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Abstract

In this paper, a human-robot interaction system based on a novel combination of sensors is

proposed. It allows one person to interact with a humanoid social robot using natural body

language. The robot understands the meaning of human upper body gestures and expresses itself

by using a combination of body movements, facial expressions and verbal language. A set of 12

upper body gestures is involved for communication. This set also includes gestures with

human-object interactions. The gestures are characterized by the head, arm and hand posture

information. The wearable Immersion CyberGlove II is employed to capture the hand posture.

This information is combined with the head and arm posture captured from the Microsoft Kinect.

This is a new sensor solution for human-gesture capture. Based on the posture data from the

CyberGlove II and Kinect, an effective and real-time human gesture recognition method is

proposed. The gesture understanding approach based on an innovative combination of sensors is

the main contribution of this paper. To verify the effectiveness of the proposed gesture
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Figure 1: Human-robot social interaction. Human is on the right, and robot is on the left.

recognition method, a human body gesture dataset is built. The experimental results demonstrate

that our approach can recognize the upper body gestures with high accuracy in real time. In

addition, for robot motion generation and control, a novel online motion planning method is

proposed. In order to generate appropriate dynamic motion, a quadratic programming (QP) based

dual-arms kinematic motion generation scheme is proposed, and a simplified recurrent neural

network is employed to solve the QP problem. The integration of handshake within the HRI

system illustrates the effectiveness of the proposed online generation method.

1 Introduction

Recently, human-robot interaction (HRI) has drawn great attention in both academic and

industrial communities. Being regarded as the sister community of human-computer interaction

(HCI), HRI is still a relatively young field that began to emerge in the 1990s (Dautenhahn, 2007;

Goodrich & Schultz, 2007). It is an interdisciplinary research field that requires contributions

from mathematics, psychology, mechanical engineering, biology, computer science,

etc. (Goodrich & Schultz, 2007)

HRI aims to understand and shape the interactions between humans and robots. Unlike the earlier

human-machine interaction, more social dimensions must be considered in HRI, especially when

interactive social robots are involved (Dautenhahn, 2007; Fong, Nourbakhsh, & Dautenhahn,
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2003). In this case, robots should be believable. Moreover, humans prefer interacting with robots

in the way they do with other people (Dautenhahn, 2007; Fong et al., 2003). Therefore, one way

to increase believability would be to make the robot interact with human using the same

modalities as human-human interaction. This includes verbal and body language as well as facial

expressions. That is to say, the robots should be able to use these modalities for both perception

and expression. Some social robots have already been proposed to achieve this goal. For instance,

the Leonardo robot expresses itself using a combination of voice, facial and body

expressions (Smith & Breazeal, 2007). Another example is the Nao humanoid robot1 that can use

vision along with gestures and body expression of emotions (Beck, Cañamero, et al., 2013).

Different from these two robots, the Nadine robot is a highly realistic humanoid robot (Figure 1).

This robot presents some different social challenges. In this paper, a human-robot interaction

system that addresses some of these challenges is proposed. As shown in Figure 1, it supports one

person to communicate and interact with one humanoid robot. In the proposed system, the human

can naturally communicate with Nadine robot by using body language. The Nadine robot is able

to express herself by using the combination of speech, body language and facial expressions. In

this paper, the main research questions addressed are:

• How to establish the communication between human and robot by using body language;

• How to control a human-like robot so that it can sustain believable interaction with humans.

Verbal and non-verbal language are two main communication ways for human-human interaction.

Verbal language has been employed in many HRI systems (Faber et al., 2009; Nickel &

Stiefelhagen, 2007; Perzanowski, Schultz, Adams, Marsh, & Bugajska, 2001; Spiliotopoulos,

Androutsopoulos, & Spyropoulos, 2001; Stiefelhagen et al., 2004, 2007). However, it still has

some constraints. That is, speech recognition accuracy is likely to be affected by the background

noise, human accents and device performance. Moreover, learning and interpreting the subtle

rules of syntax and grammar in speech is also a difficult task. These factors limit the practical use

of verbal language to some degree. On the other hand, non-verbal clues also convey rich

communication message (Cassell et al., 2000; Mehrabian, 1971). Thus, one of our research

1http://www.aldebaran-robotics.com/
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motivations is to apply non-verbal language to human-robot social interaction. More specifically,

upper body gesture language is employed. Currently, 12 human upper body gestures are involved

in the proposed system. These gestures are all natural ones with intuitive semantics. They are

characterized by head, arm and hand posture simultaneously. It is worth noting that human-object

interactions are involved in these gestures. Human-object interaction events manifest frequently

during the human-human interaction in daily life. However, to our knowledge, they are largely

ignored by the previous HRI systems.

The main challenge to apply upper body gesture language to human-robot interaction is how to

enable Nadine robot to understand and react to human gestures accurately and in real time. To

achieve this goal, two crucial issues need to be solved:

• First, appropriate human gesture-capture sensor solution is required. To recognize the 12

upper body gestures, head, arm and hand posture information are needed simultaneously.

Because robustly obtaining hand posture based on the vision-based sensors (such as the RGB

camera) is still a difficult task (Lu, Shark, Hall, & Zeshan, 2012; Teleb & Chang, 2012), the

wearable CyberGlove II (Immersion, 2010) is employed. Using this device, high-accuracy

hand posture data can be acquired stably. Meanwhile, the Microsoft Kinect (Shotton et al.,

2011) is an effective and efficient low-cost depth sensor applied successfully to human body

tracking. The skeleton joints can be extracted from the Kinect depth images (Shotton et al.,

2011) in real time (30 fps). In our work, Kinect is applied to capturing the upper body (head

and arm) posture information. Recently, Kinect 2 that supports tracking multiple people with

better depth imaging quality has been released. Since our work investigates the HRI scenario

that only involves one person, Kinect is sufficient to handle the human body tracking task;

• Secondly, an effective and real-time gesture recognition method should be developed. Based

on the CyberGlove II and Kinect posture data, descriptive upper body gesture feature is

proposed. To leverage the gesture understanding performance, LMNN distance metric

learning method (Weinberger & Saul, 2009) is applied. Then, the energy-based LMNN

classifier is used to recognize the gestures.

