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GRID-BASED LOCAL FEATURE BUNDLING FOR EFFICIENT
OBJECT SEARCH AND LOCALIZATION

Yuning Jiang, Jingjing Meng, Junsong Yuan

School of Electrical and Electronics Engineering,
Nanyang Technological University, Singapore, 639798

ABSTRACT
We propose a new grid-based image representation for dis-
criminative visual object search, with the goal to efficiently
locate the query object in a large image collection. After ex-
tracting local invariant features, we partition the image into
non-overlapped rectangular grid cells. Each grid bundles the
local features within it and is characterized by a histogram of
visual words. Given both positive and negative queries, each
grid is assigned a mutual information score to match and lo-
cate the query object. This new image representation brings
in two great benefits for efficient object search: 1) as the grid
bundles local features, the spatial contextual information en-
hances the discriminative matching; and 2) it enables faster
object localization by searching visual object on the grid-level
image. To evaluate our approach, we perform experiments on
a very challenging logo database BelgaLogos [1] of 10,000
images. The comparison with the state-of-the-art methods
highlights the effectiveness of our approach in both accuracy
and speed.

Index Terms— grid feature, mutual information

1. INTRODUCTION

Visual object search in large image collections is an important
technique for many applications, such as object recognition,
image annotation and image understanding. Given a query
object, our objective is to not only find out in the database
all images that contain the object, but also locate the object
in these images (see Figure 1). In this respect, visual object
search can be viewed as two tasks: object matching and object
localization.

Though previous work [2] [1] [3] has been focused on this
area in recent years, visual object search, especially for small
objects (e.g. logos), remains a challenging problem. On one
hand, challenges for object matching mainly come from the
fact that the target objects usually differ a lot from the query
due to changes in scale, viewpoint or color, or due to partial
occlusion. These all lead to difficulties in object matching and
thereby we raise the need for a highly discriminative feature.
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Fig. 1. An example of visual object search. Left: a query object,
such as a logo, selected by the user. Right: resulting images from vi-
sual object search, where object locations are identified and marked
by blue bounding box.

[2] [4] opt for Nearest-Neighbor (NN) classifier to avoid the
quantization error caused by the bag-of-visual-words (BOVW)
scheme. However, these NN-based algorithms are all under
the Naive-Bayes assumption that each feature point is inde-
pendent from the others. Without considering the spatial con-
text, matching individual features can not provide satisfied
results. Besides, searching nearest neighbors for all query
feature points is costly in both memory and time, hence pro-
hibiting the application of NN classifiers to large datasets.

On the other hand, object localization is formulated as the
problem of finding the subimage with maximum similarity to
the query object [2] [5]. Although use of branch-and-bound
algorithm can avoid linearly searching all the subimages of an
image, object localization is still a computationally expensive
job for high resolution images (e.g. 800 × 800 or higher),
especially when the target object appears in a small size.

To address the two tasks mentioned above, we propose a
grid-based visual object search approach in this paper. We
first partition each image into non-overlapping rectangular
grids and bundle local features in each grid into a grid fea-
ture, which is described as a visual word histogram under
the BOVW framework. Then given the positive and negative
queries, each grid will be assigned a mutual information score
determined by its histogram intersections with both positive
and negative sets. Finally the subimage with maximum mu-
tual information, computed as the summation of the mutual
information scores of all its grids, is retrieved by the branch-
and-bound algorithm.

Our approach contributes to both tasks involved in vi-
sual object search. First, for object matching, it improves the
matching accuracy in terms of the discriminative grid match-
ing. On one hand, instead of matching individual local fea-
tures, the bundled features within the grid are matched as a
whole. By considering the spatial context, it thus improves



the matching quality. On the other hand, instead of matching
the query object only, each grid will match both positive and
negative queries to enable a more discriminative matching.
Moreover, for object localization, branch-and-bound search
on a grid basis drastically reduces both the time and space
complexity, as it is essentially performing search on down-
sampled images.

2. ALGORITHM

This section is organized as follows: firstly we give the defini-
tion of the grid feature in § 2.1; then in § 2.2, the mutual infor-
mation score based on histogram intersection is introduced;
§ 2.3 describes how to derive the quality bound to enable effi-
cient subimage retrieval via branch-and-bound algorithm.

2.1. Grid Feature

Given an image database D = {Ii}, we denote by {fi,j}
all the high-dimensional local descriptors extracted from the
image Ii. Follow the BOVW scheme, each local descriptor
f will be quantized to a visual word using a vocabulary of
K words, represented as w = {x, y, d}, where (x, y) is the
location and d ∈ {1, . . . ,K} is the corresponding index of
the visual word.

