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Abstract

In this paper, a novel human-virtual human interaction system is
proposed. This system supports a real human to communicate with
a virtual human using natural body language. Meanwhile, the virtu-
al human is capable of understanding the meaning of human upper
body gestures and reacting with its own personality by the means of
body action, facial expression and verbal language simultaneously.
In total, 11 human upper body gestures with and without human-
object interaction are currently involved in the system. They can
be characterized by human head, hand and arm posture. In our
system implementation, the wearable Immersion CyberGlove II is
used to capture the hand posture and the vision-based Microsoft
Kinect takes charge of capturing the head and arm posture. This
is a new sensor solution for human-gesture capture, and can be
regarded as the most important contribution of this paper. Based
on the posture data from the CyberGlove II and the Kinect, an ef-
fective and real-time human gesture recognition algorithm is also
proposed. To verify the effectiveness of the gesture recognition
method, we build a human gesture sample dataset. Additionally,
the experiments demonstrate that our algorithm can recognize hu-
man gestures with high accuracy in real time.
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Keywords: gesture understanding, virtual human, interaction, the
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1 Introduction

In virtual reality, virtual human is an essential part that is widely
used in game [Rautaray and Agrawal 2011], virtual training sys-
tem [Wang et al. 2012a], virtual diagnosis system [Rizzo et al.
2011] and virtual user guide system [Swartout et al. 2010], etc.
For these applications, how to realize the communication and in-
teraction between human and virtual human is a crucial problem.
A lot of previous studies [Gratch et al. 2007; Krämer et al. 2003;
Swartout et al. 2010] have demonstrated that humans prefer to in-
teract with the virtual human in the same way as they do with the
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real humans. Thus, the human-virtual human interaction should be
natural and intuitive like the interaction between real humans.

Humans communicate and interact with each other using both ver-
bal and non-verbal languages. Verbal language is one of the most
natural forms of human-human interaction. And it has been used
in many virtual systems [Gratch et al. 2007; Stedmon et al. 2011;
Swartout et al. 2010] for human-virtual human interaction. How-
ever, speech recognition accuracy is likely to be affected by back-
ground noise, human accents and device performance. Learning
and interpreting the subtle rules of syntax and grammar in speech
is also a difficult task. These negative factors limit the practical use
of verbal language. On the other hand, non-verbal communication
constitutes nearly two-thirds of all communication between human-
s [Gobron et al. 2012]. Thus, natural non-verbal language can be
employed as another human-virtual human communication way to
enhance the interaction performance. However, to our knowledge,
few works pay attention to this topic in virtual reality community.

In this paper, we have undertaken this effort to make use of non-
verbal language for human-virtual human interaction. Non-verbal
language mainly consists of gaze, facial expression and body ges-
ture [Gobron et al. 2012]. Our work focuses on understanding the
meaning of human upper body gestures which could be character-
ized by head, hand and arm posture. The gestures being involved
possess intuitive semantics for human-virtual human communica-
tion. And the gestures with human-object interaction are also con-
sidered. It worths noting that the gestures with human-object inter-
action are much more difficult to recognize than the ones without
such interaction. To bridge human and virtual human for natural
interaction, a gesture understanding and virtual human interaction
(GUVHI) system is implemented. So far, this system is an exper-
imental prototype that can understand 11 human upper body ges-
tures and leading the virtual human to react accordingly.

The major challenge to constructing the GUVHI system is how
to recognize the human upper body gestures accurately and in re-
al time. To achieve this goal, two crucial problems need to be
solved:

• First, suitable human gesture-capture devices should be chosen.
For our application, both hand posture and upper body posture
are needed for gesture understanding. Because the vision-based
sensors (such as the RGB camera) are difficult to capture the
hand posture robustly [Lu et al. 2012; Teleb and Chang 2012],
the wearable CyberGlove II [Immersion 2010] is employed. Us-
ing this device, high-accuracy hand posture data can be obtained
stably. On the other hand, the Microsoft Kinect [Shotton et al.
2011] is a recently emerged low-cost depth sensor that is suc-
cessfully applied to human body tracking. The body skeletons
can be extracted from the Kinect depth images [Shotton et al.
2011]. In our work, Kinect is used to capture the upper body
posture;
• Secondly, effective and fast gesture recognition algorithm is re-