To evaluate the proposed gesture recognition method, a human upper body gesture dataset is
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constructed. This dataset contains gesture samples from 25 people of different genders, body

sizes and culture backgrounds. And, the experimental results demonstrate the effectiveness and

efficiency of our method.

Overall, the main contributions of this paper include:

• A novel human gesture-capture sensor solution is proposed. That is, the CyberGlove II and

Kinect are integrated to capture head, arm and hand posture simultaneously;

• An effective and real-time upper body gesture recognition approach is proposed;

• A novel online motion planning method is proposed for robot control;

• To support human to communicate and interact with robot using body language, a gesture

understanding and human-robot interaction (GUHRI) system is built.

The remaining of this paper is organized as follows. The related work is discussed in Sec. 2.

Sec. 3 gives an overview of the GURHI system. The human upper body gesture understanding

method is illustrated in Sec. 4. The robot motion planning and control mechanism is described in

Sec. 5. Sec. 6 introduces the scenario for human-robot interaction. Experiment and discussion are

given in Sec. 7. Sec. 8 concludes the paper and discusses future research.

2 Related Work

HRI systems are constructed mainly based on verbal, non-verbal or multimodal communication

modalities. As aforementioned in Section 1, verbal language still faces some constraints in

practical applications. Our work focuses on studying how to apply non-verbal language to

human-robot social interaction, especially using upper body gesture language. Some HRI systems

have already employed body gesture language for human-robot communication. In (Waldherr,

Romero, & Thrun, 2000), an arm gesture based interface for HRI was proposed. The user could

control a mobile robot by using static or dynamic arm gestures. Hand gesture was used as the

communication modality for HRI in (Brethes, Menezes, Lerasle, & Hayet, 2004). The HRI

systems addressed in (Stiefelhagen et al., 2004, 2007) could recognize human’s pointing gesture

by using the 3D head and hand position information, and head orientation was further appended to
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leverage the performance. In (Faber et al., 2009), the social robot could understand human’s body

language characterized by arm and head posture. Our proposition on non-verbal human-robot

communication is different from the previous works mainly at two aspects. First, head, arm and

hand posture are jointly captured to describe the 12 upper body gestures involved in the GUHRI

system. Secondly, the gestures accompanied with human-object interaction can be understood by

the robot. However, these gestures are always ignored by the previous HRI systems.

Body gesture recognition plays an important role in GUHRI system. According to the

gesture-capture sensor type, gesture recognition systems can be categorized as encumbered and

unencumbered ones (Berman & Stern, 2012). Encumbered systems require the users to wear

physical assistive devices such as infrared responders, hand markers or data gloves. These

systems are of high precision and fast response, and are robust to environment changes. Many

encumbered systems have been proposed. For instance, two education systems (Adamo-Villani,

Heisler, & Arns, 2007) were built for deaf by using data gloves and optical motion capture

devices; Lu et al. (Lu et al., 2012) proposed an immersive virtual object manipulation system

based on two data gloves and a hybrid ultrasonic tracking system. Although most commercialized

gesture-capture devices are currently encumbered, unencumbered systems are expected as the

future choice, especially the vision-based systems. With the emergence of low-cost 3D vision

sensors, the application of such devices becomes a very hot topic in both research and commercial

fields. One of the most famous examples is the Microsoft Kinect, it has been successfully

employed in human body tracking (Shotton et al., 2011), activity analysis (Wang, Liu, Wu, &

Yuan, 2012) and gesture understanding (Xiao, Yuan, & Thalmann, 2013). Even for other vision

applications (such as scene categorization (Xiao, Wu, & Yuan, 2014) and image

segmentation (Xiao, Cao, & Yuan, 2014)), Kinect also holds the potential to boost the

performance. However, accurate and robust hand posture capture is still a difficult task for the

vision-based sensors.

As discussed above, both encumbered and unencumbered sensors possess their intrinsic

advantages and drawbacks. For the specific applications, they can be complementary. In the

GUHRI system a tradeoff between the two kinds of sensors is made, that is the fine hand posture
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is captured by the encumbered device (the CyberGlove II), while the rough upper body posture is

handled by the unencumbered sensor (the Kinect).

The aim of the GUHRI system is to allow a user to interact with a humanoid robot named Nadine

(Figure 1). In order to be believable, a humanoid robot should behave in a way consistent with its

physical appearance (Beck, Stevens, Bard, & Cañamero, 2012). Therefore, due to its highly

realistic appearance, the Nadine robot should rely on the same modalities as humans for

communication. In other words, it should communicate using speech, facial expressions and body

movements. This paper focuses mostly on body movements generation and describes a control

mechanism that allows the robot to respond to the user’s gestures in real time.

Humanoid social robots need to be able to display coordinated and independant arm movements

depending on the actual situation. To do so, a kinematics model is necessary to generate motions

dynamically. The dual-arms of humanoid robot is a redundant system, it is difficult to solve the

inverse kinematics model directly. The classical approaches for solving the redundancy-resolution

problem are the pseudoinverse based methods, i.e., one minimum-norm particular solution plus a

homogeneous solution (Wang & Li, 2009). Specifically, at the joint-velocity level, the

pseudoinverse-type solution can be formulated as

θ̇L(t) = J†L(θL)ṙL + (IL − J†L(θL)JL(θL))wL, (1)

θ̇R(t) = J†R(θR)ṙR + (IR − J†R(θR)JR(θR))wR, (2)

where θL and θR denote the joints of the left arm and the right arm respectively; θ̇L and θ̇R denote

the joint velocities of the left arm and the right arm respectively; JL and JR are the Jacobian

matrixes defined respectively as JL = ∂fL(θL)/∂θL and JR = ∂fR(θR)/∂θR; J†L(θL) ∈ Rn×m and

J†R(θR) ∈ Rn×m denote the pseudoinverse of the left arm Jacobian matrix JL(θL) and right arm

Jacobian matrix JR(θR), respectively; IL = IR ∈ Rn are the identity matrixes, and wL ∈ Rn and

wR ∈ Rn are arbitrary vector usually selected by using some optimization criteria. The first terms

of the right-hand of Equations 1 and 2 are the particular solutions (i.e., the minimum norm

solutions), and the second terms are the homogeneous solutions. Pseudoinverse-based approaches

need to compute matrix inverse, which may cost much time in real-time computation. In addition,
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pseudoinverse-based approaches have an inner shortage, i.e., it cannot solve the inequality

problems. In recent years, optimization methods are preferred (Cai & Zhang, 2012; Guo &

Zhang, 2012; Kanoun, Lamiraux, & Wieber, 2011), and most of them focus on industrial

manipulators and single robot (Z. Zhang & Zhang, 2012, 2013c).

