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Abstract—The fusion of information gathered from multiple
sources is essential to build a comprehensive situation picture for
autonomous ground vehicles. In this paper, an approach which
performs scene classification and data fusion for 3D-LIDAR
scanner (Velodyne HDL-64E) and video camera is described. A
geometry segmentation algorithm is proposed for detection of
obstacles and ground area from data collected by the Velodyne.
In the meantime, the corresponding image collected by video
camera is classified patch by patch into more detailed categories.
The final situation picture is obtained by fusing the classification
results of Velodyne data and that of images using the fuzzy logic
inference framework. The proposed approach was evaluated with
datasets collected by our autonomous ground vehicle testbed in
the rural area. The fused results are more reliable and more
completable than those provided by individual sensors.

I. INTRODUCTION

Autonomous situation awareness is an important research

aspect for robots and unmanned vehicles. Besides whether the

terrain is traversable, they also require more specific object

category information to carry out their tasks: e.g., approach-

ing a tree, or the water area. For decades, computer vision

approaches have been studied to classify scenes from images.

In recent years, LIDAR scanners have also been applied to

complement the video cameras.

In this work, two sets of sensors are used: the Velodyne

HDL-64E 3D-LIDAR scanner [1] and the monocular video

camera. The Velodyne scanner provides the 3-dimensional

but sparse pointcloud of the surrounding environment. The

pointcloud is trustworthy for obstacle detection but lacks

information to perform a reliable classification of specific

object categories. Besides, the covering range of Velodyne

is very limited, therefore, only information of close-by area

can be acquired. The images captured by video cameras can

cover a much broader area and provide more discriminative

information to classify objects into categories. However, due

to the lack of depth information, image-based detection of

obstacles of various shapes, sizes and orientations remains

challenging. Due to the complementary benefits of two sen-

sors, it is possible to acquire more reliable scene classification

by fusing the information derived from these two sensors.

Approaches for fusion of LIDAR data and images can be

divided into two categories: centralized and decentralized. In

centralized approaches, the fusion process occurs at the pixel-

level [2] or feature level [3] [4] [5], i.e., features from both

LIDAR and video camera are combined in a single vector

for posterior classification. Centralized methods can simplify
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Fig. 1. Illustration of two sensors fusion. (a) shows the original
camera image; (b) shows the camera image classification result; (c)
shows the detection result of Velodyne scanner which is projected to
the image; (d) shows the result of our fusion method. In (d), the red
regions are the obstacle areas and each white bounding box localizes
one detected obstacle. By fusing results of two sensors, it not only
improves the scene classification result but also localizes the obstacles
correctly.

the posterior classify process but are difficult to integrate the

human knowledge and experience. Furthermore, in the cen-

tralized method, only the regions commonly observed by both

sensors can be processed. This greatly limits the area they can

cover due to the short range of LIDAR sensor. Decentralized

approaches separately classify the data for individual sensor

first, the classification results are then combined by a fusion

method [6] [7]. Generally, these methods require training data

to determine the fusion model and the fusion parameters.

Besides the two fusion strategies, there are works which try

to use them together [8] [9] [10] [11].

In this research, we propose a new way to fuse the results of

two sensors by employing the fuzzy logic inference [12]. Fig. 1

illustrates the fusion process. The fuzzy logic is preferable for

our application due to their advantages. First, the fuzzy logic

is built on top of the knowledge and experience of experts.