quired. Based on the CyberGlove II and the Kinect posture da-
ta, descriptive upper body gesture feature is proposed by us.
To enhance the performance, LMNN distance metric learning
method [Weinberger and Saul 2009] is applied. Finally, an
energy-based classifier is used to make the recognition.
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In order to evaluate the proposed gesture recognition algorithm, we
construct a human upper body gesture dataset for experiment. This
dataset contains gesture samples from 23 people. They are of dif-
ferent genders, body sizes and races. Both the CyberGlove II and
the Kinect data are provided. The experiment demonstrates the ef-
fectiveness of our gesture recognition method both on classification
accuracy and time consumption.

In the GUVHI system, the virtual human can respond to human
body language in terms of body action, facial expression and verbal
language simultaneously. It targets at providing the users with an
immersive experience like human-human interaction.

Overall, the contributions of this paper include:

• An original human-gesture capture sensor solution. The Cy-
berGlove II and the Kinect are uniquely integrated to capture
human head, hand and arm posture simultaneously;
• The GUVHI system: a novel human upper body gesture under-

standing and interaction system. Human can communicate and
interact with virtual human through non-verbal body language
in this system;
• An effective and real-time human upper body gesture recogni-

tion algorithm is proposed.

The remaining of this paper is organized as follows. The related
work is discussed in Sec. 2. Sec. 3 gives an overview on the GU-
VHI system. The human upper body gesture understanding and
recognition method is illustrated in Sec. 4. Sec. 5 introduces how
virtual human interacts with human. Experiment and discussion are
given in Sec. 6. Sec. 7 concludes the whole paper with discussion
on future research.

2 Related Work

Among the human-virtual human interaction applications, most
work [Gratch et al. 2007; Stedmon et al. 2011; Swartout et al.
2010] chooses verbal language as the communication tool. As dis-
cussed in Sec. 1, verbal language still suffer from some restrictions
in practical use. For example, in the museum virtual guide sys-
tem [Swartout et al. 2010], the visitors cannot speak to the virtual
guide directly. Their questions are posed to virtual human by the
museum staff in a uniform format to ensure the speech recognition
accuracy. However, this interaction way largely restricts the visi-
tors’ participation and interest. Compared to the previous systems,
one important contribution of our work is to lead virtual human to
interact with human by understanding the meaning of human ges-
tures.

Human gesture recognition plays an important role in human-
computer interaction. According to the sensor type, the gesture
recognition systems can be categorized as encumbered and unen-
cumbered ones [Berman and Stern 2012]. Generally, the encum-
bered systems require the users to wear physical assistive devices
such as infrared responders, hand markers or data gloves. These
systems are of high precision and fast response speed, and robust to
environment changes. Many encumbered systems have been pro-
posed. For instance, two education systems [Adamo-Villani et al.
2007] were built for deaf by using data gloves and optical motion
capture devices; Lu et al. [Lu et al. 2012] proposed an immersive
virtual object manipulation system based on two data gloves and a
hybrid ultrasonic tracking system. Although most commercialized
gesture-capture devices are currently encumbered, unencumbered
systems are expected as the future choice, especially the vision-
based systems. With the emergence of low-cost 3D vision sensors,
the application of such devices becomes a very hot topic in both re-
search and commercial fields. One of the most famous examples is

the Microsoft Kinect, it has been successfully employed in human
body tracking [Shotton et al. 2011] and activity recognition [Wang
et al. 2012b]. However, accurate and robust hand posture capture is
still a difficult task for the vision-based sensors.

As discussed above, both encumbered and unencumbered sensors
possess their intrinsic advantages and drawbacks. For the specific
applications, they can be complementary. In the GUVHI system
a tradeoff between the two kinds of sensors is made, that is the
fine hand posture is captured by the encumbered device (the Cy-
berGlove II), while the rough upper body posture is handled by the
unencumbered sensor (the Kinect).

