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1 INTRODUCTION 

The condition of the system may change from time 
to time during its operation and may deteriorate 
which may lead to a significant reduction of its reli-
ability. Therefore, it is essential to assess the relia-
bility of a system from time to time during its opera-
tion. In real practice, it is impossible to measure the 
physical properties of the system directly in space 
and time. The estimates of the model parameters of 
the mathematical model used to represent the behav-
ior of the real structure always involve uncertainties 
due to limitations of the model and the presence of 
measurement error in the data etc. Reliability con-
sidering model uncertainties in addition to the mod-
eling of the uncertain excitation is termed as robust 
reliability (2001). 

In this paper the objective is to develop an effi-
cient method for updating robust failure probability 
(or its compliment, robust reliability) of a linear dy-
namic system using system data when the system is 
subjected to future stochastic excitation. The word 
‘failure’ is used here to refer to unsatisfactory per-
formance of the system. Here the failure probability 
is the probability that any particular response (e.g., 
inter-storey drift, floor acceleration) of a linear 
structural dynamic system exceeds a specified 
threshold during the time when the system is sub-
jected to future uncertain dynamic excitation. The 

updating is based on incomplete modal data includ-
ing modal frequencies, damping ratios and partial 
mode shapes of some of the dominant modes.  

Let θs∈R
n
 denote the uncertain model parameter 

vector specified by a model class M with the prior 
probability distribution function (PDF) p(θs|M) and 
Y(θs,Z)∈RNy

  denoting any output quantity of inter-
est specified by θs and future dynamic input speci-
fied by a stochastic input model U, which can be 
expressed as a linear combination of a finite number 
of independently and identically distributed standard 
normal random variables Z∈RNt

. The robust reliabil-
ity or its complement the robust failure probability is 
given by the following multi-dimensional integral 
with respect to θs and Z: 
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where F denotes failure, IF is an indicator function: 

IF = 1 if Y∈F and otherwise IF = 0. Given the meas-

urement data D from the system, the updated (poste-

rior) PDF of θs is given by Bayes’ theorem: 
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ABSTRACT: It is of great interest to assess during the operation of a dynamic system whether it is expected 
to satisfy specified performance objectives. To do this, the failure probability (or its complement, robust reli-
ability) of the system when it is subjected to dynamic excitation is computed. The word ‘failure’ is used here 
to refer to unsatisfactory performance of the system. In this paper, we are interested in using system data to 
update the robust failure probability that any particular response of a linear structural dynamic system exceeds 
a specified threshold during the time when the system is subjected to future Gaussian dynamic excitation. 
Computation of the robust reliability takes into account uncertainties from structural modeling in addition to 
the modeling of the uncertain excitation that the structure will experience during its lifetime. The updating is 
based on partial modal data from the structure. By exploiting the properties of linear dynamics, a newly ap-
proach based on stochastic simulation methods is proposed, to update the robust reliability of the structure. 
The efficiency of the proposed approach is illustrated by a numerical example involving a linear elastic struc-
tural model of a building. 



where p(D|M)  is the normalizing constant which 
makes the probability volume under the posterior 
PDF equal to unity, and p(D|θs,M) is the likelihood 
function based on the predictive PDF of the response 
given by model class M. The updated robust failure 
probability given D is given by replacing the prior 
PDF p(θs|M) in Equation (1) with the updated PDF 
p(θs|D,M): 
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There are several difficulties in evaluating the above 
integral. It can be expected that the dimension of the 
above integral is high due to a large number of ran-
dom variables involved, and the failure region in θs 
and Z space has complicated geometry, and thus it 
will be impossible to analytically evaluate the inte-
gral. It is not feasible to evaluate the integrals in the 
numerator and denominator of Equation (3) by simu-
lation based methods such as Monte Carlo simula-
tion (MCS) or importance sampling since the high-
probability content region of their corresponding in-
tegrands may occupies a much smaller volume than 
that of the prior PDFs p(θs|M)p(Z|U) and p(θs|M), 
respectively. Over the past few years, several meth-
ods have been presented to tackle the aforemen-
tioned difficulties in evaluating the robust reliability. 
Papadimitriou et al. (2001) presented Laplace’s as-
ymptotic approximation which can be computation-
ally challenging in a high-dimensional parameter 
space and can be inaccurate when the Gaussian as-
sumption is not valid for the global identifiable case. 
Beck and Au (2002) proposed a level-adaptive Me-
tropolis-Hastings algorithm with a global proposal 
PDFs to obtain the samples from the posterior PDF 
and then use these samples to update the system reli-
ability by evaluating the system reliability condi-
tional on each of these samples. The approach will 
experience difficulty when the number of uncertain 
model parameters is large and is computationally in-
efficient because it requires multiple reliability anal-
yses. Ching and Beck (2007) proposed a method to 
update the reliability based on combining a Kalman 
filter and smoother and modifying the algorithm 
ISEE (Au and Beck 2001a). Such an approach is on-
ly applicable to linear systems with no uncertainties 
in model parameters. Ching and Hsieh (2006) pro-
posed a method based on Bayes’ theorem and an an-
alytical approximation of some of the required PDFs 
by maximum entropy PDFs. The method is applica-
ble regardless of the number of uncertain model pa-
rameters but can only be applied to the case with 
very low-dimensional system output data. In prac-
tice, system data are of very high dimension (say of 