The conventional redundancy resolution method is the pseudoinverse-type formulation, i.e.,

Equations 1 and 2. Based on such a pseudoinverse-type solution, many optimization performance

criteria have been exploited in terms of manipulator configurations and interaction with the

environment, such as joint-limits avoidance (Chan & Dubey, 1995; Ma & Watanabe, 2002),

singularity avoidance (Taghirad & Nahon, 2008), and manipulability enhancement (Martins,

Dias, & Alsina, 2006). Recent research shows that the solutions to redundancy resolution

problems can be enhanced by using optimization techniques based on quadratic program (QP)

methods (Cheng, Chen, & Sun, 1994). Compared with the conventional pseudoinverse-based

solutions, such QP-based methods do not need to compute the inverse of the Jacobian matrix, and

are readily to deal with the inequality and/or bound constraints. This is why QP-based methods

have been employed. In (Cheng et al., 1994), considering the physical limits, Cheng et al.

proposed a compact QP method to resolve the constrained kinematic redundancy problem. In

(Z. Zhang & Zhang, 2013c), Zhang et al. implement a QP based two norm scheme on a planar

six-DOF manipulator. However, the above methods only consider a single arm and are therefore

not directly applicable for two arms of humanoid robot. This is why a QP-based dual-arms

kinematic motion generation scheme is proposed, and a simplified recurrent neural network is

employed to solve the QP problem.

3 System Overview

The proposed GUHRI system is able to capture and understand human upper body gestures and

trigger the robot’s reaction in real time accordingly. The GUHRI system is implemented using a

framework called Integrated Integration Platform (I2P) that is specifically developed for

integration. I2P was developed by the Institute for Media Innovation 2. This framework allows for

2http://imi.ntu.edu.sg/Pages/Home.aspx
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Figure 2: The GUHRI system architecture.

the link and integration of perception, decision and action modules within an unified and modular

framework. The platform uses client-server communications between the different components.

Each component has an I2P interface and the communication between the client and servers is

implemented using thrift 3. It should be noted that the framework is highly modular and

components can be added to make the GUHRI system extendable. As shown in Fig. 2, the current

GUHRI system is mainly composed of two modules. One is the human gesture understanding

module that serves as the communication interface between human and robot, and the other is the

robot control module proposed to control the robot’s behaviors for interaction. At this stage, our

system supports the interaction between one person and one robot.

One right hand CyberGlove II and one Microsoft Kinect are employed to capture human’s hand

and body posture information simultaneously for gesture understanding. This is a new gesture

capturing sensor solution that is different from all the approaches introduced in Section 2.

Specifically, CyberGlove is used to capture the hand posture, and Kinect is applied to acquiring

the 3D position information of the human skeleton joints (including head, shoulder, limb and

hand). At this stage, the GUHRI system relies on the upper body gestures triggered by the

human’s right hand and right arm.

Besides the CyberGlove, the user does not need to wear any other device. Thus, the proposed

sensor solution does not exert heavy burden to make the user uncomfortable. Meanwhile, since

3http://thrift.apache.org/
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Figure 3: The GUHRI system deployment.

the CyberGlove II is involved in the system using Bluetooth, the user can move freely. In

addition, GUHRI system is able to recognize gestures with human-object interaction, such as

“call”, “drink”, “read” and “write” by fusing the hand and body posture information. These

gestures are often ignored by the previous systems. However, these manifest frequently during the

daily interaction between humans. These affect the interaction state abruptly and should be

considered in HRI. Therefore, they should be regarded as the essential elements of the natural

human-robot interaction. In our system, the robot is able to recognize and give meaningful

responses to these gestures.

The first step of the gesture understanding phase is to synchronize the original data from the

CyberGlove and Kinect. The descriptive features are then extracted from them respectively. The

multimodal features are then fused to generate the unified input for the gesture classifier. Lastly,

the gesture recognition and understanding results are sent to the robot control module via message

server to trigger the robot’s reaction.

The robot control module enables the robot to respond to the human’s body gesture language. In

our system, the robot’s behavior is composed of three parts: body movement, facial expression

and verbal language. Combining these modalities makes the robot more lifelike, and should

enhance the users’ interest during the interaction.

As shown in Figure 3, when the GUHRI system is running, the user wears the CyberGlove and
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stands facing the robot for interaction. The Kinect is placed besides the robot to capture the user’s

body skeleton information.

4 Human Upper Body Gesture Understanding

As an essential part of the GUHRI system, the human upper body gesture understanding module

plays an important role during the interaction. Its performance will highly affect the interaction

experience. In this section, our upper body gesture understanding method by fusing the gesture

information from CyberGlove and Kinect is illustrated in details. First, the body gestures

included in the GUHRI system are introduced. The feature extraction pipelines for both

CyberGlove and Kinect are then presented. To generate an integral gesture description, the

multi-modal features from different sensors will be fused as the input for classifier. Aiming to

enhance the gesture recognition accuracy, LMNN distance metric learning approach (Weinberger

& Saul, 2009) is applied to mining the optimal distance measures. And, the energy-based

classifier (Weinberger & Saul, 2009) is applied for decision making.

4.1 Gestures in the GUHRI System

At the current stage, 12 static upper body gestures are included in the GUHRI system. Since we

only have one right hand CyberGlove, to obtain accurate hand posture information, all the

gestures are mainly triggered by the human’s right hand and right arm. The involved gestures can

be partitioned into two categories, according to whether human-object interaction happens:

• Category 1: body gestures without human-object interaction;

• Category 2: body gestures with human-object interaction.

Category 1 contains 8 upper body gestures: “be confident”, “have question”, “object”,

“praise”, “stop”, “succeed”, “shake hand” and “weakly agree”. Some gesture samples are

shown in Figure 4. These gestures are natural and have intuitive meanings. They are related to the

human’s emotional state and behavior intention, not the ad hoc ones for specific applications.