Although human gesture recognition has been widely studied, very
few works apply it to natural human-virtual human interaction. Pi-
plica et al. [Piplica et al. 2012] proposed the first system which
treated the human full body gesture as the input to create interactive
narratives with an AI improviser. The AI improviser could interpret
the human gestures and understand how the human contributed to
the narratives. The human gestures are represented by the joint in-
formation extracted from the Kinect. In this system, hand gesture
was ignored and some predefined gestures were not natural. Zhao
et al. [Zhao et al. 2012] suggested to control virtual human both by
speech and hand gesture recognition. In this work, virtual human
did not equally interact with human. It just acted according to the
human’s commands. Rautaray et al. [Rautaray and Agrawal 2011]
made vision-based hand gesture recognition to lead virtual human
to act in game accordingly. Virtual human interacted with the vir-
tual objects obeying the human hand commands. In [Wang et al.
2012a], virtual human motion was controlled by mapping human
motion onto it directly. Human motion was depicted by the joint
data extracted from the depth images.

Our research is different from the previous work listed above. In the
GUVHI system, only natural human gestures are used. Meanwhile,
virtual human reacts to human gestures with its own personality and
it does not play just as an avatar.

3 System Overview

The proposed GUVHI system aims to capture and understand the
meaning of human upper body gestures and trigger the virtual hu-
man’s reaction in real time accordingly. As shown in Fig. 1, the
GUVHI system is mainly composed of two modules. One is the
human gesture understanding module that works as the interface
between the real world and the virtual world, and the other is the
virtual human interaction module designed to control the virtual
human’s behavior for interaction. The whole system is constructed
based on the client-server architecture. The two functional modules
are running as clients and connected by a server. The server takes
charge of the message transmission between the two clients. At this
stage, our system only supports the interaction between one human
and one virtual human.

A right hand CyberGlove II and a Microsoft Kinect are employed as
the input sensors for the GUVHI system. Now, we mainly focus on
understanding the body gestures correlated with human’s right hand
and right arm. In the human gesture understanding module, we u-
niquely combine the CyberGlove and the Kinect for upper body
gesture capture and understanding, which is different from all the
approaches introduced in Sec. 2. The CyberGlove is used to cap-
ture the hand posture and the Kinect is applied to acquiring the 3D
position information of the human skeleton joints (including head,
shoulder, limb and hand). Besides the CyberGlove, the users do
not need to wear any other device. Therefore, our solution will not
yield a heavy load on the users to make them feel uncomfortable.
And because the CyberGlove II is wireless connected to the sys-
tem, the users can move their hands freely. What is more, by fusing



Figure 1: The GUVHI system architecture.

the information from the two kinds of sensors, the GUVHI sys-
tem maintains the capacity of recognizing a variety of human upper
body gestures, even the ones accompanied with human-object in-
teraction, such as “call”, “drink”, “read” and “write”. Such kinds
of gestures are ignored by the previous systems. However, they fre-
quently happen in the daily communication or interaction between
real humans, which may change human’s behavior abruptly. There-
fore, they should be included as an essential part for the natural
human-virtual human interaction. In our system, virtual human is
able to recognize and give meaningful response to such kinds of
gestures. Actually, this could refine the virtual human to be of more
real human characteristics.

At the gesture understanding phase, the original data from the Cy-
berGlove and the Kinect is synchronized firstly. After that, descrip-
tive features are extracted from them respectively. The multimodal
features will lastly be fused together according to certain rules to
generate the uniform input for the upper body gesture classifier.
The output of the classifier is regarded as the gesture understanding
result and sent to the virtual human interaction module via server to
trigger the virtual human’s reaction.

The virtual human interaction module enables virtual human to re-
spond to the real human’s body gesture language. In our system,
virtual human’s behavior is composed of three parts: body action,
facial expression and verbal language. Combing these behavior
parts concordantly can make the virtual human more lifelike, and it
is also helpful to raise the users’ interest to engage in the interaction
with virtual human.

As shown in Fig. 2, when the GUVHI system is running, the vir-
tual human will be projected on a big screen and the user worn the
CyberGlove is assigned to stand facing the screen in the distance of
three or four feet. And the Kinect is placed besides the big screen
to the capture the human body skeleton information.

