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Abstract
Accurate matching of local features plays an essential

role in visual object search. Instead of matching individual
features separately, using the spatial context, e.g., bundling
a group of co-located features into a visual phrase, has
shown to enable more discriminative matching. Despite
previous work, it remains a challenging problem to extract
appropriate spatial context for matching. We propose a ran-
domized approach to deriving visual phrase, in the form of
spatial random partition. By averaging the matching scores
over multiple randomized visual phrases, our approach of-
fers three benefits: 1) the aggregation of the matching s-
cores over a collection of visual phrases of varying sizes
and shapes provides robust local matching; 2) object lo-
calization is achieved by simple thresholding on the voting
map, which is more efficient than subimage search; 3) our
algorithm lends itself to easy parallelization and also al-
lows a flexible trade-off between accuracy and speed by ad-
justing the number of partition times. Both theoretical stud-
ies and experimental comparisons with the state-of-the-art
methods validate the advantages of our approach.

1. Introduction
Despite rapid progress in the whole-image retrieval tech-

niques [3, 4, 5, 15, 11, 23], visual object search, whose goal
is to accurately locate the target object in image collections,
remains a challenging problem. This is due to the fact
that the target objects, e.g., logos, usually occupy only a
small portion of an image with cluttered background, and
can differ significantly from the query in scale, orientation,
viewpoint and color. These all lead to difficulties in object
matching, and thereby raise the need for highly discrimina-
tive visual features.

Using spatial context is one of the most effective ways
to enhance the discriminative power of individual local fea-
tures, in which a group of co-located visual features can be
bundled together to form a visual phrase and matched as a
whole. The benefits of using visual phrase have been proven
to boost local feature matching [5, 10, 14, 18, 24, 20, 22].
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However, it remains a challenging problem to select the ap-
propriate spatial context to compose the visual phrase.

Currently, there are mainly two ways to select the spatial
context to compose the visual phrase. The first category of
methods relies on image segmentation or region detection to
generate the spatial context for matching [16, 19, 20]. How-
ever, this is highly dependent on the accuracy of the image
segmentation. The second category of methods selects the
visual phrase at a relatively fixed scale, e.g., bundling each
local feature with its k spatial nearest neighbors [17, 22]
or with a fixed-size image grid [6], or extract geometry-
preserving visual phrases that can capture long-range spa-
tial layouts of the words [24]. However, as reported in [23],
these unstable feature points result in a varying number of
detected local features at different scales. Hence for each
local point, its k-NN phrase may be totally different from
that at a different scale, as shown in Fig. 1(a). Similarly,
the visual phrase provided by the fixed-size image grid is
also not scale invariant, as shown in Fig. 1(b). Furthermore,
it is difficult to determine an appropriate k or the grid size
without a priori knowledge.

We believe that an ideal visual phrase selection for object
search task should satisfy the following requirements: 1) it
should be able to handle scale variations of the objects, and
be robust to detect objects appearing in the cluttered back-
grounds; and 2) it should not rely on the image segmenta-
tion or region detection, thus it can be efficiently extracted
and indexed to support fast search.

To address these requirements, we propose a novel visu-
al phrase selection approach based on random partition of
images [21]. After extracting local invariant features, we
randomly partition the image for multiple times to form a
pool of overlapping image patches. Each patch bundles the
local features inside it and is characterized by a group of vi-
sual words, i.e., a visual phrase. Essentially, for each local
feature, we generate a number of randomized visual phras-
es (RVP) in varying sizes and shapes as its spatial contexts
(see Fig. 1(c)). For each RVP, we independently calculate
the similarity score between it and the query object, and
treat it as the voting weight of the corresponding patch. The
final confidence score of each pixel is calculated as the ex-
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Figure 1: Comparison among different ways to compose the visual phrase. The similarity between two visual phrase regions are calculated
as the number of matched points (including the center point) of them, denoted by ∩.

pectation of the voting weights of all patches that contain
this pixel. By establishing the pixel-wise voting map, the
matched object can finally be identified.

Our randomized visual phrase approach provides sever-
al benefits. First it is robust to the cluttered backgrounds
as well as the variations of the objects. Second, our spa-
tial random partition-based patch voting scheme indirectly
solves the object localization problem, as the object can be
segmented out directly from the voting map. This largely
reduces the computational cost compared with the subim-
age search methods for object localization [8, 9]. Third, our
approach allows the user to make a trade-off between effec-
tiveness and efficiency by adjusting the number of partition
times on-line without re-indexing the database. This is im-
portant for a practical retrieval system. In addition, the de-
sign of the algorithm makes it ready for parallelization and
thus suitable for large-scale image search. To evaluate our
approach, we conduct visual object search on a benchmark
movie database, and a challenging logo database with one
million images from Flickr as distractors. The experimental
results highlight both the effectiveness and the efficiency of
the proposed algorithm.