Then we partition each image Ii into Mi × Ni non-
overlapped rectangular grid cells {Ri,m,n}, m ∈ {1, . . . ,Mi}
and n ∈ {1, . . . , Ni}. A grid feature is then defined as:

Gi,m,n = {wi,j |wi,j ∝ Ri,m,n}, (1)

where wi,j ∝ Ri,m,n means the point feature wi,j falls in-
side the grid cell Ri,m,n. Empty grids will be discarded.
Furthermore, each grid feature Gi,m,n is represented as a
K-dimensional histogram of visual word occurrences hi,m,n,
and indexed by an inverted file to take advantage of its spar-
sity in most cases. Figure 2 illustrates how to construct and
index the grid features.

A grid feature is more discriminative than an individual
local feature, as it contains multiple features considered as the
context [6] [7]. And with the advantages of BOVW scheme,
we need not to store and match all local features in a high-
dimensional space. In practise the inverted index results in
a substantial speedup as only grids containing the words that
also appeared in the query need to be examined.

2.2. Mutual Information Score based on Histogram In-
tersection
After representing each grid as a sparse histogram hi,m,n, our
objective is to evaluate the similarity between each subimage
I and the query object. Here we propose the mutual infor-
mation score as the similarity measure based on histogram
intersection. First let us introduce the Normalization His-
togram Intersection (NHI). For any two histogram h1 and h2,
we have:

NHI(h1, h2) =
|h1 ∩ h2|
|h1 ∪ h2|

=

∑
k min(hk

1 , h
k
2)∑

k max(hk
1 , h

k
2)

, (2)

Fig. 2. Construct and index the grid features. (a) Partition the orig-
inal image into grid cells. (b) Construct grid features using BOVW
scheme. The rectangles, circles and triangles stand for different vi-
sual words. (c) Index grid features using an inverted file.

where hk
1 and hk

2 are the kth dimensions of the histograms.
Then given the positive query Q+ and negative query Q−,

which are represented as the visual word histograms hQ+ and
hQ− respectively, we define the distance between a grid fea-
ture G and the query as:

D(G,Q) = 1−NHI(hG, hQ) ∈ [0, 1]. (3)

Assume that grids are independent from each other, the
mutual information score of the subimage I can be calcu-
lated as the summation of the scores of all the grids it con-
tains [2] [8]:

s(I) = MI(Q+, I) = log
p(I|Q+)

p(I)

= log

∏
G∈I p(G|Q+)∏

G∈I p(G)
=

∑
G∈I

log
p(G|Q+)

p(G)

=
∑
G∈I

log
p(G|Q+)

p(G|Q+)p(Q+) + p(G|Q−)p(Q−)

=
∑
G∈I

log
1

p(Q+) +
p(G|Q−)
p(G|Q+)p(Q−)

=
∑
G∈I

s(G), (4)

where s(G) is the mutual information score of a grid feature
G. To evaluate the conditional distributions p(G|Q−) and
p(G|Q+), the Gaussian kernel based on histogram intersec-
tion is adopted:

p(G|Q−)

p(G|Q+)
= e−

1
2σ2 (D(G,Q−)−D(G,Q+))

= e−
1

2σ2 (NHI(hG,hQ+
)−NHI(hG,hQ− )). (5)

Compared to the NN-based method [2] assigning each
local feature a mutual information score, the grid-based ap-
proach relaxes the Naive-Bayes assumption, as we allow
intra-grid dependence over feature points, while still enforc-
ing inter-grid independence.

2.3. Branch-and-Bound Search

For an image I, object localization is formulated as the prob-
lem of finding the rectangular region I∗ of I that has the max-



imum mutual information score to the query:

I∗ = argmax
I⊆I

MI(Q+, I) = argmax
I⊆I

∑
G∈I

s(G). (6)

Since exhaustively locating the subimage is O(M2N2) if the
image I consists of M×N grids, here we employ the branch-
and-bound algorithm to avoid the exhaustive search. Now
given the mutual information score s(I) as the quality func-
tion, in the following we will explain how to derive the upper
bound function ŝ(I), where I is a collection of subimages in
image I.

Similar to the ESS algorithm [5], we assume that there
exist two subimages Imin and Imax such that for any I ∈ I,
Imin ⊆ I ⊆ Imax. Then the upper bound function is defined
as:

ŝ(I) = s+(Imax) + s−(Imin), (7)

where s+(I) =
∑

G∈I max(s(G), 0) contains only positive
grids, while s−(I) =

∑
G∈I min(s(G), 0) contains only neg-

ative ones. Both s+(I) and s−(I) can be computed in O(1)
operations using the integral images. It is easy to see that this
ŝ(I) will meet the two conditions of an upper bound function,
as proposed in [5]:

i) ŝ(I) ≥ max
I∈I

s(I), (8)

ii) ŝ(I) = s(I), if I is the only element in I. (9)

Consider that our objective is to find the top-K subimages
from the entire image database D, the branch-and-bound al-
gorithm will be initialized using all images Ii ∈ D. The
iteration will stops after the top-K results are returned so that
these images with low scores will never be processed.