Therefore, gesture-to-meaning mapping is not needed in our system. Because the humans’
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Figure 4: The Category 1 upper body gestures. These gestures can be characterized by the body

and hand posture information simultaneously.

behavior habits are not all the same, recognizing natural gestures is more challenging than the ad

hoc ones. However, natural gestures are more meaningful for human-robot interaction. As

exhibited in Figure 4, both hand and body posture information are required for recognizing these

gestures. For instance, the upper body postures corresponding to “have question” and “object”

are very similar. Without the hand posture, they are difficult to distinguish. The same thing also

happens to “have question”, “weakly agree” and “stop”. That is, they correspond to similar hand

gestures but very different upper body postures.

Category 2 is composed of 4 other pupper body gestures: “call”, “drink”, “read” and “write”

(Figure 5). Being different from Category 1 gestures, these 4 gestures are happening with

human-object interactions. Existing system do not consider this kind of gestures (see Section 3).

One main reason is that objects often causes the body occlusion, especially to the hand. In this

case, vision-based hand gesture recognition methods are impaired. This is why the CyberGlove is
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Figure 5: The Category 2 upper body gestures. These gestures can be characterized by the body

and hand posture information simultaneously.

employed to capture the hand posture. In the GUHRI system, Category 2 gestures are recognized

and affect the interaction in a realistic way. These gestures are also recognized based on the hand

and upper body posture information.

As discussed above, the description of human’s hand and upper body posture is the key to

recognize and understand the 12 upper body gestures.

4.2 Feature Extraction and Fusion

In this subsection, we introduce the feature extraction methods for both human hand and upper

body posture description. The multi-modal feature fusion approach is also illustrated.

4.2.1 Hand Posture Feature

The Immersion wireless CyberGlove II is employed as the hand posture capture device in the

GUHRI system. As one of the most sophisticated and accurate data gloves, CyberGlove II

provides 22 high-accuracy joint-angle measurements in real-time. These measurements reflect the

bending degree of fingers and wrist. The 22 data joints (marked as big yellow or red dots) are

located on the CyberGlove as shown in Figure 6. However, not all the joints are used. For the

hand gestures in our application, we found that the wrist posture does not provide stable

descriptive information. The wrist bending degrees of different people vary to large extent even
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Figure 6: CyberGlove II data joints (Immersion, 2010).

for the same gesture. This phenomenon is related to different behaviour habits. This is why the

two wrist data joints (marked as red) were discarded. A 20-dimensional feature vector Fhand is

extracted from the 20 white data joints to describe the human hand posture as

Fhand = (h1, h2, h3 · · · h19, h20) , (3)

where hi is the bending degree corresponding to the white data joint i.

4.2.2 Upper Body Posture Feature

Using the Kinect sensor, we shape the human upper body posture intermediately using the 3D

skeletal joint positions. For a full human subject, 20 body joint positions can be detected and

tracked by the real-time skeleton tracker (Shotton et al., 2011) based on the Kinect depth frame.

This is invariant to posture, body shape, clothing, etc. Each joint Ji is represented by 3

coordinates at the frame t as

Ji = (xi(t), yi(t), zi(t)) . (4)

However, not all the 20 joints are necessary for upper body gesture recognition. As

aforementioned, head and right arm are highly correlated with the 12 upper body gestures

(Figure 4 and Figure 5). For efficiency, only 4 upper body joints are chosen as the descriptive

joints for gesture understanding. These are “head”, “right shoulder”, “right elbow” and “right

hand” that are shown as the green dots in Figure 7.
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Figure 7: The selected body skeletal joints.

Directly using the original 3D joint information for body posture description is not stable,

because it is sensitive to the relative position between human and Kinect. Solving this problem by

restricting the human’s position is not appropriate for interaction. In (Wang et al., 2012), human

action is recognized by using the pairwise relative positions between all joints, which is robust to

human-Kinect relative position. Inspired by this work, a simplified solution is proposed. First, the

“middle of the two shoulders” joint (red dot in Figure 7) is selected as the reference joint. The

pairwise relative positions between the 4 descriptive joints and the reference joint are then

computed for body posture description as

Jsr = Js − Jr , (5)

where Js is the descriptive joint and Jr is the reference joint. With this processing, Jsr is less

sensitive to the human-Kinect relative position. It is mainly determined by the body posture. The

“middle of the two shoulders” was chosen as the reference joint because it can be robustly

detected and tracked in most cases. Moreover, it is rarely occluded by the limbs or the objects

when the gestures in GUHRI system happen. Finally, an upper body posture feature vector Fbody

of 12 dimensions is constructed by combining the 4 pairwise relative positions as

Fbody = (J1r, J2r, J3r, J4r) , (6)

where J1r, J2r, J3r and J4r are the pairwise relative positions.
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4.2.3 Feature Fusion

From the CyberGlove II and Kinect, two multimodal feature vectors: Fhand and Fbody are

extracted to describe the hand posture and upper body posture respectively. To fully understand

the upper body gestures, the joint information of the two feature vectors is required. Both of them

are essential for the recognition task. However, the two feature vectors locate in different value

ranges. Simply combining them as the input for classifier will yield performance bias on the

feature vector of low values. To overcome this difficulty, we scale them into similar ranges before

feature fusion. Supposing Fi is one dimension of Fhand or Fbody, Fmax
i and Fmin

i are the

corresponding maximum and minimum value in the training set. Then Fi can be normalized as

F̂i =
Fi − Fmin

i

Fmax
i − Fmin

i

, (7)

for both training and test.

After normalization, the effectiveness of the two feature vectors for gesture recognition will be

balanced. Finally, they are fused to generate an integral feature vector by concatenation as

~F = (F̂hand, F̂body) . (8)

This process results in an 32-dimensional feature vector ~F used for upper body gesture

recognition.

4.3 Classification Method

Using ~F as the input feature, the upper body gestures will be recognized by template matching

based on the energy-based LMNN classifier proposed in (Weinberger & Saul, 2009)4. It is derived

from the energy-based model (Chopra, Hadsell, & LeCun, 2005) and the LMNN distance metric

learning method (Weinberger & Saul, 2009). The latter part is the key to constructing this

classifier. LMNN distance metric learning approach is proposed to seek the best distance measure

4The source code is available at http://www.cse.wustl.edu/˜kilian/code/lmnn/

lmnn.html.
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Figure 8: Illustration of the LMNN distance metric learning.

for the k-nearest neighbor (KNN) classification rule (Cover & Hart, 1967). As one of the oldest

methods for pattern recognition, KNN classifier is very simple to implement and use.

