = 0 

2 2
2

 1 12
3

( 1 −  12)𝑓𝑖−1 + (
2

 1

+
2

 2

) 𝑓𝑖 +
2 1

2

 2 12
3

( 2 +  12)𝑓𝑖+1 −
 2
2

 12
3 𝑓 

𝑖−1
− 𝑓 

𝑖

−
 1
2

 12
3 𝑓 

𝑖+1
= 0 

−
 

2  
𝑓𝑖−1 −

1

 
𝑓𝑖 +

32

2  
𝑓𝑖+1 

−
1

 
𝑓𝑖−1

 − 𝑓𝑖
 −

 

 
𝑓𝑖+1

 = 0 

CCD  

(6, 2, 1, 2) 

 

−
1 

16 2
𝑓𝑖−1 +

1 

16 2
𝑓𝑖+1 

−
 

16 
𝑓𝑖−1

 − 𝑓𝑖
  

−
 

16 
𝑓𝑖+1

 −
1

16
 𝑓𝑖−1

   

+
1

16
 𝑓𝑖+1

  = 0 

3 2
2

 1 12
 

(−2 1
2 + 2 1 12 −  12

2 )𝑓𝑖−1 + (
3

 1

+
3

 2

) 𝑓𝑖 

+
3 1

2

 2 12
 

(2 2
2 + 2 1 12 +  12

2 )𝑓𝑖+1 +
 2
3

 12
 

(3 1−2 12)𝑓
 
𝑖−1

 

−𝑓 
𝑖
+

 1
3

 12
 

(3 2+2 12)𝑓 
𝑖+1

−
 1 2

3

2 12
3 𝑓  

𝑖−1
−

 2 1
3

2 12
3 𝑓  

𝑖+1
= 0 

−
2 

162 2
𝑓𝑖−1 −

3

2 2
𝑓𝑖 

+
1  

 1 2
𝑓𝑖+1 −

 

2  
𝑓𝑖−1

  

−
1

 
𝑓𝑖

 −
 

  
𝑓𝑖+1

  

−
1

2 
 𝑓𝑖−1

  +
 

2 
 𝑓𝑖+1

  = 0 

 3

 2
𝑓𝑖−1 −

6

 2
𝑓𝑖 +

3

 2
𝑓𝑖+1 

+
 

  
𝑓𝑖−1

 −
 

  
𝑓𝑖+1

  

+
1

 
 𝑓𝑖−1

  − 𝑓𝑖
   

+
1

 
 𝑓𝑖+1

  = 0 

 2
2

 1
2 12

 
(−36 1

3 + 36 1
2 12 − 2  1

2 2 − 1  12
2  1 + 1  1 2 12 − 6 12

2  2)𝑓𝑖−1

+
6 1

2 + 1  1 2 + 6 2
2

 1
2 12

2 𝑓𝑖 + 

6 1
2

 2
2 12

 
( 12

2  1 + 3 1 2 12 +   2
2 1 + 3 12

2  2 + 6 12 2
2 + 6 2

2)𝑓𝑖+1 

+
6 2

2

 1 12
 ( 1(3 1 − 2 12) +  2(2 1 −  12))𝑓

 
𝑖−1

 

+
6 1

2

 2 12
 ( 1( 12 + 2 2) +  2(2 12 + 3 2))𝑓

 
𝑖+1

 

−
 2
2

 12
3

(3 1 + 2 2)𝑓  
𝑖−1

− 𝑓  
𝑖
−

 1
2

 12
3

(2 1 + 3 2)𝑓  
𝑖+1

= 0 

131

162 2
𝑓𝑖−1 −

3

2 2
𝑓𝑖 

+
 6

 1 2
𝑓𝑖+1 +

1 

2  
𝑓𝑖−1

  

−
 

2  
𝑓𝑖+1

 +
 

2 
 𝑓𝑖−1

   

−𝑓𝑖
  −

 

2 
 𝑓𝑖+1

  = 0 
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CCD  

(8, 2, 1, 3) 

 

−
3 

32 3
𝑓𝑖−1 +

3 

32 3
𝑓𝑖+1 

−
1 

32 2
𝑓𝑖−1

 −
1

 2
𝑓𝑖

  

−
1 

32 2
𝑓𝑖+1

 −
1

  
 𝑓𝑖−1

   

+
1

  
 𝑓𝑖+1

  −
1

 6
 𝑓𝑖−1

    

−
1

 6
 𝑓𝑖+1

   = 0 

  2
 (  1

3 −   1
2 12 + 3 1 12

2 −  12
3 )

 1 12
 𝑓𝑖−1

+
  1

 (  2
3 +   2

2 12 + 3 2 12
2 +  12

3 )

 2 12
 𝑓𝑖+1 

+
 2
 (−10 1

2 +   1 12 − 3 1 12
2 )

 12
 𝑓  

𝑖−1
+

 1
 (10 2

2 +   2 12 + 3 12
2 )

 12
 𝑓  

𝑖+1
 

+
 1 2

 (2 1 −  12)

 12
 𝑓  

𝑖−1
−

 2 1
 (2 2 +  12)

 12
 𝑓  

𝑖+1
−

 1
2 2

 

6 12
 𝑓   

𝑖−1
−

 1
  2

2

6 12
 𝑓   

𝑖+1

+ (
 

 1

+
 

 2

) 𝑓𝑖 − 𝑓 
𝑖
= 0 

−
2 

1   3
𝑓𝑖−1 −

2

 3
𝑓𝑖 

+
31 

1   3
𝑓𝑖+1 −

11 

 2  2
𝑓𝑖−1

  

−
1

 2
𝑓𝑖

 −
  6

 2  2
𝑓𝑖+1

  

−
1 

2 3 
 𝑓𝑖−1

  +
 0

2 3 
 𝑓𝑖+1

   

−
2

2 3
 𝑓𝑖−1

   −
 

2 3
 𝑓𝑖+1

   = 0 

  

 3
𝑓𝑖−1 −

 

 3
𝑓𝑖 +

 

 3
𝑓𝑖+1 

+
2 

16 2
𝑓𝑖−1

 −
2 

16 2
𝑓𝑖+1

  

+
 

16 
 𝑓𝑖−1

  −
1

 
𝑓𝑖

   

+
  2

16 
𝑓𝑖+1

  +
1

  
 𝑓𝑖−1

    

−
1

  
 𝑓𝑖+1

   = 0 

 2
3(160 1

 − 160 1
3 12 + 120 1

3 2 +  6 1
2 12

2 − 100 1
2 12 2 − 32 1 12

3 +    1 12
2  2 − 12 12

3  2)

 1
2 12

 𝑓𝑖−1

−
 1
3(160 2

 + 160 2
3 12 +  6 12

2  2
2 + 32 2 12

2 + 120 1 2
3 + 100 2

2 12 1 +    1 12
2  2 + 12 12

3  1)

 2
2 12

 𝑓𝑖+1

+
 2
3(− 0 1

3 + 6  1
2 12 − 60 1

2 2 − 2  1 12
2 +  0 1 12 2 − 12 12

2  2)

 1 12
 𝑓 

𝑖−1

+
 1
3(− 0 2

3 − 6  2
2 12 − 2  12

2  2 − 60 1 2
2 −  0 1 12 2 − 12 12

2  1)

 2 12
 𝑓 

𝑖+1

+
 2
3 (  1

2(2 1 −  12) +  2(−2 2 12 + 3 1(  1 −  12)))

 1 12
 𝑓  

𝑖−1

+
 1
3 (  2

2(2 2 +  12) +  1(2 2 12 + 3 2(  2 +  12)))

 2 12
 𝑓  

𝑖+1

−
 1 2

3(  1 + 3 2)

3 12
 𝑓   

𝑖−1
−

 2 1
3(3 1 +   2)

3 12
 𝑓   

𝑖+1
+ (

12

 2
2 +

32

 1 2

+
12

 1
2)𝑓𝑖 − 𝑓  

𝑖

= 0 

 63

    3
𝑓𝑖−1 −

1

 3
𝑓𝑖 

+
3 

    3
𝑓𝑖+1 +

626

 2  2
𝑓𝑖−1

  

−
 0 

 2  2
𝑓𝑖+1

 +
 3

2 3 
 𝑓𝑖−1

   

−
1

 
𝑓𝑖

  −
112 2

2 3 
𝑓𝑖+1

   

+
10

2 3
 𝑓𝑖−1

   −
16

2 3
 𝑓𝑖+1

   = 0 
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 10 

16 3
𝑓𝑖−1 −

10 

16 3
𝑓𝑖+1 

+
10 

16 2
𝑓𝑖−1

 +
10 

16 2
𝑓𝑖+1

  

+
1 

  
 𝑓𝑖−1

  −
1 

  
𝑓𝑖+1

   