Therefore, it can employ not only results from LIDAR and

video camera data but also the a priori knowledge. Second,

the fuzzy logic can model nonlinear functions of arbitrary
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Fig. 2. Illustration of obstacle and ground classification using Velodyne scanner. (a) is the camera image; (b) is the 3D pointcloud of
Velodyne scanner; (c) is the ground points; (d) is the above-ground points; (e) shows the detected bounding boxes of the candidate obstacles;
(f) shows the pointcloud and the detected results; (g) shows the detected results which are projected to the camera image. Each bounding
box represents one candidate obstacle in (e), (f) and (g).

complexity. This is important as scene classification is not a

trivial problem. Third, the fuzzy logic can tolerate imprecise

results of two sensors. Moreover, the fuzzy logic is a flexible

fusion framework and the results of more sensors can be easily

integrated to the system. To the best of our knowledge, the

proposed approach is the first systematic fuzzy logic inference

based fusion work for scene understanding by fusing the

results of the Velodyne 3D-LIDAR scanner and the monocular

video camera. We test the proposed approach on datasets

collected by our autonomous ground vehicle testbed and the

results validate the robustness and effectiveness of our method.

II. CLASSIFICATION MODULE FOR INDIVIDUAL SENSORS

As a decentralized fusion method, a geometry segmentation

algorithm is proposed to detect obstacle and ground from

Velodyne data for this work. In the meantime, one algorithm,

which combines both bottom-up and top-down analyses, is

designed to classify image patches into multiple categories.

In this section, we first describe the two detection algorithms

separately and then summarize their pros and cons.

A. Obstacles and ground classification using Velodyne scan-

ner

As mentioned earlier, due to the sparseness of pointcloud,

we detect only traversability of the terrain (i.e., classifying

the pointcloud into ground and candidate obstacles) from the

Velodyne data. To achieve it, we first voxelize the pointcloud

P . Then we separate the ground points using a RANSAC

plane fitting algorithm [13]. After that, all the above-ground

points are obtained and the candidate obstacles are localized by

partitioning the above-ground points using 3D adjacency. Fig.

2 illustrates the result of each step. To speed up the process, we

first build a 3D cubic voxel grid using the pointcloud P . The

pointcloud data are stored in cubic voxels for efficient retrieval

and the grid resolution is denoted as res and set to be 0.1
meter. By voxelizing, the spatial neighborhood relationships

of the 3D points are modelled explicitly.

The second step separates the points into two categories:

ground and non-ground. Points are considered in batches,

defined by their membership in a single cubic voxel in space.

A voxel is considered to contain ground data if the voxel is a

member of the lowest (in elevation) set of adjacent non-empty

voxels in a vertical column (i.e. not part of an overhang). All

3D points stored in that set of voxels are fitted to a plane using

the RANSAC algorithm and the inliers points are the ground

points. All of the voxels that contain ground points are called

ground voxel set G. Other voxels are called the above-ground

voxel set U . One above-ground voxel Vi,j,k ∈ U may contain

a number of above-ground points or be an empty voxel, where

i, j and k denotes the indexes of the 3D voxel grid.

The third step detects the possible obstacles by clustering

the above-ground voxels according to 3D adjacency [14].

Each obstacle is represented by a voxel cluster. Denote all

the voxel clusters as C and the voxels in one voxel cluster

O ∈ C should meet the following 3D adjacency criterion:

∀ Vi,j,k ∈ O

∃ Vi′,j′,k′ ∈ O

∧ (|i − i′| < 2 ∨ |j − j′| < 2 ∨ |k − k′| < 2)

, (1)

A summary of our detection algorithm is given in Alg. 1.

The detected results are projected to the image as shown in

Fig.2(g). Each bounding box localizes one candidate obstacle.

The green circles represent the projection of ground points

and the blue circles represent the projection of above-ground

points.

Algorithm 1 The algorithm for ground and obstacle detection

using Velodyne scanner

input : point cloud P .
output : ground voxel set G, above-ground voxel set U , voxel

clusters C

voxelgrid ← FillVoxelGrid(P , res) ;1

voxel set G and voxel set U ← ExtractGround(voxelgrid);2

voxel clusters C ← ClusterVoxeSet(voxel set U) ;3

B. Image classification module

Contrary to Veldoyne information processing which con-

cerns whether the terrain is traversable, we intend to identify

more specific categories of objects from the images. From

the rural image that we have collected, we have identified

seven possible categories, which include ground, water, high

vegetation (highVeg), grass and obstacles, etc. As a matter

of fact, obstacles can be further divided into human, car

and building etc. But this detailed division requires sufficient

training data for each specific class. Viewing that there are

many types of possible known or unknown obstacles, we

simply classify all of them into obstacle. For a particular
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Fig. 3. Illustration of image classification. (a) is the original image;
(b) is the classification result of the bottom-up phase; (c) is the final
classification result after top-down contextual analysis; (d) shows the
color of each category.