Nevertheless, it can still yield comparative results in certain domains such as object recognition

and shape matching (Belongies, Malik, & Puzicha, 2002). And it also has been applied to action

recognition (Müller & Röder, 2006).

The KNN rule classifies each testing sample by the majority label voting among its k-nearest

training samples. Its performance crucially depends on how to compute the distances between

different samples for the k nearest neighbors search. Euclidean distance is the most widely used

distance measure. However, it ignores any statistical regularities that may be estimated from the

training set. Ideally, the distance measure should be adjusted according to the specific task being

solved. To achieve better classification performance, LMNN distance metric learning method is

proposed to mine the best distance measure for the KNN classification.

Let {(~xi, yi)}ni=n be a training set of n labeled samples with inputs ~xi ∈ Rd and class labels yi.

The main goal of LMNN distance metric learning is to learn a linear transformation L : Rd → Rd

that is used to compute the square sample distances as

D(~xi, ~xj) = ‖L(~xi − ~xj)‖2 . (9)

Using D(~xi, ~xj) as the distance measure tends to optimize the KNN classification by making each

input ~xi have k nearest neighbors that share the same class label yi to the greatest possibility.

Figure 8 gives an intuitive illustration on LMNN distance metric learning. Compared with

Euclidean distance, LMNN distance tries to pull the nearest neighbors of class yi closer to ~xi,
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meanwhile push the neighbors from different classes away. Under the assumption that the training

set and the test set keep the similar feature distribution, LMNN distance metric learning can help

to improve the KNN classification result.

The energy-based LMNN classifier makes use of both the D(~xi, ~xj) distance measure and the loss

function defined for LMNN distance metric learning. It constructs an energy-based criterion

function, and the testing sample is assigned to the class which yields the minimum loss value.

Because the related theory is sophisticated, we do not give the detailed definition on the

energy-based LMNN classifier here. The readers can turn to (Weinberger & Saul, 2009) for

reference.

The next section describes the robot control mechanism that make it react to human gestures.

5 Robot Motion Planning and Control

The Nadine robot (Figure 1) is a realistic human-size robot developed by Kokoro Company, Ltd.5.

It has 27 degrees of freedom and uses pneumatic motors to display natural looking movements.

Motion planning and control are always an important issue for robots (Miyashita & Ishiguro,

2004) and are becoming a necessary and promising research area (Pierris & Lagoudakis, 2009;

Takahashi, Kimura, Maeda, & Nakamura, 2012). They allow the synchronization of animations

(pre-defined and online animations), speech and gaze. The following sections describe the core

functionalities of the Nadine robot controller. This includes lip synchronisation, synchronization

of pre-defined gestures and facial expressions and online motion generation.

5.1 Lip synchronisation

Lip synchronisation is part of the core function of the Nadine robot controller. It ensures that the

Nadine robot looks natural when talking. However, implementing this on a robot such as the

Nadine is a challenging task. In one hand, the Nadine robot is physically realistic raising users’

expectations, on the other hand, the robot has strong limitations in terms of the range and speed of

5http://www.kokoro-dreams.co.jp/english/
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Figure 9: Lip-synch for part of the sentence “I am Nadine”.

movements that it can achieve. The Cerevoice text-to-speech library6 is used to extract the

phonemes as well as to synthesise the speech. Figure 9 illustrates the process for the beginning of

the sentence “I am Nadine”. First, the following phonemes are extracted: “sil”, “ay”, “ax”, “m”,

“n”, “ey”,“d”, “iy”, “n” along with their durations. Due to the Nadine robot’s velocity limits, it is

not possible to generate lips movements for all the phonemes. This is why, to maintain the

synchronisation any phonemes that last less than 0.1 second is ignored and the duration of the

next one is extended by the same amount. In the Figure 9 example “ax” is removed and “m” is

extended, “n” is removed and “ey” is extended, and “d” is removed and “iy” is extended. The

phonemes are then mapped to visemes that were designed by a professional animator. Figure 9

shows examples of two visemes (Frames 3 and 10). The transitions between phonemes is done

using cosine interpolation (see Figure 9 frames 4 to 9). Moreover, the robot cannot display a “O”

mouth movement along with a “Smile”. Therefore, if a forbidden transition is needed, a closing

mouth movement is generated prior to display the next viseme. The synchronisation is done so

that the pre-defined viseme position is reached at the end of each phoneme.

5.2 Library of Gestures and Idle Behaviours

In addition to the lip-synch animation generator, a professional animator is designing pre-defined

animations for the Nadine Robot. This is used to display iconic gestures such as waving hello.

The pre-defined gestures also include facial and bodily emotional expressions (Figure 10).

6http://www.cereproc.com/en/products/sdk
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Figure 10: Examples of body movements and facial expressions from the library of gestures.

Providing they do not require the same joints, they are dynamically combined to create richer

display. We are also designing a generator for idle behaviours to avoid having the robot remaining

completely static as this would look unnatural. To do so, we plan to use the well established

Perlin Noise to generate movements as this can be modulated to express emotions (Beck, Hiolle,

& Cañamero, 2013).

5.3 Online Motion Generation

The kinematics model of Nadine robot is a dual-arms kinematic model. Kinematics model of

Nadine robot includes two parts, i.e., forward kinematics model and inverse kinematic model.

Forward kinematics model outputs the end-effector (hand) trajectories of robot if the joint vector

of dual-arms is given, and inverse kinematic model outputs joint vector of dual-arms if the

end-effector (hand) path is known. Mathematically, given joint-space vector θ(t) ∈ Rn, the

end-effector position/orientation vector r(t) ∈ Rm can be formulated as the following forward

kinematic equation:

r(t) = f(θ(t)), (10)

where f(·) is a smooth nonlinear function, which can be obtained if the structure and parameters

of a robot is known; n is the dimension of joint space; m is the dimension of end-effector
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Cartesian space. Conversely, given end-effector position/orientation vector r(t) ∈ Rm,

joint-space vector θ(t) ∈ Rn can be denoted by

θ(t) = f−1(r(t)), (11)

where f−1(·) is the inverse function of f(·) in Equation 10. For a redundant arm system, i.e.,

n > m, the difficulty is that inverse kinematics Equation 11 is usually nonlinear and

under-determined, and is difficult (even impossible) to solve. The key of online motion generation

is how to solve the inverse kinematics problem.