the order of hundreds or thousands). Cheung and 
Beck  (2007) proposed a stochastic simulation meth-
od which can handle general nonlinear dynamic sys-
tem and the case with high-dimensional system out-
put data but may encounter problems if the number 
of uncertain model parameters is huge. For clarity in 
presentation, the conditioning on M and U will be 
left implicit in the rest of the paper.  

In this paper, by exploiting the properties of lin-
ear dynamics, a new approach for computing the up-
dated robust reliability of the system is proposed 
here, which integrates a newly-developed stochastic 
simulation algorithm based on Gibbs sampling algo-
rithm for Bayesian model updating of a linear dy-
namic system(Cheung and Bansal, 2013), Subset 
Simulation (Au and Beck, 2001a) and a new algo-
rithm called Constrained Metropolis-Hastings within 
Gibbs sampling algorithm proposed in this paper. 

2 THE PROPOSED APPROACH 

Let 
, , ,

ˆˆ{ , , : 1... , 1... }ˆ
m s m s m s

D m sM S      be the 

experimentally obtained modal data from a linear 

structural dynamic system, consisting of modal fre-

quencies ,
ˆ

m s R  , damping ratios ,
ˆ

m s R  , and 

complex mode shape components ,
ˆ ,ON

m s C   

where NO is the number of measured DOFs, M is the 

number of observed modes, and S is the number of 

modal data sets available. 

 
First consider the following integral: 
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The above integral can be approximated by the fol-
lowing estimator: 
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where samples {Z

(k)
:k=1,...,N} are distributed ac-

cording to the PDF p(Z) and samples 
{θs

(k)
:k=1,...,N} are distributed according to the PDF 

p(θs|D). Samples distributed according to the PDF 
p(Z) can easily be obtained since it is assumed that 
the input is specified by a stochastic input model U. 
Computationally efficient Markov Chain Monte Car-
lo (MCMC) simulation based techniques (Ching and 
Chen, 2007, Beck and Au, 2002, Ching et al., 2006, 
Cheung and Beck, 2009) can be used to generate 
samples from the posterior PDF p(θs|D) as in the 
Bayesian model updating problem of linear dynamic 
system given partial modal data. Even though these 
samples from p(θs|D) are not independent, the Monte 



Carlo estimator for independent samples in Equation 
(5) can still be used. However, using Equation (5) 
will be computationally expensive especially when 
dealing with small failure probability as the mini-
mum number of samples N required to achieve a 
given coefficient of variation is inversely propor-
tional to the failure probability. To efficiently com-
pute smaller failure probabilities, a new approach for 
computing the updated robust reliability of the sys-
tem is proposed as follows, which integrates a new-
ly-developed stochastic simulation algorithm based 
on Gibbs sampling algorithm for Bayesian model 
updating of a linear dynamic system (Cheung and 
Bansal, 2013), Subset Simulation (Au and Beck, 
2001a) and a new algorithm called Constrained Me-
tropolis-Hastings within Gibbs sampling algorithm 
for efficiently simulating conditional samples. 