+
3

16
 𝑓𝑖−1

   − 𝑓𝑖
    

+
3

16
 𝑓𝑖−1

   = 0 

2  2
2

 1
3 12

 
(30 1

 − 30 1
  12 + 60 1

  2 + 1  1
3 12

2 −  0 1
3 12 2 + 1  1

3 2
2 − 6 1

2 12
3

+ 2  1
2 12

2  2 − 10 1
2 12 2

2 − 6 1 12
3  2 +   1 12

2  2
2 −  12

3  2
2)𝑓𝑖−1

+ (
2 

 2
3 +

1  

 1 2
2 +

1  

 2 1
2 +

2 

 1
3) 𝑓𝑖

−
2  1

2

 2
3 12

 (30 2
 + 30 2

  12 + +1  2
3 12

2 + 6 2
2 12

3 + 60 2
  1

+  0 2
3 12 1 + 2  2

2 12
2  1 + 6 1 12

3  2 + 1  1
2 2

3 + 10 1
2 12 2

2

+   2 12
2  1

2 +  12
3  1

2)𝑓𝑖+1

+
 2
2

 1
2 12

 (−360 1
 + 2   1

3 12 −  20 1
3 2 − 10  1

2 12
2

+   0 1
2 12 2 − 1 0 1

2 2
2 − 1   1 12

2  2 +  6 1 2
2 12

− 2  12
2  2

2)𝑓 𝑖−1

+
 1
2

 2
2 12

 (−360 2
 − 2   2

3 12 − 10  2
2 12

2 −  20 2
3 1

−   0 2
2 12 1 − 1   1 12

2  2 − 1 0 1
2 2

2 −  6 2 1
2 12

− 2  12
2  1

2)𝑓 𝑖+1

+
12 2

2

 1 12
 (3 1

2(2 1 −  12) +  2
2(3 1 −  12)

+  2(−2 1 12 + 3 1(  1 −  12))) 𝑓  𝑖−1

−
12 1

2

 2 12
 ( 1

2( 12 + 3 2) +  1(2 12 2 + 3 2( 12 +   2))

+ 3 2
2( 12 + 2 2)) 𝑓  𝑖+1 + −

3 2
2

 12
 

(2 1
2 +   1 2 +  2

2)𝑓   𝑖−1

−
3 1

2

 12
 

(2 2
2 +   1 2 +  1

2)𝑓   𝑖+1 − 𝑓   𝑖 = 0 

−
   

2 3 3
𝑓𝑖−1 +

1 

 3
𝑓𝑖 

−
3200

2 3 3
𝑓𝑖+1 −

110

 1 2
𝑓𝑖−1

  

+
  0

 1 2
𝑓𝑖+1

 −
10

2  
 𝑓𝑖−1

   

−
 0

2  
𝑓𝑖+1

  −
1

2 
 𝑓𝑖−1

    

−𝑓𝑖
   +

  3

2 
 𝑓𝑖−1

   = 0 

Table 2. 3-point centered type finite difference schemes on uniform, general non-uniform grid, and specific non-uniform grid on    = {-2 , 

 } and    = {0}.   =   −   ,   =   −   , and    =   −   .
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A new 5-point centered type CCD schemes is constructed by selecting   = 1 and 

  = 4. Due to the lengthy mathematical formulas of the general expression, the non-

uniform grid is given in Table 3 below with only a specific case, at   = 0, with point sets 

  = {−  ,−2 ,  , 3 } and   = {0}. 

uniform 𝑖 − 2 𝑖 − 1 𝑖 𝑖 + 1 𝑖 + 2 

𝑓 
   

2  2 2
 −

100

 1   0 
100

 1 2
 −

   

2  2   

𝑓  
23

 32 
 −

 

  
 −

1

 
 −

 

  
 

23

 32 
 

𝑓   
1

216
 −

 

2 
 0 

 

2 
 −

1

21 
 

𝑓 −
  

32    
320

 1 2
 −

1 

2   
320

 1 2
 −

  

32    

𝑓  −
2 

 32 
 

 0

2  
 0 −

 0

2  
 

2 

 32 
 

𝑓   −
1

21 
 

 

2 
 −1 

 

2 
 −

1

21 
 

Non-uniform 𝑖 − 2 𝑖 − 1 𝑖 𝑖 + 1 𝑖 + 2 

𝑓 
1

 6  2
 −

10 

 3    −
1 

10   
1  

   2
 −

1

31   

𝑓  
2 

32 13  
 −

1 

13   
 − 

1

 
 −

12 

10  
  

3

163 
  

𝑓   
 

2 6  
 −

1

2 
 0 

12 

 32 
 −

1

3 1
 

𝑓 −
2

  3   
131

1 2 2
 −

  

1 0   −
2 

     
3 

 0  2
 

𝑓  −
1

2   
 

 0 

6   
 0 

2 

2  
 −

 2

    
 

𝑓   −
 

 21 
 

 

  
 −1 −

2 

  
 

1

10 
 

Table 3. 5-point CCD schemes (12, 4, 1, 2) on uniform, and non-uniform grid with   =
{−  ,−  , ,   } and   = { }. 

 

Boundary scheme 

For schemes involving derivatives with higher order the matrix of spatial 

discretization will be close to ill-conditioned when boundary schemes with the same 

order of accuracy as the interior are used [5]. Generally the boundary scheme should lose 

one order of accuracy to obtain a well-conditioned matrix. Thus in constructing CCD 

schemes on the boundary, the point set of    and    should be selected with one or two 

orders lower accuracy than the interior scheme as shown below. 

For the CCD scheme (6, 2, 1, 2) on uniform grid, the work of [3] uses the 4th 

order schemes given in Table 4 on the boundaries, which can be constructed by selecting 

  = 2,   = 1 and at the boundary point   = 0 and   =  , respectively. The specific 
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versions of non-uniform grid are also constructed at the point   = 0 with   = {
1

 
 }, 

  = {0,  } on the left boundary and at the point   = 10 with   = { .2  },   =

{  , 10 } on the right boundary. 

 
𝑓0 𝑓1 𝑓2 𝑓0

′ 𝑓1
′ 𝑓2

′ 𝑓0
′′ 𝑓1

′′ 𝑓2
′′ 

(4, 2, 1, 2)_l 

uniform 

−
 

2  
  

 2
 −

1

2  
 −

1

 
 −

2

 
 0 0 1 0 

 

 2
 −

12

   
3

 2
 0 

6

 
 0 −1 −5 0 

(4, 2, 1, 2)_l 

non-uniform 

−
13

   
3 2

2  2
 −

1

2    −
1

 
 −

20

  
 0 0 −

1

 
 0 

120

 2
 −

10  

    
 

  2
 0 

  

3 
 0 −1 −3 0 

 
𝑓 −2 𝑓 −1 𝑓  𝑓 −2

′  𝑓 −1
′  𝑓 

′ 𝑓 −2
′′  𝑓 −1

′′  𝑓 
′′ 

(4, 2, 1, 2)_r 

uniform 

1

2 2
 −

 

   
 

2 2
 

0 −
2

 
 −

1

 
 0 −1 0 

3

 2
 −

12

   
 

 2
 

0 −
 

 
  0 0 −5 −1 

(4, 2, 1, 2)_r 

non-uniform 

2 

 2
 −

32

   
 

 2
 0 

 

 
 −

1

 
 0 −

3

2
 0 

216

 2
 −

 0 

3   
 6

 2
 0 

 0

 
 0 0 −11 −1 

Table 4. Boundary CD scheme (4, 2, 1, 2) on uniform and non-uniform grid. “_l” denotes 

the scheme for the left boundary and “_r” for the right boundary. 

 

Scheme variations by linear operation 

One limitation of the schemes generated by the above interpolation method is that 

they include all lower derivatives less than  . In some cases, one may be interested in 

schemes involving only function values and derivatives with specific derivative order, for 

example, a CD scheme for the second order derivative. Alternatively, there can be a need 

to eliminate certain order derivatives or function values at a specific point. Such schemes 

can be generated using Equations (15) by linear operations of the schemes constructed 

above. To remove 𝑘 number of derivatives or function values, 𝑘 + 1 linearly independent 

interpolation schemes are arranged to a matrix with the 𝑘 undesirable derivatives or 

function values in the first 𝑘 columns. The matrix is then re-arranged in reduced row 

echelon form from which the desirable scheme is in the final row of the matrix. The order 

of the resulting scheme is determined by the lowest order of the interpolation polynomial. 
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As an example, a 4th order accuracy CD scheme for the second derivatives on uniform 

grid can be derived from CD scheme (4, 2, 1, 1) and CCD scheme (6, 2, 1, 2) as given in 

the first three rows of Table 5 (a) below. The 4th row of Table 5 (a) is the derivative on 

CD scheme (4, 2, 1, 1). Table 5 (b) is the last row of the resulting matrix in reduced row 

echelon form, obtained by standard Gauss-Jordan elimination with pivoting. This CD 

scheme is the classical scheme on uniform gird, identical to that derived by Taylor series 

expansion in [1] and by interpolation in [19]. Extension to non-uniform grid can be 

achieved by replacing schemes used with their corresponding non-uniform grid versions. 