In our setting (Figure 11), the robot is expected to generate social gestures and motions

dynamically according to the situation. For instance, handshake is commonly used as a greeting

at the beginning and end of an interaction. Moreover, this allows the robot to communicate

through touch which is common in human-human interaction. This kind of gestures cannot be

included in the pre-defined library as they need to be adapted to the current user’s position

on-the-fly. In order to generate motion dynamically, the forward kinematic equations of dual-arms

are first built. Then, they are integrated into a quadratic programming formulation. After that, we

use a simplified recurrent neural network to solve such a quadratic programming. Specifically,

when the robot recognizes that the user wants to shake hands with her, the robot stretches out her

hand to the user and shake hand with the user.

The forward kinematics model considers the robot’s arms. Each arm has 7 degrees-of-freedom.

Given the left arm end-effector position vector pendL ∈ Rm, the right arm end-effector position

vector pendR ∈ Rm and their corresponding homogeneous representation rL = rR ∈ Rm+1 with

superscript T denoting the transpose of a vector or a matrix, we can obtain the homogeneous

representations rL and rR from the following chain formulas, respectively.

rL(t) = fL(θL) = 0
1T ·12 T · 2

3T ·34 T · 4
5T · 5

6T · 6
7T · pendL, (12)

rR(t) = fR(θR) = 0
8T ·89 T · 9

10T ·10
11 T · 11

12T · 12
13T · 13

14T · pendR, (13)

where i
i+1T with i = 0, 1, · · · , 14 denote the homogeneous transform matrixes. In this paper,

n = 7 and m = 3.
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Figure 11: System chart of on line motion generation with handshake as an example.

Inspired by the work on one-arm redundant system (Z. Zhang & Zhang, 2013c), we try to build a

model based on quadratic programming as shown below.

minimize ϑ̇T(t)Mϑ̇(t)/2 (14)

subject to (ϑ)ϑ̇(t) = Υ̇(t), (15)

ϑ−(t) ≤ ϑ(t) ≤ ϑ+(t), (16)

ϑ̇−(t) ≤ ϑ̇(t) ≤ ϑ̇+(t), (17)

where ϑ(t) = [θT
L, θ

T
R]T ∈ R2n; ϑ−(t) = [θ−T

L , θ−T
R ]T ∈ R2n; ϑ+(t) = [θ+T

L , θ+T
R ]T ∈ R2n;

ϑ̇(t) = dϑ/dt = [θ̇T
L, θ̇

T
R]T ∈ R2n; ϑ̇−(t) = [θ̇−T

L , θ̇−T
R ]T ∈ R2n; ϑ̇+(t) = [θ̇+T

L , θ̇+T
R ]T ∈ R2n.

Υ̇(t) = [ṙT
L; ṙT

R]T ∈ R2n. Matrix  is composed by Jacobian matrixes JL and JR; M is a n× n

identity matrix. Specifically, M ∈ R2n×2n is an identity matrix, and

 =

 JL 0m×n

0m×n JR

 ∈ R2m×2n.

For the sake of calculations, the QP-based coordinated dual-arm scheme can be formulated as the
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following expression constrained by an equality and inequality.

minimize ‖ϑ̇(t)‖2/2 (18)

subject to J(ϑ)ϑ̇(t) = Υ̇(t), (19)

ξ−(t) 6 ϑ̇(t) 6 ξ+(t), (20)

where ‖ · ‖ denotes the two norm of a vector or a matrix. Equation 18 is the simplification of

Equation 14. Equation 20 is transformed by Equations 16 and 17. In Equation 20, the ith

components of ξ−(t) and ξ+(t) are ξ−i (t) = max{ϑ̇−i , ν(ϑ−i (t)− ϑi)} and

ξ+
i (t) = min{ϑ̇+

i , ν(ϑ+
i (t)− ϑi)} with ν = 2 being used to scale the feasible region of ϑ̇.

ϑ− = [ϑ−T
L , ϑ−T

R ]T ∈ R2n; ϑ+ = [ϑ+T
L , ϑ+T

R ]T ∈ R2n. ϑ̇− = [ϑ̇−T
L , ϑ̇−T

R ]T ∈ R2n;

ϑ̇+ = [ϑ̇+T
L , ϑ̇+T

R ]T ∈ R2n. In the subsequent experiments, the physical limits

ϑ+
L = [π/20, π/10, π/8, π/2, 0, 2π/3, π/2]T,

ϑ−L = [0,−3π/10,−7π/120, 0,−131π/180, 0, π/9]T,

ϑ+
R = [0, 3π/10, 7π/120, π, 0, 2π/3,−π/2]T, and

ϑ−R = [−π/20,−π/10,−π/8, π/2,−131π/180, 0,−8π/9]T.

Firstly, according to (Z. Zhang & Zhang, 2013c), Equations 18-20 can be converted to a linear

variational inequality. That is to find a solution vector u∗ ∈ Ω w.r.t.

(u− u∗)T(Γu∗ + q) ≥ 0. ∀u ∈ Ω (21)

Secondly, Equation 21 is equivalent to the following system of piecewise-linear equations

(Z. Zhang & Zhang, 2013c):

ΦΩ(u− (Γu+ q))− u = 0, (22)

where ΦΩ(·) : R2n+2m → Ω is a projection operator, i.e.,
u−i , if ui < u−i ,

ui, if u−i 6 ui 6 u+
i

u+
i , if ui > u+

i ,

, ∀i ∈ {1, 2, · · · , n+m}.

In addition, Ω = {u ∈ R2n+2m|u− ≤ u ≤ u+} ⊂ R2n+2m; u ∈ Rm is the primal-dual decision

vector; u− ∈ Rm and u+ ∈ Rm are the lower and upper bounds of u, respectively; ω is usually set
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a sufficiently large value (e.g., in the simulations and experiments afterward, $ := 1010).

Specifically,

u =

ϑ(t)

ι

 ∈ R2n+2m, u+ =

ζ+(t)

ω1ι

 ∈ R2n+2m, u− =

ζ−(t)

−ω1ι

 ∈ R2n+2m,

Γ =

M −T

 0

 ∈ R(2n+2m)×(2n+2m), q =

 0

−Υ̇

 ∈ Rn+m, 1v := [1, · · · , 1]T.