The basic idea of Subset Simulation (Au and 
Beck, 2001a) is to subdivide a failure event into a 
sequence of H partial failure events (subsets) 
F1⊃F2⊃...⊃FH=F. The division into subsets converts 
a rare event simulation problem into a problem of a 
sequence of more frequent events that are condi-
tioned on failing at successively increasing threshold 
levels. In this paper, this is adapted to compute the 
updated robust failure probability as follows: 

 
1

1 1

1

( | ) ( ) ( | , ) ( | )
H

m i i

i

P F D P F P F F D P F D






 
   

 
  (6) 

 
where P(F1|D) is estimated by Equation (5) and 

P(Fi+1|Fi,D) is estimated using samples 
( , ) ( , ), , 1,..., ,i k i k

s k Nθ Z distributed according to the 

conditional PDF p(θs,Z|Fi,D) as follows: 
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The intermediate thresholds ci, where c1<c2<….<cH 
are chosen ‘‘adaptively’’ so that P(Fi+1|Fi,D) is ap-
proximately equal to some specified value p0. At the 
i-th level, p0N (rounded to the closest integer) sam-
ples out of N samples distributed according to 
p(θs,Z|Fi-1,D) are distributed according to 
p(θs,Z|Fi,D). Using each of these p0N samples as a 
starting point (seed), a Markov Chain of 1/p0-1 
(rounded to the closest integer) samples are then 
generated according to p(θs,Z|Fi,D) one after anoth-
er. In total, there are p0N (rounded to the closest in-
teger) Markov Chains.  

Markov Chain samples distributed according to 
the conditional PDF p(θs,Z|Fi,D) are generated by a 
new algorithm called Constrained Metropolis-
Hastings within Gibbs sampling algorithm devel-
oped in this paper. For the current problem, given 
the most recent sample θs

(k)
, Z

(k)
 from p(θs,Z|Fi,D), 

the next Markov chain sample θs
(k+1)

, Zs
(k+1)

  is 

simulated by Gibbs sampling: first simulating Z
(k+1)

  
according to p(Z|θs=θs

(k)
,Fi,D) = p(Z|θs=θs

(k)
,Fi) and 

then θs
(k+1)

 from p(θs|Z=Z
(k+1)

,Fi,D). 

2.1 Sampling from p(Z|θs,Fi,D) 

Since the data D do not provide any information 
which can update the PDF of Z, p(Z|θs=θs

(k)
,Fi,D) = 

p(Z|θs=θs
(k)

,Fi). For a linear dynamic system sub-
jected to future Gaussian inputs, Y(t) can be written 
as a linear function of standard normal vector Z: 
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The failure domain Fi can be expressed as a union of 
failure events F

(j)
, j=1,..,2NyNt and for each failure 

event F
(j)

, the corresponding linear limit state func-
tion g

(j)
(Z) can be completely described by its own 

design point: 
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where a
(j)

 and b
(j)

 are fixed given fixed θs and some 
threshold. The design point Z

(j)*
 (defined as the 

point on the plane g
(j)

(Z)=0 located closest to the 
origin) and its distance β

(j)
 from origin are given by 

the following expressions: 
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Samples distributed according to PDF p(Z|θs,Fi) can 
be simulated using Metropolis-Hastings algorithm 
with the following distribution as the proposal PDF: 
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where Ф(.) is the cumulative distribution function 
(CDF) of a standard normal random variable. The 
above PDF was proposed by Au and Beck (2001b) 
to be used as the importance sampling density for 
calculating the failure probability of linear dynamic 
system subjected Gaussian excitations with no un-
certainty in the structural models. An important 
sampling density such as this was proposed by Au 
(2004) to be used as a proposal PDF to generate 
conditional failure samples using Metropolis-



Hastings algorithm. Candidate samples of Z from 
the above proposal PDF can be efficiently simulated 
using procedures as shown in Au and Beck (2001b) 
and Katafygiotis and Cheung (2006). 