 

(a) 𝑓𝑖−1
′  𝑓𝑖

′ 𝑓𝑖+1
′  𝑓𝑖−1 𝑓𝑖 𝑓𝑖+1 𝑓𝑖−1

′′  𝑓𝑖
′′ 𝑓𝑖+1

′′  

 −
 

1  
 − 

1

 
 −

 

1  
 −

1 

1    0 
1 

16 2
 −

1

1    0 
1

16 2
 

 
 

  
 0 −

 

  
 

3

 2
 −

 

   
3

 2
 

1

 
 −1 

1

 
 

 −
1

  
 − 

1

 
 −

1

  
 −

3

    0 
3

  2 0 0 0 

 −
3

  
 0 −

3

  
 0 0 0 −

1

 
 −1 −

1

 
 

(b) 0 0 0 
1

 2
 −

2

   
1

 2
 −

1

12
 −

 

 
 −

1

12
 

 

Table 5. Derivation of CD scheme for the 2
nd

 derivative on uniform grid: (a) the original 

scheme constructed by interpolation; (b) the last row of matrix in reduced row echelon form. 

 

In addition to recovering CD schemes, the present method is also applicable for 

deriving SCD schemes that involve odd or even order derivatives separately. The detailed 

derivation of such scheme is first given in [20]. However, within the present framework, 

the derivation is much simpler. Here, for example, the two equations of the 6
th

 order SCD 

scheme for the first derivative are recovered as given in Table 6 (a) and (b) for the 

uniform grid case. The first equation of the SCD scheme in Table 6 (a) is obtained by 

combining CCD scheme (8, 2, 1, 3) and the first equation of CCD scheme (6, 2, 1, 2) in 

Table 2. The second equation in Table 6 (b) is derived by differentiating the CD scheme 

for the second derivative given in Table 5 (b). The resulting SCD scheme is used in [2]. 

 𝑓𝑖−1
′′  𝑓𝑖

′′ 𝑓𝑖+1
′′  𝑓𝑖−1

′  𝑓𝑖
′ 𝑓𝑖+1

′  𝑓𝑖−1 𝑓𝑖 𝑓𝑖+1 𝑓𝑖−1
′′′  𝑓𝑖

′′′ 𝑓𝑖+1
′′′  

(a) 0 0 0 0 
1

 2 0 
1

2 3 0 −
1

2   
1

120
 

3

20
 

1

120
 

(b) 0 0 0 
1

 2 −
2

   
1

 2 0 0 0 −
1

12
 −

 

 
 −

1

12
 

Table 6. 6
th

 order Supper Compact Difference scheme for the first derivative. 
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It may also be necessary to construct finite difference schemes with certain 

derivatives at some particular point. For example, the wall boundary conditions used by 

[15] requires vanishing of the wall-normal velocity and its first derivative in the wall-

normal direction. For these cases, a new scheme can be constructed by removing the 

second derivative at the particular point from the old scheme. This can be done in 

analogy with the method given above in deriving Table 6 for uniform grid case.  

In summary, the present interpolation based method provides a general and 

systematic way to construct various classical types of finite difference schemes on non-

uniform grid. This includes explicit difference (by Equation (16)), CD, SCD (by Equation 

(15)) and CCD (by Equation (15)). It can achieve arbitrary high order accuracy and more 

specialized finite difference scheme can be developed by using different combinations of 

point sets   and   , and linear operation. 

 

3. Non-Uniform Grid  

The finite difference schemes presented in Section 2 can be constructed on an 

arbitrary non-uniform grid point distribution. However, how to distribute the grid points 

in high order finite difference schemes is still a difficult problem, because the stability of 

high order compact difference scheme is a major issue when applied with Dirichlet 

boundary conditions. Sengupta et al. use a pair of 2
nd

 and 3
th

 order explicit schemes to 

solve the stability problem of CCD (6, 2, 1, 2) scheme on uniform grid [8]. Shukla et al. 

[7, 19] applied a non-uniform grid distribution for high order compact schemes on 

Dirichlet boundary to solve stability problem. The 12
th

 order CCD scheme for the first 

derivative is unstable on a uniform grid. Therefore, similar non-uniform grid distribution 

with [7, 19]  is used in the present study to construct stable CCD schemes. Since one 

usually needs stabilizing clustered grid points on one side and stretched grid points on the 

other, it is more efficient to use two different equations to implement these two 

functionalities: one on numerical stability while the other one on stretching grid. 

Therefore, a piecewise function based on Kosloff et al.’s method [21] is proposed as 

described below.  

 



17 

 

 𝑖 = 

{
 
 
 

 
 
 

 𝑐

(

 
 
1 +

asin (−𝛼𝑔cos (
π𝑖
2𝑐))

asin(𝛼𝑔)

)

 
 

 𝑐 + ( 𝑐 −  𝑐−1) (
𝛽𝑔

(𝑖−𝑐) − 1

𝛽𝑔 − 1
)

 

0 ≤ 𝑖 ≤ 𝑐 (17 a) 

𝑐 + 1 ≤ 𝑖 ≤   (17 b) 

where 𝛼𝑔 and 𝛽𝑔 are the grid stretching parameters, 𝑐 and  𝑐 are the grid index and 

coordinate of transformation point, respectively, between Equation (17 a) and Equation 

(17 b). Equation (17 a) originated from [21], which is usually used to stabilize both sides 

of high-order finite difference boundary schemes as in [7, 9]. Here, it is modified for 

boundary on one side only. As 𝛼𝑔  0, more grid points are clustered to the boundary  0. 

The main drawback of Equation (17 a) is that, as 𝑖    the distribution is close to a 

uniform grid which is clearly undesirable for problems that involve a far field region. The 

proposed modification for grid generation allows for grid clustering up to a certain value 

𝑖 = 𝑐 while allowing the grid distribution from  𝑐+1 to the far field boundary    to be 

stretched. 

A simple summation of the geometric sequence, { 𝑖 −  𝑖−1}, is used for grid 

stretching in Equation (17 b). This ensures the increment of grid size, 
    −  

  −    
, equals a 

constant ratio 𝛽𝑔 which can be determined by a standard Newton-Raphson method once 

 𝑐 and    are fixed.  

The present grid generation function in Equation (17) is compared with other grid 

generation methods to demonstrate the advantages achieved, including the modified 

Kosloff's method and Anderson’s method [22]. For this comparison, all the grid 

generation methods are applied to 80 grid points from  0 = 0 to    = 2.0. Figure 1 is a 

plot of the grid index 𝑖 versus grid coordinate  𝑖 for five kinds of grid, including: 

1) □ Uniform grid. 

2) Δ Modified Kosloff's method (1): Equation (17 a) with 𝛼𝑔 = 0.975. 

3) ◊ Modified Kosloff's method (2): Equation (17 a) with 𝛼𝑔 = 0.6. 

4) ○ Present grid generation method in Equation (17) with 𝛼𝑔 = 0.975, c = 20, xc = xn/4. 

5) × Anderson’s method [22] which is widely used in boundary layer transition problems 
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(e.g., [15]) and given by  

The choice of 𝛽  = 1.1 here is to obtain a similar distribution profile for ready 

comparison.  

As shown in Figure 1, the modified Kosloff's method (1) is close to uniform near 𝑖 

= 80, as discussed above. Modified Kosloff's method (2) stretches grid points near 𝑖 = 80, 

but as shown in the small inset, it has a very small minimum grid size at 𝑖 = 0, resulting a 

strict stability limitation. The present method from Equation (17) clusters grid points near 

𝑖 = 0, but stretches near 𝑖 =  . The small figure inset also shows that the minimum grid 

space  1 in the present method is larger than those in the modified Kosloff's methods (1) 

and (2) with consequent relaxed stability restrictions for time integration. Anderson's 

method with 𝛽  = 1.1 gives a grid distribution close to that of the present method, but as 

shown in the following section may lead to potential numerical instability when used 

with CCD schemes. 

 

 

Figure 1. Grid distribution with n = 80. The modified Kosloff' method (1): αg = 0.975; the 

modified Kosloff's method (2): αg = 0.6; the present method: αg = 0.975, c = 20, xc = 0.25; 

Anderson's method: βA = 1.1. The vertical axis indicates the grid index i, while the 

horizontal axis shows the grid point coordinates xi. 