4 Human Upper Body Gesture Understand-
ing

It can be seen from Sec. 3 that human upper body gesture under-
standing plays a key role in the GUVHI system. Its performance
will affect the interaction between human and virtual human great-
ly. In this section, our upper body gesture understanding method by
using the CyberGlove and the Kinect will be illustrated in details.
First, we introduce the upper body gestures that need to be under-
stood in the system. The feature extraction approaches for both the
CyberGlove and the Kinect are then presented. To form an integral

Figure 2: The GUVHI system deployment.

description on the upper body gestures, the features extracted from
the two sensors will be fused as an uniform input for the classifier.
Aiming to enhance the gesture recognition accuracy, LMNN dis-
tance metric learning method is applied to mining the best distance
measures. The energy-based classifier is used to make the final de-
cision.

4.1 Gestures in the GUVHI System

Currently, 11 static human upper body gestures can be understood
by the GUVHI system. Because only one right hand CyberGlove
is involved in the system, all the gestures are mainly triggered by
the human’s right hand and right arm. The involved gestures can
be divided into two categories, according to whether human-object
interaction happens:

• Category 1: the human gestures without human-object interac-
tion;
• Category 2: the human gestures with human-object interaction.

Category 1 contains 7 upper body gestures: “be confident”, “have
question”, “object”, “praise”, “stop”, “succeed” and “weakly a-
gree”. Some examples are shown in Fig. 3. We can observe that,
they are all natural gestures of intuitive meanings that are able to



Figure 3: The Category 1 body gestures.

Figure 4: The Category 2 body gestures.

reflect the human’s emotion state or behavior intention, not the ad
hoc ones for specific applications. Therefore, gesture-to-meaning
mapping is not needed in our system. Recognizing the gesture type
can achieve the goal of gesture understanding directly. Because the
humans’ behavior habits may be different, recognizing the natural
gestures is much more challenging than the ad hoc ones but also
more meaningful for the natural human-virtual human interaction.
From the listed samples, it could be seen clearly that both human
hand and upper body posture information are required to recognize
these gestures. For instance, the upper body postures corresponding
to “have question” and “object” are very similar. Without the hand
gesture feature, they are difficult to distinguish. The same thing al-
so happens to “have question”, “weakly agree” and “stop”. They
correspond to similar hand gestures but very different upper body
postures.

Category 2 possesses other 4 upper body gestures: “call”,
“drink”, “read” and “write”. Fig. 4 exhibits the examples of the 4
gestures. Being different from the Category 1 gestures, these 4 ges-
tures are happening with human-object interactions. As discussed

in Sec. 3, such kinds of gestures are always ignored by the previ-
ous systems. One main reason is that objects may cause the human
body occlusion, especially one the hand. In this case, vision-based
hand gesture recognition methods will fail to work. However, this
problem can be overcomed by using CyberGlove. In this work,
we attempt to recognize such gestures to make the human-virtual
human interaction more lifelike. The same as the Category 1 ges-
tures, they are also recognized according to the human hand and
upper body posture information.

As discussed above, how to describe the human hand and upper
body posture is the key to recognize and understand the upper body
gestures in the GUVHI system.

4.2 Feature Extraction and Fusion

In this subsection, we will introduce the feature extraction methods
for human hand and upper body posture description. The way to
fuse the multimodal features is also illustrated.



Figure 5: CyberGlove II data joints [Immersion 2010].

4.2.1 Hand Posture Feature

The Immersion wireless CyberGlove II is employed as the hand
posture capture device in the GUVHI system. As one of the
most sophisticated and accurate data gloves, the CyberGlove II can
provide 22 high-accuracy joint-angle measurements in real-time.
These measurements can reflect the bending degree of fingers and
wrist. The 22 data joints (marked as big color dots) are located on
the CyberGlove as shown in Fig. 5. We find that the wrist posture is
not a stable feature for recognizing the users’ hand gestures in our
application. For the same hand gesture, the wrist bending degree of
different users may change a lot. This phenomenon is caused by the
users’ different behaviour habits and hand sizes. So, the two wrist
data joints (marked as red) will be discarded. A 20-dimensional fea-
ture vector Fhand will be extracted from the 20 yellow data joints
to describe the human hand posture as

Fhand = (h1, h2, h3 · · · h19, h20) , (1)

where hi is the bending degree corresponding to the yellow data
joint i.