2.2 Sampling from p(θs|Z,Fi,D) 

 

For a Nd-DOF linear dynamic system with both Ray-
leigh and nonclassical damping, the relationship be-
tween modal properties and dynamic model parame-
ters can be written as (Cheung and Bansal, 2013): 
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where L∈ℝNoXNd

 is a selection matrix that selects 
only those DOFs where measurements are made. In 
the above equation ,m sε  and ,m se  are the complex 
random vectors representing the model prediction 
errors, i.e., the errors between the response of the 
system under consideration and that of the assumed 
model. Based on the Principle of Maximum Entropy 
(Jaynes, 1978), the PDFs for vectors Re(εm,s), 
Im(εm,s), Re(em,s) and Im(em,s) are taken to be Gauss-
ian. For illustration, here their means are assumed to 
be equal to zero and covariance matrices equal to 
scaled versions of the identity matrix I of appropri-
ate order. The mass, damping and stiffness matrices 
in Equation (14) are represented as a linear sum of 
contribution from the individual prescribed substruc-
tures: 
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The uncertain parameters to be updated are the con-

tribution parameters [ , , , ]T T T T T
α β a η  mode shapes 

1 1[Re( ) , Im( ) ,...,Re( ) , Im( ) ]T T T T T

M M     and pre-

diction error variance
2 2 2 2

Re,1 Im,1 Re, Im,[ , ,.., , ]T

M M    for 

Re(εm,s) and Im(εm,s). The variance parameters for 

Re(em,s) and Im(em,s) 
 
are assumed to be known or 

are directly estimated from the sample variance of 

the experimental modal data. Uncertain parameters 

are divided into four groups θ=[θ1,θ2,θ3,θ4]: 

 

1 [ , , ]T T T Tθ α η β   

2 θ a  

3 1 1[Re( ) , Im( ) ,...,Re( ) , Im( ) ]T T T T T

M M   θ  

2 2 2 2

4 Re,1 Im,1 Re, Im,[ , ,.., , ]T

M M   θ  

 
Assuming Bayesian conjugate priors θ1, θ2, θ3 and 

θ4, the full conditional PDFs 1 2 3 4( | , , , )p Dθ θ θ θ  ,

2 1 3 4( | , , , )p Dθ θ θ θ  and 3 1 3 4( | , , , )p Dθ θ θ θ  are 

Gaussian, and 2

Re, 1 2 3( | , , , )mp D θ θ θ  and 

2

Im, 1 2 3( | , , , )mp D θ θ θ  for m=1,...,M are inverse 

gamma. 
If samples from p(θ|Z,Fi,D) are available, sam-

ples corresponding to θs=[θ1,θ2] from these samples 
will be distributed according to the conditional PDF 
p(θs|Z,Fi,D). The full conditional PDFs for the four 
groups of parameter vectors conditioned on Fi are 
equal to: 
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According the above, samples distributed according 

to the conditional PDF p(θ|Z,Fi,D) can be obtained 

using Metropolis-Hastings within Gibbs sampling 

technique starting from a sample already distributed 

according to the conditional PDF p(θ|Z,Fi,D). Mak-

ing use of the characteristics that 1 2 3 4( | , , , )p Dθ θ θ θ

and 2 1 3 4( | , , , )p Dθ θ θ θ are both Gaussian PDFs with 

mean and covariance matrix given by the equations 

presented in Cheung and Bansal (2013), samples for 

θ1 and θ2 are simulated using the procedures given in 

the following section. Simulation of θ3 and θ4 neither 

requires Metropolis-Hastings step nor any dynamic 

analysis. 

2.3 Summary of steps for simulating samples 
according to p(θs,Z|Fi,D) 

 

For level zero of the subset simulation, samples 

{Z
(k)

:k=1,...,N} are directly simulated from the PDF 

p(Z), and samples {θ
(k)

:k=1,...,N} are simulated 



from the PDF p(θ|D) using the Gibbs sampling 

based approach proposed in Cheung and Bansal 

(2013) after discarding the samples from the burn-in 

period. For the i-th simulation level p0N samples 

distributed according to p(θ,Z|Fi,D) obtained from 

the (i-1)-th simulation level are used as seed sam-

ples to initialize Markov chains to obtain additional 

N(1-p0) samples also distributed according to the 

conditional PDF p(θ,Z|Fi,D). The following steps 

are repeated for each seed sample: 

 

1. Initialize a Markov chain, use a seed sample as 

the starting points and let k=1. 