 

 

 𝑖 =   

(𝛽 + 1) − (𝛽 − 1)(((𝛽 + 1) (1 − 𝛽 )⁄ )1−𝑖/ )

((𝛽 + 1) (1 − 𝛽 )⁄ )1−𝑖/ + 1
 (18) 
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4. Stability analysis 

An important concern for a numerical method is its stability. This section analyzes 

the stability problem when the finite difference schemes derived in Section 2 are 

constructed on the grids given in Section 3. The method used to analyze the spatial 

stability of scheme is first described and the stability of first- and second-order derivative 

are then analyzed. 

 

Stability analysis of spatial schemes 

The numerical stability of finite difference schemes with boundary closures can 

be analyzed through the eigenvalue spectrum of the discretization matrix, as described in 

[23]. The approach is demonstrated in a one-dimensional linear PDE written as: 

  

  
=  ( ) (19) 

where   represents a linear combination of the first and second derivatives. 

  can be discretized by the finite difference schemes on uniform or non-uniform 

grid distributions with appropriate boundary conditions applied. The analysis procedure 

of CCD schemes with the first and second derivatives is presented as an example and 

analysis of CD or CCD schemes with higher derivatives can be performed similarly. The 

CCD schemes can be implemented in the matrix form as 

[ 1]{  } + [ 1]{   } + [ 1]{ } + { 1} = 0 
(20) 

[ 2]{  } + [ 2]{   } + [ 2]{ } + { 2} = 0 

where [ 1], [ 1], [ 1], [ 2], [ 2], and [ 2] are the coefficient matrices of the CCD 

scheme, and { 1} and { 2} represent the vectors for boundary values. 

After manipulation, the first and second derivatives can be expressed as, 

{  } = −[ 1 −  1 2
−1 2]

−1[ 1 −  1 2
−1 2]{ } − [ 1 −  1 2

−1 2]
−1{ 1 −  1 2

−1 2} (21 a) 

{   } = −[ 2 −  2 1
−1 1]

−1[ 2 −  2 1
−1 1]{ } − [ 2 −  2 1

−1 1]
−1{ 2 −  2 1

−1 1} (21 b) 

By substituting Equation (21) into Equation (19), one obtains 

  

  
= [ ]{ } + { } (22) 

where [ ] is a linear combination of −[ 1 −  1 2
−1 2]

−1[ 1 −  1 2
−1 2] and −[ 2 −

 2 1
−1 1]

−1[ 2 −  2 1
−1 1], and { } is a linear combination of 
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−[ 1 −  1 2
−1 2]

−1{ 1 −  1 2
−1 2} and −[ 2 −  2 1

−1 1]
−1{ 2 −  2 1

−1 1}. A 

necessary but not always sufficient condition for spatial stability is that  

  ( 𝑗) ≤ 0 for all 𝑗 (23) 

where  𝑗  are the eigenvalues of matrix [ ] and   ( ) denotes the real part [23]. 

 

First order derivative with boundary closure 

The following typical one-dimensional convection equation is used to investigate 

the spatial stability of finite difference schemes for the first derivative, as in the analyses 

in [7, 9].  

  

  
+

  

  
= 0 (24) 

The Dirichlet boundary condition over the computational domain [0,2] is applied: 

 (0,  ) = sin(  ) (25) 

This test case has a time periodic solution given as 

 ( ,  ) = sin( 𝑘( −  )) (26) 

where 𝑘 = 1 in this section. 

Figure 2 shows the eigenvalue plot of the different finite difference schemes 

developed. To limit the scope of the comparison, Figure 2 is for the new 5-point CCD 

schemes given in Table 3 with the classical 3-point CD and CCD schemes in Table 2. 

The latter have been reported in [1, 4, 7, 18]. For completeness, the 5-point 8
th

 order CD 

scheme, which has been studied in [7, 19], is also added for comparison. The boundary 

schemes are constructed with one or two orders lower than the interior scheme and the 

Dirichlet boundary point is defined in point set    of Equations (10) and (11). The 

numerical stability of the schemes can be numerically shown to be independent of the 

number of grids, so only the cases with n = 80 are shown here. Figure 2 (a) to (e) show 

that the CD and CCD schemes constructed on the non-uniform grid given by Equation 

(17) only have non-positive real parts in their eigenvalues, i.e. numerically stable. Figure 

2 (f) shows the results for the CCD scheme (12, 4, 1, 2) constructed on Anderson's grid 

generation method of Equation (18). Real eigenvalues, indicating instability, are seen 

even though Anderson's method gives a similar grid distribution as the present method 

(see Figure 1).  
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To further demonstrate the instability problem, Equation (24) is solved using a 4th 

order Runge-Kutta scheme for time integration as given in [24]. The numerical solutions 

with    selected to be small of 0.001 is shown in Figure 3 to further verify the stability 

properties. At time   = 0.1, numerical oscillation is seen near the Dirichlet boundary at   

= 0 when using Anderson's method and the solution becomes completely unstable after a 

few further time steps. In contrast, with the present grid generation method, the numerical 

solution exhibit a good match to the exact solution as shown up to   = 10.21 (more than 5 

periods). Since the periodicity of the solution from boundary condition in Equation (26), 

a time level   = 10.21 with similar solution at   = 0.1 is presented. 
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Figure 2. Eigenvalue spectrum for convection operator showing the real and imaginary 

parts of the eigenvalues for the CD and CCD schemes constructed using the grid generation 

method of Equation (17): (a) CD (4, 2, 1, 1); (b) CD (8, 4, 1, 1); (c) CCD (8, 2, 1, 3); (d) CCD 

(6, 2, 1, 2) and (e) New CCD (12, 4, 1, 2). (f) is for new CCD (12, 4, 1, 2) but using 

Anderson's grid generation method in Equation (18).  

 

 

Figure 3. Numerical solutions of the convection equation. (a) Present method at   = 10.21. (b) 

Anderson's method at   = 0.1 showing instability developing at   = 0.  

 

Second order derivative with boundary closure 

The prototypical one-dimensional convection-diffusion equation below is used to 

investigate the scheme stability under combined first and second derivatives (e.g. [9]). 

  

  
+

  

  
=

 2 

  2
 (27) 

The following Dirichlet and far field boundary condition over the computational domain 

[0,60] are applied: 

 (0,  ) = 0 (28) 

and 

 ( ,  ) =
  

  
=

 2 

  2
= 0  at   =    (29) 

These boundary conditions presume that diffusion effects are sufficiently significant for 

the solution to vanish at the far field boundary, resulting in Equation (29). The initial 

conditions are in the form of a wave packet: 

 ( , 0) = exp(−0.0 ( − 30)2 + 0.1)sin(1.1 ) (30) 

The eigenvalue spectrum of the new 5-point CCD scheme and the other classical schemes, 

which have been reported in [1, 4, 7, 18], are shown in Figure 4. There are no positive 

real parts in the eigenvalues seen for all of these discretizations. The eigenvalue spectrum 
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have spread towards more negative values as compared to that shown in Figure 2 for the 

schemes constructed on the non-uniform grid of Equation (17) as shown in Figure 4 (a) to 

(e). This is due to the introduction of operator 
  

   . Figure 4 (f) shows the spectrum of the 

new CCD scheme (12, 4, 1, 2) on the modified Kosloff's grid (2). The extreme value of 

this spectrum is much bigger than the same scheme on the present grid shown in Figure 4 

(e). Therefore, the temporal step size should be less strict in present grid compared with 

modified Kosloff's method (2). Since the largest eigenvalue of  𝑗  exclusively comes from 

the operator 
  

   
, a 2

nd
 order Strong Stability Preserving Runge-Kutta (SSP-RK) scheme 

first developed in [31] and following [25] should be used to integrate the term 
  

   , while 

the 4th order Runge-Kutta scheme is used to integrate 
 

  
 to preserve low-dispersion and 

low-dissipation following [30] and extensions in [24]. The details of such a scheme is 

discussed in the PhD thesis of [26] and outlined in Appendix A.   

A numerical solution to Equation (27) integrated by the SSP-RK scheme can be 

used to demonstrate the stability analysis. Figure 5 plots the numerical solutions of 

Equation (27) with CCD scheme (12, 4, 1, 2) constructed on the present grid and the 

Modified Kosloff grid (2). With the present method, a maximum    = 0.035 (calculated 

by Equation (A.5) in Appendix A) can be used for integration to a longer time (e.g. 