Thirdly, being guided by dynamic-system-solver design experience (Y. Zhang, Tan, Yang, Lv, &

Chen, 2008; Y. Zhang, Wu, Zhang, Xiao, & Guo, 2013; Z. Zhang & Zhang, 2013a, 2013b), we

can adopt the following neural dynamics (the simplified recurrent neural network (Y. Zhang et al.,

2008)) to solve Equation 22.

u̇ = γPΩ(u− (Mu+ q))− u, (23)

where γ is a positive design parameter used to scale the convergence rate of the neural network.

The lemma proposed in (Y. Zhang et al., 2008) guarantees the convergence of neural network

formulated by Equation 23 (with proof omitted due to space limitation).

Lemma: Assume that the optimal solution ϑ? to the strictly-convex QP problem formulated by

Equations 18-20 exists. Being the first 2n elements of state u(t), output ϑ(t) of the simplified

recurrent neural network in Equation 23 is globally exponentially convergent to ϑ?. In addition,

the exponential-convergence rate is proportional to the product of γ and the minimum eigenvalue

of M (Y. Zhang et al., 2008).

6 Human-Robot Interaction

As a case study for the GUHRI system, a scenario was defined in which a user and the robot

interact in a classroom. The robot is the lecturer, and the user is the student. The robot is a female

named “Nadine”. Nadine can understand the 12 upper body gestures described in Section 4.1 and

react to the users’ gestures accordingly. In our system, Nadine is human-like and capable of

reacting by combining body movement, facial expression and verbal language (see Section 5). In
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Table 1: The scenario for human-robot interaction.

Human gestures
Nadine’s response

Non Verbal Verbal

“be confident” happy It is great to see you so confident.
“have question” moderate What is your question?
“object” sad Why do you disagree?
“praise” happy Thank you for your praise.
“stop” moderate Why do you stop me?
“succeed” happy Well done. You are successful.
“shake hand” happy Nice to meet you.
“weakly agree” head nod OK, we finally reach an agreement.
“call” head shake Please turn off your phone.
“drink” moderate You can have a drink. No problem.
“read” moderate Please, take your time and read it carefully.
“write” moderate If you need time for taking notes, I can slow my presentation.

this way, Nadine’s reactions provide the user with vivid feedback. Figure 10 shows some

examples of Nadine’s body movements along with corresponding facial expressions. Nonverbal

behaviors can help to structure the processing of verbal information as well as giving affective

feedback during the interaction (Cañamero & Fredslund, 2001; Krämer, Tietz, & Bente, 2003).

Thus, body movements and facial expressions are expected to enhance the quality of the

interaction with Nadine.

In this scenario, Nadine’s behaviors are triggered by the users’ body language. Her reactions are

consistent with the defined scenario (see Table 1). It should be noted that because it is difficult to

fully describe the robot’s body actions, the robot’s movements and emotional display are

described at a high level. All the 12 upper body gestures are involved. The GHURI system can

also handle unexpected situations during the interaction. For example, Nadine can react

appropriately even if the user suddenly answers a coming phone call.

7 Experiment and Discussion

The experiment comprises two main parts. First, our upper body gesture recognition method is

tested. Then, the effectiveness of the proposed online motion generation approach is verified by

executing handshake between the user and the robot.
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Figure 12: Some gesture samples captured from different volunteers. These people are of

different genders, body sizes and races. They executed the gestures according to their own habits.

7.1 Upper Body Gesture Recognition Test

A human upper body gesture dataset was built to test the proposed gesture recognition method.

This dataset involves all the 12 upper body gestures mentioned in Section 4.1. The samples are

captured from 25 volunteers of different genders, body sizes and races. During the sample

collection, no strict constraint was imposed to the people. They carried out the gestures according

to their own habits. The user-Kinect relative position was also not strictly limited. For

convenience, the CyberGlove II was pre-calibrated for all the people with a standard calibration.
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Due to the dataset collection setup, large diversities may exist among the gesture samples from

different people. This will yield challenges on body gesture recognition. Figure 12 exhibits parts

of the Category 1 and Category 2 gesture samples (“have question”, “succeed”, “call” and

“drink”) captured from 5 people for comparison. For the sake of brevity, not all the gestures are

shown. The 5 descriptive and reference skeletal joints proposed in Section 4.2.2 are marked as the

color dots in Figure 12. And, they are connected by the straight segments to shape the upper body

posture intuitively. From the exhibited samples, we can observe that:

• For the different people, the listed body gestures can indeed be differentiated from the hand

and upper body posture information. And, the people execute the gestures differently to some

degree. As aforementioned, this phenomenon leads to challenges on upper body gesture

recognition;

• For different people and gestures, the 5 skeletal joints employed for gesture recognition can

be tracked robustly, even when human-object interaction occurs. Generally, their resulting

positions are accurate for gesture recognition. Meanwhile, the CyberGlove II is a

human-touch device that can capture the hand posture robustly to yield high-accuracy data.

Thus, the proposed human gesture-capture sensor solution can stably acquire available data

for gesture recognition.

For each gesture, one key snapshot is picked up to built the dataset among all the 25 people. As a

consequence, the resulting dataset contains 25× 12 = 300 gesture samples in all. During

experiment, the samples are randomly split into the training and testing set for 5 times, and the

average classification accuracy and standard deviation are reported.

The KNN classifier is employed as the baseline to make comparison with the energy-based

LMNN classifier. They are compared both on the items of classification accuracy and time

consumption. The KNN classifier will run with different kinds of distance measures. Following

the experiment setup in (Weinberger & Saul, 2009), “k” is set as 3 in all cases. Because the

training sample number is a crucial factor that affects the classification accuracy, the results of

two classifiers are compared corresponding to different amounts of training samples. For each

class, the training sample number will increase from 4 to 14 with the step size 2.
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Table 2: Classification result (%) of the constructed upper body gesture dataset. The best

performance is shown in boldface. Standard deviations are in parentheses.