4.2.2 Upper Body Posture Feature

With the Kinect sensor, we shape the human upper body posture in-
termediately by the 3D skeletal joint positions. For a full human
subject, 20 body joint positions can be tracked by the real-time
skeleton tracker [Shotton et al. 2011] based on the Kinect depth
frame, which is invariant to posture, body shape, clothing, etc. Each
joint Ji is represented by 3 coordinates at the frame t as

Ji = (xi(t), yi(t), zi(t)) . (2)

However, not all the 20 joints are necessary for the upper body
gesture recognition. As aforementioned, head and right arm are
highly correlated with the 11 upper body gestures needed to be un-
derstood. For simplicity, we only choose 4 descriptive upper body
joints: “head”, “right shoulder”, “right elbow” and “right hand”
shown as the big green dots in Fig. 6. These selected joints match
with the right hand CyberGlove II.

The original 3D joint positions are sensitive to the relative position
between the user and the Kinect. Directly using them is not stable
for representing the body posture. Meanwhile, solving this prob-
lem by restricting the user’s position is unfeasible for the practical
application. In [Wang et al. 2012b], human action is recognized by
making use of the pairwise relative positions of the joints. Inspired
by this work, we choose the joint “middle of the two shoulders”
marked as the red dot in Fig. 6 as a reference joint. And the pair-
wise relative positions between the 4 previously selected joints and

Figure 6: The selected body skeletal joints.

the reference joint are computed as

Jsr = Js − Jr , (3)

where Js is one of the 4 selected joints and Jr is the reference joint.
Obviously, Jsr is less sensitive to user-Kinect relative position. It
is mainly determined by the body posture. The reason to choose
“middle of the two shoulders” as the reference joint is that it can
be robustly detected and tracked to most cases. And it is rarely
blocked by the limbs or the objects in daily gestures. Finally, a
feature vector Fbody of 12 dimensions is constructed by combining
the 4 pairwise relative positions to shape the upper body posture as

Fbody = (J1r, J2r, J3r, J4r) , (4)

where J1r , J2r , J3r and J4r are the 4 selected pairwise relative
positions.

4.2.3 Feature Fusion

Till now, two multimodal feature vectors: Fhand and Fbody are
extracted to describe the hand posture and the upper body posture
respectively. To fully understand the human upper body gesture,
the joint information of the two feature vectors is needed. Both
of them are important for the recognition task. However, they are
extracted from the different sensors and their values locate in very
different value ranges. Simply combining the two feature vectors as
the input for classifier will yield the performance bias on the feature
vector of low values. Here, we propose to rescale the two feature
vectors into the similar range before the feature fusion. Supposing
Fi is one dimension of Fhand or Fbody , Fmax

i and Fmin
i are the

corresponding maximum and minimum value in the training set.
Then Fi can be normalized as

F̂i =
Fi − Fmin

i

Fmax
i − Fmin

i

, (5)

for both training and test.

After normalization, the effect of the two feature vectors in classi-
fication will be balanced. And they are fused to form the integral
feature vector for classification by concatenation as

~F = (F̂hand, F̂body) . (6)

Finally, a 32-dimensional feature ~F is constructed for upper body
gesture recognition.



Figure 7: Illustration of the LMNN distance metric learning.

4.3 Classification Method

Using ~F as the input feature, the upper body gestures will be rec-
ognized by template matching based on the energy-based LMNN
classifier proposed in [Weinberger and Saul 2009]1. It is derived
from the energy-based model [Chopra et al. 2005] and the LMNN
distance metric learning method [Weinberger and Saul 2009]. The
latter part is the key to constructing this classifier. LMNN distance
metric learning approach is proposed to seek the best distance mea-
sure for the k-nearest neighbor (KNN) classification rule [Cover and
Hart 1967]. As one of the oldest methods for pattern recognition,
the KNN classifier is very simple to implement and use. Neverthe-
less, it can still yield comparative results in certain domains such as
object recognition and shape matching [Belongies et al. 2002]. And
it also has been applied to action recognition [Müller and Röder
2006] recently.

The KNN rule classifies each testing sample by the majority label
voting among its k-nearest training samples. Its performance cru-
cially depends on how to compute the distances between different
samples for the k nearest neighbors serach. Euclidean distance is
the most widely used distance measure. However, it ignores any
statistical regularities that may be estimated from the training set.
Ideally, the distance measure should be adjusted according to the
specific task being solved. To achieve better classification perfor-
mance, LMNN distance metric learning method is proposed to mine
the best distance measure for the KNN classification.