Figure 5 (a) plotted at   = 0.42 and   = 1.75) without instability and having the solution 

be smoothly damped away. For the modified Kosloff's method (2),    is selected to be 

0.0015, which is slightly larger than the maximum temporal step restriction evaluated by 

Equation (A.5). As a result the solution starts to oscillate near the wall boundary at   = 

0.078. Such strict stability restriction makes it impractical to apply explicit temporal 

integration with the modified Kosloff's method (2).  
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Figure 4. Eigenvalue spectrum for convection-diffusion operator showing the real and 

imaginary parts of the eigenvalues for the CD and CCD schemes constructed using the grid 

generation method of Equation (17): (a) CD (4, 2, 1, 1), (b) CD (8, 4, 1, 1), (c) CCD (8, 2, 1, 

3), (d) CD (6, 2, 1, 2), (e) New CCD (12, 4, 1, 2). (f) is for new CCD (12, 4, 1, 2) constructed 

by Modified Kosloff's method (2) in Equation (18). 
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Figure 5. Numerical solutions of the convection-diffusion equation. (a) Present method at t = 

0.42 and t = 1.75 with Δt = 0.035. (b) Modified Kosloff's method (2) at t = 0.078 with Δt = 

0.0015. 

 

5. Accuracy analysis 

Spectral analysis of schemes 

The spectral resolution of the finite difference schemes on non-uniform grid can 

be analyzed by the modified wave number analysis method. Assuming that 𝑘 denotes the 

physical wave number, 𝑘 will be modified to 𝑘  and 𝑘  2 due to the errors introduced from 

finite difference discretizations of the first and second derivatives respectively. The 

dispersion errors are thus Re(𝑘′ − 𝑘) and Im(𝑘  2 − 𝑘2), while the dissipation errors are 

Im(𝑘′ − 𝑘) and Re(𝑘  2 − 𝑘2). Denoting  𝑗 as the grid point where the finite difference 

schemes are constructed on,  𝑖 (𝑖 ∈   ,   ) are the grid points, and   𝑖 = ( 𝑖 −  𝑗), 

applying the interior scheme on a periodic domain, the substitution of 𝑓( 𝑖) = exp( 𝑘 𝑖) 

into Equations (15) gives the finite difference scheme in Fourier space. Using the 

schemes with D = 2 again as an example, the two transformed equations involving 𝑘, 𝑘  

and 𝑘  2 are: 

 

 𝑘′ =  𝑘′ ∑𝜌1,𝑖
(1)exp( 𝑘  𝑖)

𝑖∈𝐼𝑛

− 𝑘  2 ∑ 𝜌2,𝑖
(1)exp( 𝑘  𝑖)

𝑖∈𝐼𝑛

 

+∑ 𝜌0,𝑖
(1)exp( 𝑘  𝑖)

𝑖∈𝐼𝑛

+ ∑ 𝑟𝑖
(1)exp( 𝑘  𝑖)

𝑖∈𝐼𝑚

 

(31) 

−𝑘  2 =  𝑘′ ∑𝜌1,𝑖
(2)

exp( 𝑘  𝑖)

𝑖∈𝐼𝑛

− 𝑘  2 ∑𝜌2,𝑖
(2)

exp( 𝑘  𝑖)

𝑖∈𝐼𝑛

 (32) 
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+∑ 𝜌0,𝑖
(2)exp( 𝑘  𝑖)

𝑖∈𝐼𝑛

+ ∑ 𝑟𝑖
(2)exp( 𝑘  𝑖)

𝑖∈𝐼𝑚

 

Since the finite difference schemes are constructed on a non-uniform grid, 

dispersion and dissipation errors will be different at each grid point. Therefore, the 

maximum dispersion and dissipation errors with the present grid distribution used are 

plotted below in Figure 6 and Figure 7 wherein the wave number and modified wave 

number are scaled by      , the largest grid size for the finite difference scheme 

involved, i.e.  = 𝑘     ,  1 = 𝑘       and  2
2 = 𝑘       . 

The present grid generation method in Equation (17) with 𝛼𝑔 = 0.975, c = 20, xc = 

xn/4 is used in the spectral analysis for demonstration. Figure 6 and Figure 7 plot the real 

and imaginary parts of  1,  2
2 against   of the new 5-point CCD scheme (12, 4, 1, 2) 

and the other classical schemes CD (4, 2, 1, 1), CD (8, 4, 1, 1), CD (6, 2, 1, 2), and CCD 

(8, 2, 1, 3). These plots show that the spectral resolution generally increases with the 

order of finite difference scheme. For the same stencil, the scheme resolution increases as 

more high order derivatives are involved and hence the polynomial order increases. For 

example, in Figure 6 (a), CCD scheme (6, 2, 1, 2) has higher resolution than CD scheme 

(4, 2, 1, 1) with both 3-point stencil. The new CCD scheme (12, 4, 1, 2) is better than CD 

scheme (8, 4, 1, 1). Therefore, CCD schemes are generally better than CD schemes with 

the same stencil. In particular, the new CCD scheme (12, 4, 1, 2) shows negligible 

dispersion errors up to   = 2.5. Figure 6 (b) shows that all the schemes show negative 

dissipation error, which is different from the centered schemes on uniform grid. This 

property helps to stabilize the numerical solution and is consistent with the stability 

analysis in Section 4. In Figure 7 (a), it can be seen that CD schemes underestimate 

physical dissipation at high wave number region while CCD schemes tend to 

overestimate physical dissipation. The additional dissipation from CCD schemes also 

helps to make the numerical solution stable. Lastly in Figure 7 (b), unlike the case on 

uniform grid in which dispersion errors are zero, all the schemes have significant 

dispersion errors at the high wavenumber region, but the one given by the new 5-point 

CCD scheme (12, 4, 1, 2) is relatively small. By the above comparisons, one can 

conclude that the new CCD scheme (12, 4, 1, 2) gives the best spectral resolution on the 

non-uniform grid. It has relatively small dispersion and dissipation errors with scaled 
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wave number up to   = 2.5. 

 

 

Figure 6. Modified scaled wave number w1 plotted against scaled wave number w for the 

finite difference schemes on a non-uniform grid. (a) Real part, (b) Imaginary part. 

 

Figure 7. Modified scaled wave number w2
2
 plotted against scaled wave number w for the 

finite difference schemes on a non-uniform grid. (a) Real part, (b) Imaginary part. 

 

Numerical error analysis of schemes 

 In order to investigate the accuracy order of different schemes in Table 2 and 

Table 3, Equation (26) is differentiated with periodic boundary condition, with 𝑘 = 14. 

The following grid distribution is used, which is a symmetric version of Equation (17 a) 

for periodic boundary condition. 

 𝑖 =

(

 
 
1 +

asin (−𝛼𝑔cos (
π𝑖
 ))

2asin(𝛼𝑔)

)

 
 

 (33) 

where 𝛼𝑔 = 0.975. 
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The L2 norms of errors √∑ ( 𝑖 −       )2/ 
 
𝑖  are given against the grid number in Table 

7 and Table 8 for the first and second derivative respectively. The results show that each 

scheme demonstrates corresponding order of accuracy close to the expected theoretical 

values in the mathematical derivations in Section 2. 

 
CD (4,2,1,1) CD (8,4,1,1) CCD (6,2,1,2) CCD (12,4,1,2) CCD (8,2,1,3) 

Grid Error Order Error Order Error Order Error Order Error Order 

40 9.61E+00 - 2.38E+00 - 3.38E+00 - 2.82E-01 - 1.25E+00 - 

80 2.77E-01 5.1 1.56E-03 10.6 7.58E-03 8.8 1.07E-06 18.0 2.23E-04 12.5 

120 4.15E-02 4.7 3.43E-05 9.4 3.85E-04 7.3 2.43E-09 15.0 3.62E-06 10.2 

160 1.15E-02 4.5 2.61E-06 9.0 5.38E-05 6.8 4.44E-11 13.9 2.47E-07 9.3 

200 4.36E-03 4.3 3.73E-07 8.7 1.23E-05 6.6 2.25E-12 13.4 3.37E-08 8.9 

240 2.00E-03 4.3 7.79E-08 8.6 3.78E-06 6.5 2.08E-13 13.1 6.86E-09 8.7 

Table 7. Accuracy of different schemes for the first derivative on non-uniform grid. 

 

 
CD (4,2,1,1) CD (8,4,1,1) CCD (6,2,1,2) CCD (12,4,1,2) CCD (8,2,1,3) 

Grid Error Order Error Order Error Order Error Order Error Order 

40 2.89E+02 - 6.02E+01 - 9.83E+01 - 9.68E+00 - 4.37E+01 - 

80 1.22E+01 4.6 6.96E-02 9.8 8.35E-01 6.9 2.13E-04 15.5 4.06E-02 9.4 

120 1.93E+00 4.6 1.60E-03 9.3 5.09E-02 6.9 6.84E-07 14.2 8.99E-04 8.9 

160 5.43E-01 4.4 1.24E-04 8.9 7.52E-03 6.6 1.42E-08 13.5 6.83E-05 8.7 

200 2.08E-01 4.3 4.01E-05 5.1 1.76E-03 6.5 7.61E-10 13.1 9.76E-06 8.56 

240 9.56E-02 4.3 9.01E-06 8.2 5.49E-04 6.4 7.26E-11 12.9 2.04E-06 10.0 

Table 8. Accuracy of different schemes for the second derivative on non-uniform grid. 