Classifiers
Training sample number per class
4 6 8

KNN (Euclidean) 86.51(±2.89) 89.56(±2.43) 91.47(±2.21)

KNN (PCA) 73.81(±4.78) 84.04(±5.41) 79.31(±3.09)

KNN (LDA) 79.68(±5.33) 90.44(±2.56) 92.35(±2.44)

KNN (LMNN) 86.67(±2.18) 90.35(±2.56) 92.16(±1.80)

Energy (LMNN) 90.00(±3.40) 92.28(±0.85) 94.31(±2.04)

10 12 14

KNN (Euclidean) 93.00(±1.15) 93.33(±0.73) 92.27(±2.30)

KNN (PCA) 86.11(±2.75) 88.21(±4.17) 86.67(±3.70)

KNN (LDA) 92.44(±1.34) 94.74(±0.84) 93.48(±1.38)

KNN (LMNN) 93.67(±1.34) 93.85(±1.48) 93.48(±1.15)

Energy (LMNN) 95.22(±1.50) 95.64(±1.39) 96.52(±2.37)

Other two well known distance metric learning methods: PCA (Jolliffe, 1986) and LDA (Fisher,

1936) are employed for comparison with the LMNN distance metric learning approach. For PCA,

the first 10 eigenvectors are used to capture roughly 90% of the sum of eigenvalues. And, the first

6 eigenvectors are employed for LDA. The distance measures yielded by PCA and LDA will be

applied to the KNN classifier.

Table 2 lists the classification results yielded by the different classifier and distance measure

combinations. It can be observed that:

• The 12 upper body gestures in the dataset can be well recognized by the proposed gesture

recognition method. More than 95.00% classification accuracy can be achieved if enough

training samples are used. With the increase of training sample amount, the performance is

generally enhanced consistently;

• Corresponding to all the training sample numbers, the energy-based LMNN classifier can

yield the highest classification accuracy. Even with small number (such as 4) of training

samples, it can still achieve relative good performance (90.00%). When the training sample

number reaches 14, the classification accuracy (96.52%) is nearly satisfied for practical use.

And, its standard deviations are relatively low in most cases, which means that the
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Table 3: Average testing time consumption (ms) per sample. The program is running on the

computer with Intel (R) Core (TM) i5-2430M @ 2.4GHz (only using one core).

Classifiers
Training sample number per class
4 6 8

KNN (LDA) 0.0317 0.0398 0.0414

KNN (LMNN) 0.0239 0.0282 0.0328

Energy (LMNN) 0.0959 0.1074 0.1273

10 12 14

KNN (LDA) 0.0469 0.0498 0.0649

KNN (LMNN) 0.0342 0.0418 0.0525

Energy (LMNN) 0.1359 0.1610 0.1943

energy-based LMNN classifier is robust to the gesture diversities among people;

• KNN classifier can also yield good result on this dataset. However, it is inferior to the

energy-based LMNN classifier. Compared to Euclidean distance, LMNN distance metric

learning method can improve the performance of KNN classifier consistently in most cases.

However, it works much better on the energy-based model;

• PCA does not work well on this dataset. Its performance is even worse than the basic

Euclidean distance. The reason may be that PCA needs large number of training samples to

obtain the satisfied distance measures (Osborne & Costello, 2004). That is the limitation for

the practical applications.

• LDA also achieves good performance for the upper body gesture recognition. However, it is

still consistently inferior to energy-based LMNN, especially when the training sample number

is small. For example, when the training sample number is only 4, energy-based LMNN’s

accuracy (90.00%) is significantly better than that of LDA (79.68%) by a large margin

(10.32%).

Besides the classification accuracy, the testing time consumption is also what we concern about.

The reason is that the GUHRI system should run in real time for good HRI experience. According

to the classification results in Table 2, the energy-based LMNN classifier, LMNN KNN classifier

and LDA KNN classifier are the threep strongest ones for gesture recognition. Here, the

comparison on their testing time is also made. Table 3 lists the average running time per testing

29



Figure 13: Snapshots of shaking hand between human and Nadine robot.

sample of the three classifiers, corresponding to different amounts of training samples. We can

see that both of the three classifiers are extremely fast under our experimental conditions. And,

the time consumption mainly depends on the number of training samples. Frankly, the LDA KNN

classifier and LMNN KNN classifier are much faster than the energy-based LMNN classifier. If

huge number of training samples are used (such as tens of thousands), the LDA KNN classifier

and LMNN KNN classifier will be the better choice to achieve the balance between classification

accuracy and computational efficiency.

7.2 The Motion Generation and Control Effectiveness

In this section, the effectiveness of the motion generation (Section 5.3) and control are illustrated

within the case study described in Section 6. At the beginning of the interaction, a user can shake

hand with Nadine robot. The snapshots of the handshake are shown in Figure 13. From the figure,
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we can see that, when the user is far from the Nadine robot, Nadine robot knows that it is too far

to shake hands, and she will ask the user to come closer. When the user come closer and give a

handshake gesture, Nadine robot will recognize it, and stretch out her hand to shake hands with

the user whilst saying “nice to meet you”. After the handshake, she puts back her hand to the

initial position and is ready for the next movement. From Figure 13, we can see the Nadine robot

is able to shake hands with people well. This situation demonstrates that the proposed QP based

on-line motion generation approach is effective, applicable and well integrated within the GUHRI

system.

8 Conclusions

The GUHRI system, a novel body gesture understanding and human-robot interaction system, is

proposed in this paper. A set of 12 human upper body gestures with and without human-object

interactions can be understood by the robot. Meanwhile, the robot can express herself by using a

combination of body movements, facial expressions and verbal language simultaneously, aiming

to give the users vivid experience.

A new combination of sensors is proposed. That is, the CyberGlove II and Kinect are combined

to capture the head, arm and hand posture simultaneously. An effective and real-time gesture

recognition method is also proposed. For robot control, a novel online motion planning method is

proposed. This motion planning method is formulated as a quadratic program style. It is then

solved by a simplified recurrent neural network. The obtained optimization solutions are finally

used to generate arms movements. This method has been integrated within a robot controller

module. In experiment, a human upper body gesture dataset is built. The experimental results

demonstrate the effectiveness and efficiency of our gesture recognition method and motion

planning approach.

So far, the gestures involved in GUHRI system are static ones, e.g., “have question”, “praise”,

“call” and “drink”, etc. As future work, we plan to enable the robot to understand the dynamic

gestures, such as “wave hand”, “type keyboard” and “clap”, etc. Speech recognition can be

further added to make the interaction more natural.
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