Essentially, the grid-level subimage search down-samples
the images to a lower resolution, which greatly decreases the
total number of subimages. In our experiment it performs ob-
ject search in a database of 10, 000 images within seconds. At
the same time, memory usage is reduced because the integral
images are constructed on grid level as well. For example, an
image of resolution 800× 800 only costs 10K of RAM when
the grid size is fixed at 16×16, while it costs more than 2.5M
if using the original resolution of 800× 800.

3. EXPERIMENTS

3.1. Experimental Setup

We evaluate our approach on a very challenging logo database
of 10, 000 images covering various aspects of life and cur-
rent affairs. As in [1], all images are re-sized with a maxi-
mum value of height and width equal to 800 pixels, preserv-
ing the original aspect ratio. And in total more than 24 mil-
lions scale and affine invariant interest points are extracted by
the Harris-Affine detector and described by 128-dimensional
SIFT descriptors [9]. Finally all the descriptors are clustered
into a vocabulary of 1M visual words using the Hierarchical
K-Means (HKM) method in [10].

Fig. 3. Performance of grid features of different scales, from 8 × 8
to 32× 32.

Since the images in BelgoLogos are of different aspect
ratios, in practice we fix the grid size when dividing up the
images. We test 4 different grid sizes (8×8, 16×16, 24×24
and 32×32) and compare their performance. To test the ef-
fectiveness of our object search algorithm, 5 external logos
used in [2] are selected as the query objects. Meanwhile, we
randomly pick out two images containing no logos from the
database as the negative queries.

3.2. Results Evaluation

To make a fair comparison with previous work, we evaluate
our approach using both Precision/Recall (P/R) scores and
Average Precision (AP). Since the BelgaLogo database does
not provide the location of each logo in its groundtruth im-
ages, we regard the retrieved image containing the query logo
as a correct detection. Actually we manually check the cor-
rect detections to ensure the bounding box touches the target
object. For each query, the top 100 subimages are returned as
the retrieval results.

First, we test how the grid size affects AP, as shown in
Figure 3. We can see that as the grid size increases, AP of
each logo changes in different ways. For instance, AP for the
Presidential logo increases while AP for the Ferrari logo falls
slightly. The reason is that in the database the President lo-
gos always appear in a larger size than Ferrari, and enlarging
grid size may risk introducing noise for small logos, hence
affecting the precision adversely.

Then we compare our approach with the discriminative
mutual information algorithm (DMI) [2] and the baseline
method [1]. The grid size is set to 24 × 24. Since the pub-
lished DMI results were evaluated by P/R score, here we
compare our precision with it given the same recall. To make
a fair comparison, our initial retrieved results are re-ranked
by the RANSAC algorithm as is done in the baseline method.
The comparison results are showed in Table 1 and Table 2
respectively. It demonstrates that our approach has a signif-
icant improvement over DMI; and the re-ranking results are
sightly better than that of the baseline method. Furthermore,
compared with the baseline method [1] we can accurately
sperate the object from cluttered background (see Figure 4).



Fig. 4. Examples of search results for 3 logos: President, Dexia and Mercedes. The query is shown on the left, with selected top ranked
retrieved images shown on the right.

DMI[2] Grid-based
recall precision precision

Dexia 0.032 0.810 0.699
Ferrari 0.013 0.010 0.333

Mercedes 0.145 0.917 0.917
Peugeot 0.167 0.010 0.053
President 0.357 0.050 0.455
Average 0.359 0.491

Table 1. Comparison with the DMI[2] using precision given the
same recall.

Baseline[1] Grid-based + RANSAC
Dexia 0.293 0.211
Ferrari 0.075 0.031

Mercedes 0.185 0.245
Peugeot 0.207 0.202
President 0.603 0.688
Average 0.273 0.276

Table 2. Comparison with the Baseline[1] using AP.

3.3. Running Time
As the time cost was not published in previous papers, here
we just present the time cost of our approach and make the
comparison between different grid scales. All algorithms are
implemented by C++ and run on a single PC of 2.6G Intel
CPU and 2G main memory. The running time showed in Ta-
ble 3 is the average time cost for 5 logos, including query fea-
ture extraction, similarity measurement and subimage search.
From Table 3 we can see that enlarging grid size significantly
speeds up the subimage retrieval.

4. CONCLUSION

In this paper, we introduce a grid feature to search visual ob-
ject in a large image collection. By bundling the spatial near-

Grid size 8 × 8 16 × 16 24 × 24 32 × 32
Running time(s) 26.1 13.9 7.2 4.9

Table 3. Time cost at different grid scales.

est neighbors, grid feature is more discriminative than indi-
vidual local features. Moreover, it significantly reduces both
the time and memory usage when combined with branch-and-
bound subimage search scheme. Although we implement the
grid feature using only quantized visual words, other regional
features, e.g. color histogram, can also be bundled and vote
using the mutual information score. We believe that as a flex-
ible image representation, the grid feature will be of great
value to other image-related applications. Our experiments
on the BelgaLogos logo dataset validate the effectiveness and
efficiency of our grid-based method.
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