  

To demonstrate the computational efficiency of the schemes, Equation (24) is 

solved with periodic boundary condition on non-uniform grid given in Equation (33). 

Equation (26) is used as initial condition with 𝑘 = 14. A 4
th

 order Runge-Kutta scheme is 

used for temporal integration. The time step is as small as 10
-5

 so that temporal 

discretization error is small enough compared with spatial discretization error from the 

present schemes. Equation (24) is integrated for about 6 periods. The discretized linear 

system is solved with a modified algorithm of Gauss-elimination for band matrix with 

special consideration of the periodic boundary condition without parallelization. The 

band matrix is factorized once and only one back substitution process is performed on 

each Runge-Kutta substep. 

Figure 8 (a) and (b) show the error of each scheme on non-uniform grid against 

number of grid points and computational time (on Intel core i7-2630QM CPU) 

respectively. Figure 8 (a) clearly shows that as the scheme order increases, the number of 
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grid points required to achieve the same level of accuracy reduces. Comparison between 

CD (8, 4, 1, 1) and CCD (8, 2, 1, 3) shows that for the same order of accuracy, involving 

high order derivative can reduce the number of grid points. To achieve the same L2 norm 

of error, the new CCD (12, 4, 1, 2) scheme requires least grid points. Figure 8 (b) shows 

that the efficiency of the scheme depends on the error required. Generally, the tridiagonal 

schemes CD (4, 2, 1, 1), CCD (6, 2, 1, 2), and CCD (8, 2, 1, 3) are less efficient than 

those pentadiagonal schemes CCD (8, 4, 1, 1) and new CCD (12, 4, 1, 2). The CCD (8, 2, 

1, 3) scheme is inefficient compared with other schemes at every level of error norms. If 

L2 norm of error larger than 10
-8

 is satisfactory, CD (8, 4, 1, 1) is the most efficient 

scheme. However, to achieve a smaller L2 norm error than 10
-8

, the new CCD (12, 4, 1, 2) 

takes less computational time than the CD (8, 4, 1, 1) scheme. In addition, it should be 

noted that another advantage of CCD scheme type is that they solve high order derivative 

and the first order derivative simultaneously. This may give CCD type schemes 

additional performance than CD schemes in certain applications. 

 

Figure 8. Error of different schemes for solving one-dimensional convection equation on 

non-uniform grid: (a) error versus number of grid points. (b) error versus computational 

time. 

 

6. Numerical solution of NS equations 

In this section, the advantages of using the high-order CCD scheme (12, 4, 1, 2) 

on non-uniform grid of Equation (17) are first validated by simulating the classical 

subharmonic resonance experiment of Kachanov et al. [27] wherein the CCD scheme and 

non-uniform grid are applied to the wall-normal direction. The present simulation 

methods use significantly less grid points compared with simulation of [16] as will be 
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shown below. To further demonstrate that the present methods are applicable to practical 

problems, the subharmonic resonance experiment of Borodulin et al. [28] in a transitional 

boundary layer flow with Adverse Pressure Gradient (APG) is simulated and qualitative 

features of the transition which takes place a short downstream distance are presented. 

The physical system targeted for simulation is a boundary layer flow over a flat 

plate which is disturbed by a blowing and suction strip at a certain upstream location. The 

rectangular computational domain is shown schematically in Figure 9. 

 

Figure 9. Three-dimensional computational domain. The dotted space indicates a buffer 

domain. X axis indicates streamwise direction, Y axis the wall-normal direction and Z axis 

spanwise direction. 

 

Problem formulation 

The governing equations and boundary conditions follow that used in [16] to 

which the reader is referred for further details. The governing equations are the full three-

dimensional incompressible Navier-Stokes equations in velocity-vorticity formulation 

and in non-dimensional form given by. 

 𝛚

  
+ (𝐮 ∙ ∇)𝛚 = (𝛚 ∙ ∇)𝐮 + ∇2𝛚 

(34) 

∇2𝐮 = ∇𝛚 

The total flow velocity field 𝐮( ,  ,  ) and vorticity field 𝛚(  ,   ,   ) are 

decomposed into a steady two-dimensional base flow 𝐮 (  ,   ,   ), 𝛚 (0,0,    ) and 

an unsteady three-dimensional disturbance flow 𝐮 (  ,   ,   ) and 𝛚 (  
′ ,   

′ ,   
′). The 

𝑋 

𝑌 

𝑍 

𝜆𝑧 

Blowing and suction strip 𝑋MAX 

𝑌MAX 

𝑋0 

𝑈 

𝑋B 
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base flow field is first solved and used as the initial condition for the unsteady flow. At 

the inflow boundary, all the disturbances and their first and second derivatives vanish. 

No-slip boundary condition is used for the velocities at the wall boundary and wall 

vorticities are calculated from the velocities. Disturbance velocities decay exponentially 

and vorticities vanish at the freestream boundary. A buffer is used at the outflow 

boundary to smoothly damp the disturbance vorticities. Lastly periodic boundary 

condition is implemented in the spanwise direction. 

A Fourier spectral method is used in the spanwise direction. In the streamwise 

direction, CCD schemes up to 12
th

-order accuracy as developed in [24] are used on a 

uniform grid. Upwind CCD scheme co-optimized with 4
th

 order 5-6 alternating stages 

Runge-Kutta (RK) scheme is used for the streamwise advection terms 
 

  
. The streamwise 

diffusion terms 
  

    are discretized with centered CCD scheme. The grid generation of on 

Equation (17) is used in wall-normal direction to obtain fine resolution in the near-wall 

region and grid stretching at the free stream. The new 5-point CCD scheme (12, 4, 1, 2) 

presented in Table 3 is use for wall norm terms 
 

  
 and 

  

   . The 2
nd

-order 5-6 alternating 

stages SSP-RK scheme given in Appendix A is used for the wall-normal diffusion term 

  

    to allow larger time step. The details of problem formulations and numerical methods 

are outlined in the Appendix B with full details given in [26]. 

 

Subharmonic resonance in zero pressure gradient (ZPG) boundary layer 

This section demonstrates the efficiency of the new CCD scheme on non-uniform 

grid by simulating the subharmonic resonance experiment of Kachanov et al. [27] with 

ZPG boundary layer. The physical parameters and non-dimensional system follow the 

ones used in [16]. The computational domain extends from   = 1.427 to 6.827 in the 

streamwise direction, and from   = 0 to 20.55 in the wall-normal direction (non-uniform 

grid of Equation (18) (refer to Table 9 for detailed grid information). The spanwise 

domain covers one subharmonic wave length up to   = 0.2.  The disturbance is 

introduced by the blowing and suction strip mounted over 1.687 ≤   ≤ 1.987. The two- 

and three- dimensional disturbance waves are denoted as modes (m, k), where m is the 
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multiples of fundamental wave frequency, and k is the multiples of the spanwise wave 

number. Here (1, 0) is used to denote the TS wave with non-dimensional angular 

frequency 12.4 and (1/2, 1) is the subharmonic wave. Two grids (coarse and fine) are 

used here for demonstrating grid independence as listed in Table 9 below where 

comparison, the parameters used in [16] are also given. 

The number of spanwise modes used are the same as in [16]. In the wall-normal 

direction, most of the grid points are used to cover the wall region with large velocity 

gradient. Thus only 34 grid points, i.e. 56% of the number in [16] are used in the wall-

normal direction for the coarse grid case and 87% for the fine grid. The use of CCD 

schemes as given earlier in [24] allows the number of grid points in the streamwise 

direction to be reduced significantly as seen by the    interval per TS wave length used. 

The strong stability and high-order accuracy as demonstrated in Section 4 and 5 also 

allow a much larger time step when combined with the new CCD schemes in the wall-

normal direction applied on the non uniform grid of Equation (18). This enables a direct 

reduction of the numerical effort when compared to the grid used in [16]. 

 
Wall-normal 

grid points 
         

   intervals 

per TS wave 

length 

Spanwis

e modes 
   

   interval per 

TS wave 

period 

Coarse grid 34 1.29 0.03 6.4 2 0.02 25 

Fine grid 52 0.77 0.02 9.6 2 0.015 34 

Fasel 

(1990) 
60 0.3425 

0.0046

2 
41.8 2 0.008 60 

Table 9. Grid points (coarse and fine grid) used in the present ZPG boundary layer 

simulations and in [16]. 