2. Sample Z
(k+1)

 from  p(Z
(k+1)

|θs
(k)

,Fi,D). 

i) Draw a candidate sample Z
c
 sample from 

q(Z|θs
(k)

,F
(j)

) presented in the previous sec-

tion. 

ii) If u<min(1,r), Z
c 

is accepted as the next 

sample, i.e., Z
(k+1)

 = Z
c
 where u is uniform-

ly distributed between 0 and 1. Otherwise, 

Z
(k+1)

 = Z
(k)

. 
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Note: Impulse response function for θs
(k)

 is 

already available. 

3. Sample θ
(k+1)

 from  p(θ
(k+1)

|Z
(k)

,Fi,D) by: 

i) Determine the mean vector
( ) ( ) ( )

1 1 2 3 4( , , )k k kμ μ θ θ θ  and covariance ma-

trix
( ) ( ) ( )

1 1 2 3 4( , , )k k k   θ θ θ of the Gaussian 

PDF 
( ) ( ) ( )

1 2 3 4( | , , , )k k kp Dθ θ θ θ  using the 

equations presented in Cheung and Bansal 

(2013). 1 1 1 1 θ μ L w where 1w  is a ran-

dom vector comprised of independent 

standard normal random variables and L1 is 

obtained from the Cholesky decomposition 

of 1 1 1

T L L . 
( ) 1 ( )

1 1 1( )k k 
1

w L θ μ . 

ii) Generate a candidate state 1w for 1w : For 

each component j=1,...,nc, simulate 1, jw  

from proposal PDF 
( )

1, 1, 1, 2 3 4( | , , , , )k

j j jq w w Dθ θ θ  (assuming 

symmetric proposal). Compute the ac-

ceptance ratio 

1,

1, ( )

1,

( )

( )

j

j k

j

w
r

w






2 ( ) 2

1, 1,[ ]
exp( )

2

k

j jw w
 

where (.) is the standard normal PDF. If 

u<min(1, 1, jr ), 1, jw is accepted as a candi-

date state for w1 where u is uniformly dis-

tributed between 0 and 1. Otherwise, 1, jw  = 

( )

1,

k

jw . 

iii) Transform 1w  back to θ1 space: 

1 1 1 
1

θ μ L w . 

iv) If ( ) ( 1)

1 2([ , ], )k k F Y θ θ Z  accept 
1θ  as the 

next sample, i.e., ( 1)

1 1

k θ θ  otherwise reject 

it and take the current sample as the next 

sample, i.e., 
( 1) ( )

1 1

k k θ θ . 

v) For getting
2θ , repeat steps i) to iii) by re-

versing the subscripts 1 and 2 and replacing 
( )

1

k
θ  by 

( 1)

1

k
θ . 

vi) If ( 1) ( 1)

1 2([ , ], )k k F  Y θ θ Z  accept 2θ  as the 

next sample, i.e., ( 1)

2 2

k θ θ  otherwise reject 

it and take the current sample as the next 

sample, i.e., 
( 1) ( )

2 2

k k θ θ . 

vii) Sample 
( 1)

3

k
θ  from 

( 1) ( 1) ( )

3 1 2 4( | , , , )k k kp D 
θ θ θ θ using the method 

presented in Cheung and Bansal (2013). 

viii) Sample 
( 1)

4

k
θ  from 

( 1) ( 1) ( 1)

4 1 2 3( | , , , )k k kp D  
θ θ θ θ  using the meth-

od presented in Cheung and Bansal (2013). 

4. Let k=k+1 and go to step 2, until (1/p0-1) 

samples are obtained. 

3 ILLUSTRATIVE EXAMPLE 

The linear structure system selected for this illustra-
tive example is modeled as a 4-DOF shear building 
as shown in Fig. 1, with the following properties: 
mass m1=60,000 kg, m2=78,000 kg, m3=93,000 kg, 
m4=103,000 kg, spring stiffness k1=127,800 kN/m, 
k2=43,500 kN/m, k3=60,100 kN/m, k4=100,000 
kN/m, and damping coefficient for viscous dampers 
c1=1200 kN-s/m, c2=400 kN-s/m, c3= 600 kN-s/m, 
c4=900 kN-s/m. The modal data for the updating 
consist of 10 sets of modal data (S=10) with the first 
two modal frequencies, modal damping ratios, and 
partial complex mode shapes (corresponding to 
DOFs - one, three and four, No=3) identified for each 
data set (M=2). Noisy measured modal parameters 
are generated by adding to the exact frequencies, 
damping ratios, and complex mode shapes compo-
nents, random values chosen from zero-mean Gauss-
ian distribution with standard deviation equal to 2% 
times the exact value. 