task, specific models can be trained for individual interesting

classes too. The classification of images is realized by two

steps: bottom-up classification of local image patches and top-

down contextual analysis to further resolve uncertainties in the

bottom-up classification.

During bottom-up classification phase, an image is first

over-segmented into small image patches [15]. From each

patch, 131 features are extracted, including 24 features from

color histograms and 107 features corresponding to different

texture descriptors. 36 of them are derived from anisotropic

Gauss filtered images, 12 from Gabor filtered images, and 59

Local Binary Patterns [16]. An MLP (multilayer Perception)

classifier is trained to classifier the local image patches into

object categories [17]. Fig. 3(b) is an example of bottom-

up classification result, where patches of original image in

Fig. 3(a) are classified into different categories.

Sometimes, errors will occur in the bottom-up classification.

For instance, in Fig. 3(b), some image patches of “sky”

(area A) are wrongly classified into “ground”, some part of

“highVeg” (area B) is classified into “water”, and a part

of “grass” (area C) is classified as “hgihVeg”. Some errors

in bottom-up classification can be further corrected by a

top-down contextual analysis process. This is because only

local features of the image patches are considered during the

bottom-up classification phase. It is possible that local patches

of different object categories may look similar, leading to

uncertainties in the bottom-up classification. However, when

looking at an image patch from its surrounding context, e.g.,

the categories of its neighbors, the uncertainty can be resolved.

For example, “ground” cannot be above “highVeg” in the

image if it is taken from a moving vehicle. This property

has been well recognized and employed in several computer

vision systems [18]. However, most of them either treat

contextual information equally with local, low-level features

or mix the contextual information with low-level features in

one classifier. Our work is different from them in that we

model the contextual relations independent of the bottom-up

classification process, allowing the contextual analysis result

to feedback to the bottom-up classification module so as to

update the final classification result.

To acquire the top-down contextual relation module, the

connected image patches classified into the sample category

by the bottom-up classification process are first grouped into

bigger components, each component corresponds to a con-

nected area. Then, the existence of neighboring categories of

a component is derived from three directions: top, down and

sides (both left and right sides). They form the contextual

information of the component. From the training sets, a

Bayesian network is learned to represent the relations between

the category of the component and its neighboring categories.

The top-down process works as follows. Contextual in-

formation of an image component is first acquired based

on bottom-up classification result as described above. This

contextual information is then passed to the Bayesian net-

work as evidence. The probability of the node “category”

will be updated through Bayesian network inference. This

updated probability is fused with the bottom-up classification

confidence via multiplication. As shown in Fig. 3(c), the

classification errors in area A, B and C are corrected after

contextual analysis.

C. Summarization of two methods

By analysing the results, it can be seen that both meth-

ods have their own advantages and disadvantages. The laser

scanner based method can separate the ground and above-

ground points robustly and accurately. It can also segment the

obstacles if they are not adjacent to other obstacles. However,

the laser scanner can only obtain a sparse pointcloud and it

has no information about the water, sky and the areas out

of range of the sensor. Besides, the detected obstacles include

many tree and bush areas, which will increase the possibility of

the vehicle deviating from the road region. As for the camera

based method, it can classify the image into seven categories

and detect the trees and bushes with high accuracy. However,

due to the diversity of the obstacles, some obstacle regions

may be classified as wrong categories. The complementary

performance of two methods shows the possibility to boost

the scene classification and obstacle detection by combining

them.