Let {(~xi, yi)}ni=n be a training set of n labeled samples with inputs
~xi ∈ Rd and class labels yi. The main goal of LMNN distance
metric learning is to learn a linear transformation L : Rd → Rd

that is used to compute the square sample distances as

D(~xi, ~xj) = ‖L(~xi − ~xj)‖2 . (7)

UsingD(~xi, ~xj) as the distance measure tends to optimize the KN-
N classification by making each input ~xi have k nearest neighbors
that share the same class label yi to the greatest possibility. Fig. 7
gives an intuitive illustration on LMNN distance metric learning.
Compared with Euclidean distance, LMNN distance tries to pull
the nearest neighbors of class yi closer to ~xi, meanwhile push the
neighbors from different classes away. Under the assumption that
the training set and the test set keep the similar feature distribu-
tion, LMNN distance metric learning can help to improve the KNN
classification result.

The energy-based LMNN classifier makes use of both the
D(~xi, ~xj) distance measure and the loss function defined for LMN-
N distance metric learning. It constructs an energy-based criterion
function, and the testing sample is assigned to the class which yield-
s the minimum loss value. Because the related theory is sophisti-
cated, we do not give the detailed definition on the energy-based

1The source code is available at http://www.cse.wustl.edu/
˜kilian/code/lmnn/lmnn.html.

Figure 8: The examples of Chloe’s body actions and facial expres-
sions.

LMNN classifier here. The readers can turn to [Weinberger and
Saul 2009] for reference.

5 Human-Virtual Human Interaction

In the GUVHI system, as a case study, human and virtual human
interact in the context of they are meeting to discuss something.
The virtual human is a female named “Chloe”. Based on the output
of the human gesture understanding module, she can perceive and
understand the human upper body gestures described in Sec. 4.1
and give response to human. For human-virtual human interaction,
how to maintain the users’ interest is important. In our implemen-
tation, Chloe is human-like to be capable of executing the reaction
combing body action, facial expression and verbal language. The
three behaviour factors can reflect the virtual human’s personality
and emotional state. Adding them together to Chloe can make her
more conceivable and believable. They will provide the users with
more vivid feedback. Fig. 8 exhibits some examples of Chloe’s
body actions along with the corresponding facial expressions. As
shown, she is under the emotional states of “happy”, “moderate”
and “sad” respectively, which can be clearly distinguished through
the visual difference. Nonverbal behaviors can help to structure
the processing of verbal information [Krämer et al. 2003]. Thus,
body action and facial expression can enhance the performance of
Chloe’s verbal language to make the users more impressed.

As the real human, virtual humans’ behaviors are associated with
their perception. At current stage, Chloe’s reaction is mainly trig-
gered the human body language. Here, we propose a scenario to
control Chloe’s behaviors from body action to verbal language.
This scenario covers all the 11 upper body gestures. And it is pri-
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Table 1: The scenario for human and virtual human interaction.

Human body
gestures

Chloe’s reaction
Facial expres-
sion

Verbal language

“be confident” happy Great to see you so confident.
“have question” moderate What is your question?
“object” sad Why do you disagree with me?
“praise” happy Thank you for your praise.
“stop” moderate Why do you stop me?
“succeed” happy Congratulations on your success.
“weakly agree” happy OK, lastly we reach agreement.
“call” moderate You can make your call first. I can wait.
“drink” moderate Do you need more drink?
“read” moderate You can read it slowly. Do not worry.
“write” moderate If you need time for record, I can slow

my talk.

marily designed according to the real human’s reactions to these
gestures. It aims to simulate the natural human-human interaction,
even when some accidents happen, such as one human has to an-
swer a coming call suddenly. By this way, the human-virtual human
interaction will be more lifelike. Because it is difficult to describe
the virtual human’s body actions accurately in text, only Chloe’s
facial expression and verbal language in the scenario are illustrat-
ed in Table 1. Chloe’s facial expressions are limited to “happy”,
“moderate” and “sad” which are highly correlated with her emo-
tional states corresponding to the gestures. And the verbal language
is relatively simple to make the users understand it easily.