For updating robust reliability problem, inde-
pendent normal distribution is assumed for masses, 
spring stiffnesses and damping coefficients for vis-
cous dampers. Masses are assumed to be known 



with sufficient accuracy, thus the prior PDFs for [α1, 
α2, α3, α4] are chosen with mean values equal to 1 
and c.o.v. for each equal to 1%. The prior mean val-
ues for [β1, β2, β3, β4] and [η1, η2, η3, η4] are assumed 
equal to 1, with prior c.o.v. for each equal to 20%.  
 

 
 

Fig. 1.  The 4-DOF shear building model 

 

Additional uncertain parameters that are considered 
include prediction error variances 
[σ

2
Re,1,σ

2
Im,1,σ

2
Re,2,σ

2
Im,2], and complete complex 

mode shapes [ψ1,ψ2] for the first two modes. Flat in-
dependent priors are taken for [ψ1,ψ2] and non-
informative independent inverse gamma prior PDFs 
are taken for [σ

2
Re,1,σ

2
Im,1,σ

2
Re,2,σ

2
Im,2]. 

A discrete-time white noise sequence Z corre-
sponding to duration of input ground motion T=20 
sec and sampling interval Δt=0.02 sec is considered. 
The system is assumed to have zero initial condi-
tions. Using the modal data, the updated failure 
probability of the linear structural dynamic system 
subjected to future non-stationary, non-white ground 
acceleration is computed using the proposed method. 
The frequency content of the ground acceleration is 
modeled by Clough-Penzien spectrums:  
 

 

    

 

    
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1- ω/ω + 2ζ ω/ω

S S 



  

 
where ωg=15.7 rad/sec; ωf=0.1ωg; ζg= ζf =0.6; and 
S0=1e

-3
 m

2
/sec

3
. The non-stationarity is modelled us-

ing a time envelop function λ(t)=α1te
-α2t

 where 
α1=0.45 sec and α2=1/6 sec

-1
. 

For illustration, failure is defined as an event 
where the displacement for DOF-1 exceeds a specif-
ic threshold at any discrete time instant during the 
total duration of the ground acceleration. The pro-

posed method is used to obtain the estimate of the 
updated robust failure probability at different 
thresholds with a conditional failure probability at 
each level approximately equal to p0 = 0.1 and with 
the number of samples set to N = 500 at each condi-
tional level. 
 

 
Fig. 2. Estimates of the failure probability for different 
threshold levels of displacements for 50 independent 
simulation runs 
 

 
Fig. 3. Sample mean estimate of failure probability 

 

Fig. 2 shows the estimates of the updated robust 

failure probability for different threshold levels of 

displacements from 50 independent simulation runs. 

Sample mean of the updated robust failure probabil-

ity estimator (estimated by 50 independent simula-

tion runs) is shown in Fig. 3. Results computed us-

ing 100,000 MCS samples are also shown for 

comparison. This confirms that the proposed method 

is correct giving a practically unbiased estimate of 

the updated robust failure probability. Fig. 4 com-

pares the sample c.o.v. of the updated robust failure 

probability estimator and the lower limit of c.o.v. of 

c1 
k1 

c2 
k2 

c3 
k3 

c4 
k4 

m1 

m2 

m3 

m4 



MCS estimator at a particular failure probability lev-

el using same number of dynamic analyses as in the 

proposed method. This implies that the proposed 

method provides substantial improvement in effi-

ciency over MCS. 

 

      
Fig. 4. Sample c.o.v. estimate of failure probability 

 
 

4 CONCLUSION 

By exploiting the properties of linear dynamics, a 

new approach based on stochastic simulation meth-

ods is proposed to update the robust failure probabil-

ity that any particular response of a linear structural 

dynamic system exceeds a specified threshold dur-

ing the time when the system is subjected to future 

Gaussian dynamic excitation. Results from the illus-

trative example shows that the proposed method 

provides substantial improvement in efficiency over 

MCS with samples from the posterior PDF in Bayes-

ian model updating. 
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