2. Related Work
Visual object search can be viewed as two combined

tasks: object matching and object localization. For object
matching, to avoid the quantization error incurred by the

bag-of-visual-words (BoVW) scheme [21, 3, 4, 5, 17, 7],
the Naive-Bayes Nearest Neighbor (NBNN) classifiers are
adopted in [1, 2, 13] by assuming that each feature point
is independent from the others. However, NBNN may fail
when the Naive-Bayes assumption is violated. Another
way to mitigate the quantization error is to consider spatial
context instead of using individual point. By bundling co-
occurring visual words within a constrained spatial distance
into a visual phrase [22, 24] or feature group [23] as the ba-
sic unit for object matching, the spatial context information
is incorporated to enhance the discriminative power of visu-
al words. In [17], each local feature is combined with its k
spatial nearest neighbors to generate a k-NN visual phrase.
And in [6], each image is partitioned into non-overlapping
grid cells which bundle the local features into grid features.
However, such fixed-scale visual phrases or feature groups
are not capable of handling large variations, and thereby can
not provide robust object matching.

For object localization, in most previous work the rele-
vant images are retrieved firstly and then the object location
is determined as the bounding box of the matched regions
in the post-processing step through a geometric verification,
such as RANSAC [15]. Alternatively, efficient subimage re-
trieval (ESR) [8] and efficient subwindow search (ESS) [9]
are proposed to find the subimage with maximum similarity
to the query. In addition, spatial random partition is pro-
posed in [21] to discover and locate visual common objects.
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Figure 2: Illustration of object search via spatial random partition
(M×N×K = 3×3×3). The input includes a query object and an
image containing the object, while the output is the segmentation
of the object (highlighted in green).

3. Randomized Visual Phrase via Random Par-
tition

Given a database D = {Ii} of I images, our objective is
to retrieve all the images {Ig} that contain the query object
Q, and identify the object’s locations {Lg}, where Lg ⊂ Ig
is a segmentation or sub-region of Ig . An overview of our
proposed algorithm is illustrated in Fig. 2.

3.1. Image Description

We first represent each image Ii ∈ D as a collection of
local interest points, denoted by {fi,j}. Follow the BoVW
scheme, each local descriptor f is quantized to a visual
word using a vocabulary of V words, represented as w =
(x, y, v), where (x, y) is the location and v ∈ {1, . . . , V } is
the corresponding index of the visual word. Using a stop list
analogy, the most frequent visual words that occur in almost
all images are discarded. All feature points are indexed by
an inverted file so that only words that appear in the queries
will be checked.

3.2. Spatial Random Partition

We randomly partition each image Ii into M ×N non-
overlapping rectangular patches and perform such partition
K times independently. This results in a pool of M×N×K
image patches for each Ii, denoted as: Pi = {Pi,m,n,k}.
Note that for a given partition k ∈ {1, 2, . . . ,K} the M×N
patches are non-overlapping, while the patches from differ-
ent partition rounds may overlap. Since in the kth partition,
each pixel t falls into a single patch Pt,k, in total there are
K patches containing t after K rounds of partitions, formu-

lated as:

{Pt,k} = {Pi,m,n,k|t ∈ Pi,m,n,k} k = 1, . . . ,K. (1)

Then each patch P is represented as the set of visual words
which fall inside it, denoted as a visual phrase P : {w|w ∈
P}, and is further characterized as a V -dimensional his-
togram hP recording the word frequency of P .