6 Experiment and Discussion

To verify the effectiveness of the proposed upper body gesture un-
derstanding method, a human upper body gesture dataset is con-
structed by us. This dataset involves all the 11 upper body gestures
being recognized. The gesture samples are captured from 23 peo-
ple of different genders, body sizes and races. During the sample
collection, no strict constraint was applied to the persons. They did
the gestures by their own habits. The user-Kinect relative position
was also not strictly limited. And the CyberGlove II was initially
calibrated only once for all the people using a standard calibration.
That was a convenient way for the users. According to the dataset
construction configuration above, gesture diversities may exist a-
mong the people. This causes the difficulties for gesture recogni-
tion. However, our dataset is built up closely to the practical use.
Fig. 9 exhibits parts of the Category 1 and the Category 2 gesture
samples (“have question”, “succeed”, “call” and “drink”) cap-
tured from 6 people for comparison. For brevity, not all kinds of the
gestures are shown. The 5 body skeletal joints proposed in Fig. 6
are marked as the color dots in the sample images according to the
output of the skeleton tracker [Shotton et al. 2011] employed by
us. And they are connected by the straight segments to provide an
intuitive way to shape the upper body posture. From the exhibited
samples, it could be observed that:

• The listed gestures can be mainly distinguished based on the
hand posture and the upper body posture for the different peo-
ple. However, the people do the same gesture differently to
some degree. This phenomenon actually leads to the difficulties
for gesture recognition;
• For the different people and the different gestures, the 5 body

skeletal joints used for gesture recognition can be tracked ro-
bustly, even when the human-object interaction happens. And
their resulting positions are accurate enough for the specific ap-
plication. Meanwhile, the CyberGlove II is a human-touch de-
vice that can capture the hand posture robustly to yield high-

Table 2: Classification result (%) of the constructed dataset. The
best performance is shown in boldface. Standard deviations are in
parentheses.

Classifiers Training sample number per class
4 6 8

KNN (Euclidean) 87.75(±3.78) 90.59(±2.58) 92.00(±1.17)

KNN (PCA) 75.22(±6.46) 81.71(±5.08) 85.82(±4.55)

KNN (LDA) 52.15(±12.08) 70.37(±10.90) 69.58(±18.97)

KNN (LMNN) 88.90(±3.30) 90.80(±2.99) 92.73(±1.77)

Energy (LMNN) 90.62(±0.99) 94.55(±2.81) 94.91(±1.01)

10 12 14

KNN (Euclidean) 92.59(±2.07) 92.73(±3.06) 93.54(±1.97)

KNN (PCA) 88.39(±2.78) 87.27(±4.91) 86.06(±5.60)

KNN (LDA) 87.83(±8.69) 90.41(±8.48) 90.30(±6.57)

KNN (LMNN) 93.15(±2.00) 92.56(±2.80) 94.55(±1.53)

Energy (LMNN) 96.36(±1.35) 97.02(±1.71) 97.78(±1.94)

accuracy data. Therefore, the GUVHI system can acquire avail-
able data for gesture recognition stably.

Currently, the upper body gestures in our system are almost static
ones. For a person, we will pick up one representative frame for
each gesture to construct the dataset. Thus, the resulting dataset
contains 23× 11 = 253 gesture samples in all. In experiment, the
available dataset samples are randomly split into a training set and
a testing set for 5 times, and the average accuracy is reported.

The KNN classifier is employed as the baseline to make compari-
son with the energy-based LMNN classifier. They will be compared
both on classification accuracy and time consumption. The KNN
classifier will run with different kinds of distance measures. Fol-
lowing [Weinberger and Saul 2009], “k” is set as 3 for all the cases.
Additionally, the ball tree data structure [Beygelzimer et al. 2006]
is applied to speeding up the k-nearest neighbors search for the two
classifiers both in training and test. As demonstrated in [Beygelz-
imer et al. 2006], this data structure works well for the low dimen-
sional gesture feature vector ~F defined by us. Because training
sample number is a crucial factor for accuracy, the two classifier-
s will be compared corresponding to different amounts of training
samples. The training sample number ranges from 4 to 14 for each
class with the step size 2.