 

Figure 10 shows the spatial development of the streamwise disturbance velocity 

  . As in the experiments of Kachanov et al. (1984), the plotted growth curves are taken 

from the maximum over the wall-normal direction. The initial amplitude of mode (1, 0) 

and mode (1/2, 1) are calibrated to match the experiment at   = 2.2. The amplification 

curves generally agree with the experimental results of [27]. The curves start to deviate 

from the experimental results when   > 3.4 with larger amplification rate in the 

simulation. The mode (1/2, 1) especially shows much stronger amplification at   > 3.9. 
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However, the amplification curves are in good agreement with the simulation results 

reported in [16].  

Figure 10. Comparison of amplification curves with the experimental results of Kachanov et 

al. (1984) and simulations by [16]. The vertical axis is the maximal amplitude of streamwise 

disturbance u' along the wall-normal direction. 

The amplitude distribution in the wall-normal direction at   = 3.7 is shown in 

Figure 11. The agreement for mode (1, 0) between the simulation and experiments is 

generally good, but the simulation shows a slightly smaller amplitude. Consistent with 

the amplification in Figure 10, mode (1/2, 1) has a larger amplitude than that in the 

experiments. 
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Figure 11. Wall-normal amplitude distributions of the streamwise disturbance velocities u' 

at x = 3.7 normalized by freestream velocity and comparisons with the experimental results 

of [27] and simulation results by [16], (a) mode (1, 0), (b) mode (1/2, 1).  

 

Simulation of subharmonic resonance in adverse pressure gradient (APG) boundary 

layer 

The numerical model is further validated by the simulation of subharmonic 

resonance in APG boundary layer transition flow with Hartree parameter of -0.115, based 

on the experiments by Borodulin et al. [28]. Simulations are performed in two cases with 

different grid sizes. Case 1 (coarse grid) focuses on the weakly non-linear stage, so that a 

relatively coarse grid can be used. Case 2 (fine grid) covers a larger downstream region 

and higher Reynolds number, where vortex evolution takes places near the wall region 

necessitating finer grid sizes. In the later comparisons, X, Y and Z denote the 

dimensional coordinates in the streamwise, wall-normal, and spanwise directions while T 

and    denote the dimensional time and streamwise disturbance velocity, respectively. 

The initial disturbance strength of TS and subharmonic waves are calibrated to match the 

experiments at X = 350 mm, where the initial amplitudes of the fundamental and 

subharmonic waves are 0.1% and 0.01% of the freestream velocity, respectively. The 

disturbance frequency of TS wave is 109.1 Hz with subharmonic frequency 54.55 Hz. 

The grid sizes are listed in Table 10 below. 

 
Wall-normal 

grid points 
         

   interval 

per TS wave 

length 

Spanwi

se 

modes 

   

   interval 

per TS wave 

period 

Coarse grid 60 
0.56 

mm 
0.2 mm 15.2 4 

3.2 × 10
-5 

s 
280 

Fine grid 80 
0.45 

mm 

0.08 

mm 
38 16 

1.3 × 10
-5 

s 
700 

Table 10 Grid points used in the present APG boundary layer simulations. 

 

Figure 12 shows the spatial development of the wave components for the 

streamwise disturbance velocity   . As in the experiments, the growth curves are taken 

from the maximum in the wall-normal direction. The main trend follows the experiment: 

mode (1, 0) grows steadily, but mode (1/2, 1) amplifies dramatically and its amplitude 
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exceeds that of mode (1, 0). Although the amplification of the subharmonic mode is 

slightly weaker in the present simulation, the agreement with the experimental results is 

generally remarkable. 

 

Figure 12. Amplification curves of fundamental and subharmonic waves compared with 

experimental results in [28]. The vertical axis is the maximum streamwise disturbance 

velocity u' normalized by the freestream velocity.  

 

Figure 13 show a comparison between the amplitude profiles of   , specifically 

the amplitude of mode (1, 0) against the wall-normal distance normalized by the 

boundary layer displacement thickness 𝛿1. Although the amplitude in the present 

simulation is slightly larger, the distribution generally agrees with the experimental 

results. The amplitude of mode (1/2, 1) has further been normalized by its maximum for 

the comparison with the results reported in [28].  
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Figure 13. Amplitude distributions of streamwise disturbance velocity u' at X = 450 mm 

compared with experimental results in [28]. The horizontal axis is the wall-normal 

coordinate Y normalized by the boundary layer displacement thickness δ1; (a) fundamental 

TS wave, u' normalized by freestream velocity, (b) subharmonic wave reproduced from [28], 

u' normalized by its local maximum. 

 

The above quantitative comparisons show good agreement with experiments at 

the weakly non-linear stage of transition even when using a coarse grid (Case 1). The 

finer resolution (Case 2) does not further improve. While experimental measurements at 

locations further downstream disturbance are not available for comparison, the simulated 

vortex evolution using a fine grid (Case 2) will be shown to demonstrate the subsequent 

stable numerical behavior and that the expected evolution as described in [10, 12] is 

obtained. 

Figure 14 shows the streamwise disturbance contour    at T = 0.1075 s at different 

Y values. For Y = 3.4 mm (Figure 14 (a)), there are five three-dimensional structures 

arranged in a staggered pattern along the streamwise direction. A structure is first seen at 

around X = 0.53 m with a weak negative    amplitude. These structures show 

increasingly negative amplitudes for locations further downstream. At the same time, 

they gradually evolve from a rhombus-shape (X = 0.56 m) to the typical  -shape (X = 

0.63 m). At X = 0.67 m, the  -structure further stretches and a low speed streak forms at 

its tip. Figure 14 (b) shows the streamwise disturbance contour    at a location Y = 7.1 
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mm, further away from the wall. Here, the  -structures are weaker, however, there are 

strong velocity reduction at the tips of the  -structures, especially at X = 0.68 m. The 

locations of negative velocity are associated with the formation of the first ring-like 

vortices as discussed below. 

 

 

 

Figure 14. Streamwise disturbance velocity contour u' (m/s) at T = 0.1075 s. The vertical 

axis is the spanwise coordinate and the horizontal axis is the streamwise coordinate, (a) Y = 

3.4 mm, (b) Y = 7.1 mm.  

 

 

Figure 15 plots the streamwise disturbance velocity gradient against the wall-

normal direction at the same time T of Figure 14, but viewed at different spanwise 

locations. The relationship between the high shear layer and the three-dimensional 

structures can be clearly seen. In both Figure 15 (a) and (b), a high shear layer is first 

developed at region close to the wall with certain streamwise periodicity from X = 0.52 to 

X = 0.59 m. After X = 0.6 m, this high shear layer spreads towards the free stream 

direction and gives the three-dimensional structure. The coherent structure at X = 0.62 to 

0.64 m in Figure 15 (a) is the same  -structure at that in Figure 14 (a), while the coherent 

structure at X = 0.6 m in Figure 15 (b) is the same rhombus-shape structure in Figure 14 

(a). The numerical results show the development of the three-dimensional coherent 
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structures in boundary layer transition along with the corresponding formation of a high 

shear layer as successfully captured by the present non-linear grid distribution and the 

new 5-point CCD scheme. 

 
 

Figure 15. Streamwise disturbance velocity gradient contour du/dy (1/s) at T = 0.1075 s. The 

vertical axis is the spanwise coordinate and the horizontal axis is the streamwise coordinate, 

(a) Z = 10.5 mm, (b) Z = 37.5 mm.  

 

A vortex can be visualized by using the Q-criterion developed in [29]. Figure 16 

shows three vortex groups in different evolution stage of subharmonic resonance. The 

vortices are aligned in a staggered-pattern in the downstream direction. At X = 0.61 m, a 

primary  -vortex forms. At X = 0.64 m, a typical  -vortex can be observed and the 1st 

and 2
nd

 ring-like vortices are generated near the tip of the main vortex. At X = 0.67 m, the 

two legs of the vortex starts to break down and a more mature shape of the first ring-like 

vortex can be observed. Figure 16 shows that the present simulation results capture the 

main features of vortical structures in subharmonic resonance, as summarized in [10, 12]. 
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Figure 16. Visualization of vortex evolution by use of the Q-criterion at T = 0.1101 s. 

 

 

7. Conclusion 

In this study, an interpolation based method is developed to derive high-order 

finite difference schemes over non-uniform grids. The schemes are first constructed by 

interpolation methods, which can involve arbitrary order of derivatives and grid points. It 

is further shown that via linear operation, more finite difference schemes can be 

constructed that involves specific derivative and/or function values at certain grid point. 

Via this general method, various classical schemes can be constructed, including the 3-

point CD, CCD, and SCD schemes. 