Given a pixel t we consider the collection of all visual
phrases (i.e., patches) containing it, denoted by Ωt = {Pt}.
Then after K times of partitions, we essentially sampled
the collection K times and obtained a subset Ωt,K =
{Pt,k}Kk=1 ⊂ Ωt. The sizes and shapes of the visual phras-
es in the subset Ωt,K are random since these visual phras-
es result from K independent random partitions. Hence
for pixel t, its spatial context at different scales has been
taken into consideration by matching the randomized visu-
al phrase (RVP) set Ωt,K against the query. To simplify
the problem, we assume the probability that each RVP will
be sampled in the kth partition is the same, which means
p(Pt,k) =

1
|Ωt,K | =

1
K is a constant.

3.3. RVP Matching and Voting

Given each pixel t, its confidence score s(t) is defined as
the expectation of similarity scores of all visual phrases that
contain it, denoted as:

s(t) = E(s(Pt)) =
∑

Pt∈Ωt

p(Pt)s(Pt)

≈
∑

Pt,k∈Ωt,K

p(Pt,k)s(Pt,k) =
1

K

K∑
k=1

s(Pt,k),(2)

where the expectation is calculated approximately on the
subset Ωt,K instead of Ωt. Now our problem becomes how
to define the similarity score s(Pt,k) for each RVP. In fact
we can adopt any an vector distance listed in Tab. 1 as the
matching kernel, and match each RVP against the query just
like a whole image. Here we use the normalized histogram
intersection NHI(·) as an example:

s(t) =
1

K

K∑
k=1

s(Pt,k) =
1

K

K∑
k=1

NHI(hPt,k
, hQ). (3)

From Eq. 3 we can see that because of the independence
of each round of partition, the RVP from different partition
rounds can be processed in parallel.

The correctness of our spatial random partition and vot-
ing strategy is based on the following theorem that justifies
the asymptotic property of our algorithm.

Theorem 1. Asymptotic property:
We consider two pixels i, j ∈ I, where i ∈ G ⊂ I is

located inside the groundtruth region G while j /∈ G is lo-
cated outside. Suppose sK(i) and sK(j) are the confidence
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symbol similarity function

Bin(hQ, hP )
∑

v min(hv
Qh

v
P , 1)

HI(hQ, hP )
∑

v min(hv
Q, h

v
P )

NHI(hQ, hP )
∑

vmin(hv
Q, h

v
P )/

∑
vmax(hv

Q, h
v
P )

dot(hQ, hP )
∑

vh
v
Qh

v
P

ρbhatt(hQ, hP )
1√

||hQ||1||hR||1

∑
k

√
hv
Qh

v
P

Table 1: Several vector distances for visual phrase matching.

scores for i and j, respectively, considering K times of ran-
dom partitions and voting, we have:

limK→∞(sK(i)− sK(j)) > 0. (4)

The above theorem states that after enough rounds of parti-
tions for each image, the pixels in the groundtruth region G
will receive more votes than the pixels in the background,
so that the groundtruth can be easily discovered and locat-
ed. The proof of Theorem 1 is given in the supplementary
material because of space limit.

3.4. Object Localization

After assigning each pixel t ∈ Ii a confidence score, we
obtain a voting map for each image Ii. Object localization
then becomes an easy task since we do not need to search
in the large collection of subimages of Ii. Instead, we just
need to segment out the dominant region Li from Ii as the
object location:

Li = {t|s(t) > thres, ∀t ∈ Ii}. (5)

In our paper the threshold thres is set adaptively in propor-
tion to the average confidence score of each image Ii:

thresi =
α

|Ii|
∑
t∈Ii

s(t), (6)

where |Ii| is the number of pixels in Ii and α is the parame-
ter coefficient. This adaptive localization strategy indicates
that the matched points in an image should be distributed
densely so that the dominant region will be salient enough
to be segmented out; otherwise, if the matched points are
distributed sparsely in the image, the threshold is the same
but there may be no dominant region segmented out. The
property of our algorithm is important for object search
task, since an object, especially a small object, always has
the dense matched points within a compact structure, while
the noisy points in the background are usually distributed
sparely. Thus our algorithm can reduce the number of false
alarms and be robust to background clutter. Fig. 3 illustrates
the object localization process.

Figure 3: Examples for object localization. The query logo is the
same as in Fig. 2. The 1st column are the original images. The 2nd

column are the voting maps after 200 random partitions. The 3rd
column are the segmentation results with the coefficient α = 5.0.
By comparing the 3rd row with the first two rows, we can see that
this localization strategy is robust to the noisy points which are
sparsely distributed in the background.