Other two well known distance metric learning methods: PCA [Jol-
liffe 1986] and LDA [Fisher 1936] are used for comparison with the
LMNN distance metric learning approach. For PCA, the first 10
eigenvectors are used to capture roughly 90% of the sum of eigen-
values. The distance measures yielded by PCA and LDA will be
applied to the KNN classifier.

Table 2 lists the classification results of different classifiers. We can
observe that:

• The upper body gestures in the dataset can be well recog-
nized by the proposed gesture recognition method. More than
97.00% classification accuracy can be achieved if the enough
training samples are used. With the increase of training sample
amount, the performance is generally improved consistently;
• Corresponding to all the training sample numbers, the energy-

based LMNN classifier can yield the highest classification ac-
curacy. Even with small number (such as 4) of training sam-
ples, it can still achieve good performance (90.62%). When the
training sample number reaches 14, the classification accuracy
(97.78%) is relatively very high. And its standard deviations are
the lowest for almost all the cases, which means that the energy-



Table 3: Average testing time consumption (ms) per sample. The
program is running on the computer with Intel (R) Core (TM) i5-
2430M @ 2.4GHz (only using one core).

Classifiers Training sample number per class
4 6 8

KNN (LMNN) 0.013 0.017 0.018
Energy (LMNN) 0.075 0.088 0.104

10 12 14

KNN (LMNN) 0.021 0.024 0.029
Energy (LMNN) 0.129 0.145 0.178

based LMNN classifier is also robust to the gesture diversities
among people;
• KNN classifier can also yield good result on this dataset. How-

ever, it is inferior to the energy-based LMNN classifier. Com-
pared to Euclidean distance, LMNN distance metric learning
method can improve the performance of KNN classifier con-
sistently to most cases. However, it works much better on the
energy-based model;
• PCA and LDA do not work well on this dataset. Their result-

s are even worse than the Euclidean distance. The main rea-
son is that the two distance metric learning methods need large
number of training samples. And that is their limitation for the
practical application.

Besides the classification accuracy, another important factor that
we concern about is the testing time consumption of our gesture
recognition method. The reason is that the GUVHI system should
be running in real time. The energy-based LMNN classifier and
the LMNN KNN classifier are two classifiers with the highest ac-
curacies. Here, we make a comparison on their time consumption.
Table 3 lists the average running time per testing sample. It could
be observed that both the two classifiers are extremely fast for the
application. The time consumption mainly depends on the number
of training samples. Actually, the LMNN KNN classifier is much
faster than the energy-based LMNN classifier. If large number of
training samples are used (such as tens of thousand), the LMNN
KNN classifier will be the better choice.

7 Conclusion and Future Work

The natural human-virtual human interaction is an important com-
ponent for many practical virtual systems. In most existing appli-
cations, human and virtual human communicate mainly based on
verbal language. This paper proposes to use natural human body
language for human-virtual human interaction. The GUVHI sys-
tem, a novel human upper body gesture understanding and interac-
tion system, is implemented. At the current stage, 11 human upper
body gestures with and without human-object interaction can be
perceived and understood by virtual human in this system. Mean-
while, the virtual human responses to human gestures with its own
personality. It reacts by the means of body action, facial expres-
sion and verbal language simultaneously, aiming to give users the
human-human interaction experience.

For the GUVHI system, a new human-gesture capture sensor solu-
tion is suggested, which is the most important contribution of this
paper. In our system implementation, the CyberGlove II is the hand
posture capture device, and the Kinect is employed to acquire the
upper body posture. Based on the gesture data from the sensors,
descriptive gesture feature is proposed. LMNN metric learning and
the energy-based classifier are used for classification to enhance the
gesture recognition performance. For the experiment, a human up-

per body gesture sample dataset is constructed. It contains human
gesture samples from 23 people. The experiments verify the effec-
tiveness of our gesture recognition algorithm both on accuracy and
time consumption.

So far, the human gestures involved in the GUVHI system are stat-
ic ones, e.g., “have question”, “praise”, “call” and “drink”, etc.
In future work, we plan to make the virtual human understand dy-
namic gestures, such as “wave hand”, “type keyboard”, “shake
hand” and “clap”, etc. Speech recognition can be added to make
the system more stable and natural for the human-virtual human
interaction.
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