A new 5-point CCD scheme is developed together with a new non-uniform grid 

generation function for grid clustering near wall region and grid stretching away. Most of 

the CD and CCD schemes constructed on this new grid are numerically stable and 

demonstrate high spectral resolution. It further offers improvement over finite element 

methods which only provide a weak form solution of the mass conservation law [34, 35], 

since the present scheme can satisfy mass conservation locally. It is also capable of 

arbitrarily high order accuracy compared to both finite element and high order finite 

volume methods where the accuracy is lower, typically 4th order or less [34, 36]. 

 The new 5-point CCD scheme has been demonstrated via numerical solutions of 

the full incompressible NS equations for simulation of subharmonic resonance in ZPG 

1st ring- 

like vortex 

1st ring- 

like-vortex 

Λ-vortex (1) 

(d) 

2nd, 3rd, and 4th 

ring-like vortices 

vortex (3) 

vortex (2) 

1st ring- 

like vortex 

1st ring- 

like vortex 

Λ-vortex (1) 

2nd, 3rd, and 4th 

ring-like vortices 

2nd ring-like vortex 

Λ-vortex (2) 

Λ-vortex (3) 
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and APG boundary layers. The simulation results in the weakly non-linear stage are in 

general agreement with the experiments. Specifically in simulation of Kachanov et al.’s 

experiments [27], the present numerical method require much less grid points than the 

simulations of [16]. In the simulation of Borodulin et al.'s experiment [28], the present 

results show the vortex evolution process in subharmonic resonance. These calculations 

demonstrate that the developed general method for deriving high-order finite difference 

schemes and grid generation are applicable to simulations of boundary layer transitions.  
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Appendix A Temporal scheme and stability analysis 

The general  -stage RK scheme is used to integrate an unknown function   as 

follows. For 𝑖 = 1, …, s (s = 5 or 6), compute 

 𝑖 =    (  + 𝑟𝑖 𝑖−1) (A.1) 

  +1 =   +    (A.2) 

where   is the spatial discretization operator as in Equation (22). Amplification factors    

for temporal stability analysis can be obtained following ([23])  

  = 1 +∑𝑟̃𝑖

 

𝑖=1

(   ̃)
𝑖
 (A.3) 

where  ̃ is the spectral mode of   and the coefficients  𝑟̃𝑖 are related to the coefficients in 

Equation (A.1) with the following relationship given in [30]: 

𝑟̃2 = 𝑟 , 

(A.4) 
𝑟̃3 = 𝑟 𝑟 −1, 

  

𝑟̃ = 𝑟 𝑟 −1 …𝑟2 
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Based on the 2
nd

 order Strong Stability Preserving Runge-Kutta (SSP-RK) scheme 

developed by [31] and its low-storage implementation form given in [32], the coefficients 

 𝑟̃𝑖 of 5-6 alternating stage SSP-RK scheme (denoted by RK(2,5-6)) are given in Table 

A.1. 

 

 1 2 3 4 5 6 

5-stage 𝑟̃𝑖 1 
1

2
 

1

 
 

1

6 
 

1

12 0
 - 

6-stage 𝑟̃𝑖 1 
1

2
 

2

1 
 

1

 0
 

1

62 
 

1

1   0
 

Table A.1. Coefficients of RK (2, 5-6) scheme. 

 

Two types of RK method have been used in this paper for different spatial 

discretizations. The first 2
nd

 order RK (2, 5-6) scheme is used for the 2
nd

 derivative with 

grid clustering in the wall normal direction and the 4
th

 order RK (4, 5-6) developed in 

[24], is for other derivatives. The stability "footprint" can be shown to be larger for RK (2, 

5-6) than that of RK (4, 5-6) (Chen (2013)) [26] and therefore the RK (2, 5-6) scheme 

allows a larger temporal step.    can be adjusted to make    𝑗  satisfy stability condition, 

i.e. be bounded by the "footprint"  . Formally    is determined by  

  ≤
sup| |

sup| 𝑗|
 (A.5) 
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Appendix B Formulation of boundary layer transition 

simulation 

The governing equations in Section 6 are related to their dimensional counterparts, 

denoted by bars, as follows:  

  =
   

 
,  =

 

 
,  =

 √  

 
,  =

 

 
, 

 =
   

 
,  =

 

  

,  =
 √  

  

 ,  =
 

  

. 

(B.1) 

where L  is the characteristic length, U  is the freestream velocity,   is the kinematic 

viscosity, and Re  is a reference Reynolds number. The NS equations are solved in a 

vorticity-velocity formulation with vorticity components given as 

  =
1

  

  

  
−

  

  
,  =

  

  
−

  

  
,   =

  

  
−

1

  

  

  
 (B.2) 

The total flow field ( , ) is decomposed into a steady two-dimensional base 

flow (  ,   ) and an unsteady three-dimensional disturbance flow (  ,   ) written as  

 ( ,  ,  ,  ) =   ( ,  ,  ) +  ′( ,  ,  ,  ), (B.3) 

 ( ,  ,  ,  ) =   ( ,  ,  ) +  ′( ,  ,  ,  ), (B.4) 

with 

  = {  ,   , 0},   = {0, 0,    } (B.5) 

 ′ = { ′,  ′,  ′},  ′ = {  
′ ,   

′ ,   
′ }. (B.6) 

In this form the NS equations consist of three vorticity transport equations: 
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, (B.7) 
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, (B.8) 
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, (B.9) 

where 

 =     
′ −  ′  

′ +      
′ −     

′ , (B.10) 
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 =  ′  
 
−  ′  

′ −     
′ −  ′   , (B.11) 

𝑐 =    
′ −   

′ +     
′ +      . (B.12) 

and three velocity Poisson’s equations: 

 2  

  2
+

 2  

  2
= −

   
′

  
−

 2  

    
, (B.13) 
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+
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+
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, (B.14) 

 2  

  2
+

 2  

  2
=

   
′

  
−

 2  

    
. (B.15) 

As periodicity in the spanwise direction   is assumed, the disturbance flow 

variables (  ,   ) and the terms ( ,  , 𝑐) are expanded with Fourier modes 

( ′,  ′,  ,  , 𝑐) = ∑(  
′ ,   

′ ,   ,   , 𝑐 )

 −1

 =0

exp( 𝑘  ) (B.16) 

where  = √−1 and    is the lowest spanwise Fourier mode related to the spanwise 

wavelength    by 

  =
2 

  
 (B.17) 

Substituting Equations (B.16) into Equations (B.7) to (B.15) give   sets of governing 

equations for each ( ,  )-plane integration domain. The nonlinear terms  ,   and 𝑐 of the 

vorticity transport equations are evaluated pseudo-spectrally using Fast Fourier 

Transform and with the 3/2 rule applied for de-aliasing (e.g. [33]). 

All disturbance variables are specified as zero as inflow boundary conditions. At 

the freestream boundary, the vorticities vanish and the disturbance    decay exponentially 

as 

  ′

  
= −

𝛼∗

√  
 ′ (B.18) 

where 𝛼∗ = √𝛼 
2 +   2 and 𝛼  is the streamwise wave number. At the wall, no-slip 

conditions are imposed on the disturbance velocity and the disturbance vorticities are 

calculated from the equations below: 
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′ = 0, (B.20) 
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A buffer domain method is used near the outflow boundary region with details in [24]. 

The disturbance signals in subharmonic resonance consist of two main 

components: the signal corresponding to the fundamental two-dimensional TS wave and 

three-dimensional small subharmonic wave. The disturbances are introduced from the 

wall-normal velocity component  ̂ ( ,  , 𝑘) in the spanwise spectral space. The TS wave 

is generated by 

 ̂ ( , 0, 𝑘) = A 𝑓( )sin(𝛽 ) (B.22) 

where A  is used to adjust the amplitudes of different spectral modes and 𝛽 is the 

disturbance frequency. 𝑓( ) is given as 

𝑓( ) = {
2 . 6𝜉 −  6.16𝜉 + 31.2𝜉 

−2 . 6𝜉 +  6.16𝜉 − 31.2𝜉  

𝜉 =
 −  1

 s −  1
  1 <  <  s  

(B.23) 

𝜉 =
 1 −  

 2 −  s 
  s <  <  2 

A  is adjusted to change the streamwise disturbance velocity    to match experiments. 

The numerical schemes for each term in Equations (B.7) to (B.15) are 

summarized in table B.2 below. Full details of the above method are found in [26]. 
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    Spectral method 

 

  
 12

th
 order upwind CCD scheme on uniform grid presented in [24] 

  

    all equations except (B.14) 12
th

 order centered CCD scheme on uniform grid presented in [24] 

  

    in equation (B.14) 12
th

 order explicit centered scheme presented in [26] 
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    12
th

 order centered CCD scheme on non-uniform grid in present paper 

 

  
 RK (4, 5-6) for 
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,

  

   ,
 

  
. RK (2, 5-6) for 

  

      

Table B.1. Summary of schemes applied to each term 

 

 