4. Experiments
In this section, our randomized visual phrase approach is

compared with previous object retrieval algorithms in terms
of both speed and performance. We compare our approach
with two categories of methods: the first is the fixed-scale
visual phrase approaches, i.e., the k-NN phrase [17] and the
grid feature [6]; and the second is the state-of-the-art subim-
age search algorithms, i.e., ESR [8] and ESS [9]. All these
algorithms are implemented in C++ and performed on a 16-
thread Dell workstation with 2.67 GHz Intel CPU and 16
GB of RAM. The algorithms are implemented without par-
allelization unless emphasized. Three challenging databas-
es are used as the testbed:
Groundhog Day database The database consists of 5640
keyframes extracted from the entire movie Groundhog
Day [17], from which 6 visual objects are chosen as queries.
As in [17], local interest points are extracted by the Harris-
Affine detector and the MSER detector respectively, and de-
scribed by 128-dimensional SIFT descriptors [12]. To re-
duce noise and reject unstable local features, we follow the
local feature refinement method in [23]: all the keyframes
are stretched vertically and horizontally, and local interest
points are extracted from the stretched keyframes. Local
features that have survived image stretching are supposed
to be affine invariant and hence are kept as refined features.
All the refined features, over 5 million, are clustered into a
vocabulary of 20K visual words using the Hierarchical K-
Means (HKM) method [15].
Belgalogo Belgalogo is a very challenging logo database
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containing 10, 000 images covering various aspects of life
and current affairs. As in [6], all images are re-sized with
a maximum value of height and width equal to 800 pix-
els, while preserving the original aspect ratio. Since the
database is larger and the image backgrounds are more clut-
tered, more than 24 million SIFTs are extracted and then
clustered into a large vocabulary of 1M visual words to en-
sure the discriminative power of visual words. A total of 6
external logos from Google are selected as the queries.
Belgalogo + Flickr database To further verify the scalabil-
ity and effectiveness of our approach, we build a 1M image
database by adding crawled Flickr images to the Belgalogo
database as distractors. In total about 2 billion SIFTs (2,000
points per image on average) are extracted. We randomly
pick 1% points from the feature pool to generate a vocabu-
lary of 1M visual words. All feature points are indexed by
an inverted file costing about 12G RAM .

For all the databases above, a stop list is made to remove
the top 10 percent most frequent visual words. In this way,
the most frequent but meaningless visual words that occur
in almost all images are suppressed. To evaluate the re-
trieval performance, we adopt the Average Precision (AP)
and mean Average Precision (mAP) as the measures.

4.1. Sensitivity of Parameters
First of all, the sensitivity of parameters in the random

partition method are tested on the Groundhog Day database.
We first test vector matching kernels and segment coeffi-
cient α. The random partition approach is implemented
with the partition parameters K ×M ×N = 200× 16× 8,
where M × N is set according to the aspect ratio of the
keyframes empirically. The results are evaluated by mAP
over 6 query objects. All the vector matching kernels in
Tab. 1 are tested, and the results are showed in Tab. 2.
NHI(·) performs sightly better than the others although it
is slower. Also, we test the impact of the segment coeffi-
cient α, as shown in Tab. 3, from which we can see that α
has marginal influence on the retrieval performance.

Next, we study how the partition parameters affect the
retrieval performance in both accuracy and efficiency. We
first fix K = 200 and test different M × N , from 8 × 4 to
32× 16, and compare their performance in Tab. 4; then we
fix M × N = 16 × 8 and increase the number of partition
times K from 10 to 200, and record their mAP and average
time cost, as shown in Fig. 5. It shows that as the number
of partition times increases, the retrieval results improve in
accuracy while cost more time. And the retrieval accura-

Bin HI NHI Dot ρbhatt
mAP 0.435 0.444 0.449 0.397 0.406

Table 2: mAP for different vector distances with α = 3.0.

α 1.0 2.0 3.0 4.0 5.0
mAP 0.403 0.422 0.435 0.434 0.420

Table 3: mAP for different segment coefficient α using Bin(·).

cy tends to convergence when the number of partition times
is large enough. Therefore the approach based on random
partition allows the user to easily make a trade-off between
accuracy and speed since he can adjust the partition time on-
line without re-indexing the database. Increasing the num-
ber of partition times leads to a more salient voting map and
better object localization, as showed in Fig. 4.

M ×N 8 × 4 16 × 8 24 × 12 32 × 16
mAP 0.395 0.435 0.432 0.425

Table 4: mAP for different partition parameters M ×N .

(a) (b)
Figure 5: Performance of different number of partition times, from
10 to 200: a) the mAP curve as the number of partition times in-
creases; b) the time cost for different number of partition times,
including patch matching, voting and object segmentation.

4.2. Comparison with FixedScale Visual Phrase
Methods

First, we compare our RVP approach with the k-NN
phrase method [17]. Here we set k = 5, 10, 15, 20 to test
the retrieval performance when considering spatial context
at different scales. As in [17], Bin(·) is selected as the
matching kernel; and the RVPs or k-NN phrases are reject-
ed if they have less than two visual words matched with the
query, which means no spatial support. We fix partition pa-
rameters α = 3.0 and K × M × N = 200 × 16 × 8 for
all images in this database. The experimental results are
shown in Fig. 6, from which we can see that: 1) the optimal
scale of spatial context differs for different query objects.
As k increases, the retrieval performance improves for most
queries while it drops for the Frames Sign. The reason is
that the Frames Sign objects in groundtruth frames are much
smaller than the query so that it is easier to introduce noise
with a larger context scale; 2) although the optimal scale
is unknown, our RVP is stable and robust to object varia-
tions, thereby achieves a better performance over the k-NN
phrase.

Further, the RVP approach is compared with the grid-
based algorithm [6] on the Belgalogo database consist-
ing of 10K images. The partition parameters are set to
K × M × N = 200 × 16 × 16 for this database and the
segment coefficient α = 5.0 is fixed for all queries. Similar
to the k-NN visual phrases, 4 different grid sizes, from 8×8
to 32×32, are tested. Normalized histogram intersection
NHI(·) is chosen as the similarity function. The top 100
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Figure 4: The influence of the number of partition times. The 1st row lists three pairs of the query object (denoted by yellow box on the
left) and an example image containing the object (denoted by blue box on the right). The output includes a voting map on the left and a
segmentation result on the right. The 2nd, 3rd, 4th row are associated with the number of partition times K = 25, K = 50, K = 100,
respectively. As the number of partition times increases, the voting map becomes more salient and the object is located more accurately.

Figure 6: Precision/Recall curves and AP scores for the six query
objects in the movie Groundhog Day. In the bottom table, the red
number in each row is the best result for the query object while the
blue one is the second.

G-8 G-16 G-24 G-32 ESR [8] RVP

Base 0.079 0.093 0.099 0.116 0.179 0.208
Dexia 0.144 0.143 0.151 0.145 0.117 0.153
Ferrari 0.023 0.015 0.011 0.010 0.052 0.013

Kia 0.365 0.355 0.358 0.364 0.497 0.506
Mercedes 0.185 0.184 0.183 0.181 0.180 0.215
President 0.346 0.368 0.353 0.424 0.446 0.675

mAP 0.190 0.193 0.192 0.207 0.245 0.295

Table 5: AP scores of grid-based approach with different grid sizes
(8×8, 16×16, 24×24 and 32×32), ESR [8], and RVP approach
for the 6 query logos on the BelgaLogos database.
retrieval results are used for evaluation. The comparison re-
sults are given in the 2nd to 5th columns and 7th column of
Tab. 5, which show that the mAP of random partition ap-
proach is improved by more than 40% over that of the grid-
based approach using the same local features and matching
kernel. It validates that the randomized visual phrase is su-
perior to fixed-scale visual phrase bundled by grid.

4.3. Comparison with Subimage Search Methods
Subimage search algorithms employing the branch-and-

bound scheme are the state-of-the-arts for object search,
e.g., the efficient subimage retrieval (ESR) [8] and the ef-
ficient subwindow search (ESS) [9]. The advantage of this
category of algorithms is that it can find the global optimal
subimage very quickly and return this subimage as the ob-
ject’s location. In this section we compare our approach
with ESR on the Belgalogo database and with ESS on the
Belgalogo+Flickr database in both accuracy and speed.

The implement details of ESR and ESS are as follows:
for both ESR and ESS, we relax the size and shape con-
straints on the candidate subimages, to ensure that the re-
turned subimage is global optimal; NHI(·) is adopted as
the quality function f , and for a set of regions R, the region-
level quality bound f̂ is defined as: f̂ =

|hR∩hQ|
|hR∪hQ| , where
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hR and hR are the histograms of the union and intersection
of all regions in R; for ESR, given a set of images I, the
image-level quality bound f̃ is defined as: f̃ =

|hI∩hQ|
|hI∪hQ| ;

the inverted files are used for fast computation.
First we compare our approach with ESR on the Belgalo-

go database. We set the partition parameters K×M×N =
200 × 16 × 16 and α = 5.0, and choose NHI(·) as the
matching kernel. The retrieval performance is given in the
6th and 7th columns of Tab. 5. We can see that our approach
leads to a better retrieval performance compared with the
ESR algorithm, although ESR could return the top 100 op-
timal subimages with highest NHI scores as detections.
The reason is that ESR only searches for the subimage of
the most similar word-frequency histogram with the query,
but does not require these matched visual words fall in a s-
patial neighborhood. In other words, as long as an image
has several matched visual words, even if these words may
be distributed very dispersedly, it is likely to be retrieved by
ESR. On the contrary, our approach bundles the local fea-
tures into the RVPs by random patches. It favors matched
points that are distributed compactly, otherwise the voting
map will not produce a salient enough region. Therefore,
compared with the RVP approach, ESR leads to more false
alarms, especially when the background is noisy. Moreover,
our approach could more easily handle the case in which
one image contains multiple target objects. Fig. 7 com-
pares ESR and our approach by several examples. Next,
our RVP algorithm is implemented in parallel and compared
with ESR in retrieval speed. All algorithms are re-run for
3 times to calculate the average retrieval time, as shown in
Tab. 6. As we can see, without parallel implementation our
approach is comparable with ESR in speed; and the parallel
implementation achieves about 7 times speedup.

ESR [8] RVP RVP (parallelized)
Time (s) 2.97 2.84 0.44

Table 6: Retrieval time comparison on the Belgalogo database.

Finally to verify the scalability of our algorithm, we fur-
ther perform the RVP approach on the Belgalogo+Flickr
database consisting of 1M images. Both HI(·) and NHI(·)
are tested with parallel implementation. Since ESR is es-
sentially an extension of ESS to improve efficiency and we
have compared RVP with ESR on the Belgalogo database,
here we compare our RVP approach with ESS on this 1M
database. The speed of the algorithms is evaluated by the
average processing time per retrieved image. Tab.7 shows
the comparison results between ESS and RVP on this 1M
database, in which our RVP algorithm beats ESS in both ac-
curacy and speed. This experimental result shows that: 1)
employing either HI(·) or NHI(·) as the matching kernel,
our RVP approach produces a more than 120% improve-
ment of mAP over ESS. It highlights the effectiveness of our
approach; 2) compared to the results on the pure Belgalogo

Figure 7: Examples of the search results by ESR and our approach.
The images in the first column are retrieved by ESR, in which the
red bounding boxes are returned as the object location; the sec-
ond column are the voting maps generated by the RVP approach,
and the third column are the segmentation results (highlighted in
green). Note that each row stands for a specific case (from top
to bottom): multiple target objects, noisy background and discrete
matched points (false alarm by ESR).

ESS [9] RVP (HI) RVP (NHI)

Base 0.050 0.165 0.189
Dexia 0.029 0.105 0.118
Ferrari 0.017 0.020 0.023

Kia 0.244 0.406 0.418
Mercedes 0.032 0.115 0.148
President 0.165 0.386 0.543

mAP 0.090 0.200 0.240

Time cost per
retrieved image (ms) 25.4 1.8 7.8

Table 7: Comparison on the Belgalogo + Flickr database.

database consisting of only 10K images, the retrieval per-
formances of both RVP and ESS/ESR become worse. How-
ever, the mAP of ESS/ESR decreases much more sharply
than that of RVP. It verifies the analysis we made above
that compared with our approach, ESR is not robust to a
cluttered database and leads to more false alarms; 3) HI(·)
kernel is much faster (about 4 times) than NHI(·) but has a
lower mAP. With the parallel implementation our RVP ap-
proach adopting HI(·) kernel could process more than 500
images in one second, therefore it has a great potential for
large-scale object search application.

5. Conclusions
We propose a scalable visual object search system based

on randomized visual phrase (RVP) for robust object match-
ing and localization. We validate its advantages on three
challenging databases in comparison with the state-of-the-
art systems for object retrieval. It is shown that compared
with systems using fixed-scale visual phrase or subimage
search method, our randomized approach achieves better
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Figure 8: Examples of our search results in the movie Groundhog Day for 6 query objects: Black Clock, Digital Clock, Frames Sign,
Microphone, Phil Sign and Red Clock (from top to bottom). Queries are denoted in yellow in 1st column. The correct detections selected
from different shots are denoted in green in the right columns.

search results in terms of accuracy and efficiency. It can also
handle object variations in scale, shape and orientation, as
well as cluttered backgrounds and occlusions. Furthermore,
the design of the algorithm makes it ready for paralleliza-
tion and thus well suited for large-scale applications. We
believe that as a novel way to define visual phrases, random
partition can be applied to other image-related applications
as well.
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