III. FUZZY LOGIC BASED FUSION

Both the results of laser scanner and the results of camera

image have their own pros and cons. To parse the scene

correctly, the primary work of fusion is to categorize the

detected candidate obstacles by Velodyne scanner. The scene

classification results are then improved based on the catego-

rization. As a good way to utilize the a priori knowledge and

experience of human experts [12], we propose to use the fuzzy

inference method to fuse the results of two sensors.



A. fuzzification of the fusion

The inputs to the fuzzy fusion module are five related

attributes of each candidate obstacle: the size of candidate

obstacle (size), the image classification result (class), the

spatial context (s-context), the temporal context (t-context) and

the absolute height (height) of the candidate obstacles. The

output result classification (rc) is the detection result for the

candidate obstacles. Each input and out parameter is defined

as a fuzzy variable.

To employ the a priori knowledge, all the associated fuzzy

variables are first fuzzified into linguistic labels. The input

variable size is simply expressed using three linguistic labels

SMA (small), MID (middle) and LAR (large) within the

universe of discourse (0, 100) percents. The candidate obstacle

size is defined as the percent of all image pixels which are

inside the candidate obstacle bounding box. The variable class

is expressed using three linguistic labels GRE (greenery),

MID (middle) and OBS (obstacle) within the universe of

discourse (0, 100) percents. The classification is measured

by the percent of greenery pixels among all the pixels inside

the candidate obstacle bounding box. All the detected grass,

bush and highVeg pixels by image classification method are

considered as greenery pixels. When most of inside pixels

belong to the greenery category, the candidate obstacle is

probably the tree or the bush, and vice versa.

The spatial context s-context is expressed using two lin-

guistic labels GRE (greenery) and OBS (obstacle) within the

range(0, 8). It is obtained from the classification results of

eight pixels around the candidate obstacle bounding box. Four

of them are the corners of the box and the other four are the

middle point of each edge of the bounding box. If one pixel is

classified as ground, s-context is added by one. The temporal

context is expressed using two linguistic labels LOW (low)

and HIG (high) within the range (0, 1). The temporal context

describes the existence possibility of current obstacle in the

previous frame. By checking the neighborhood of current

position in the previous frame, if there is one obstacle with

similar size and classification as current one, the temporal

context is HIG. Otherwise, the temporal context is LOW. The

height is the absolute height of the candidate obstacle obtained

by the scanner directly. It is expressed using three linguistic

labels LOW (low), MID (middle) and HIG (high) within the

range (0, 10) meters. If the obstacle is very high (i.e. > 4m),

it is more likely to be a tree rather than a car.

The output result score (rc) is simply expressed using

three linguistic labels GRE (greenery), MID (middle) and

OBS (obstacle) within the universe of discourse (0, 1). All

the membership functions of input and output variables are

illustrated in Fig. 4.

B. knowledge rules of scene classification

Based on the human knowledge and experience, a vehicle

is required to move on the ground and avoid all the obstacles

simultaneously. To detect the categorization of each candidate

obstacle, both the detection results of scanner and the camera

are used. Besides, the spatial and temporal context of the

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4. Illustration of membership function for input and output
fuzzy variables. (a) shows the membership function of size; (b)shows
the membership function of class; (c)shows the membership function
of s-context; (d) shows the membership function of t-context; (e)
shows the membership function of height; (f) shows the membership
function of rc .



Fig. 5. Information flow of fuzzy reasoning for scene classification.

obstacle is also important knowledge. When the candidate

obstacle is surrounded by the ground region, it is probably

an obstacle. However, when the candidate obstacle is on the

edge of ground region, its categorization highly depends on

the image classification result and other information like the

height of the obstacle. By analyzing the application scenario

of our auto-driving vehicle, the following rules are selected.

The group of rules when the size of object box is large:

R1: if size is LAR and class is OBS then rc is OBS;

R2: if size is LAR and class is MID then rc is MID;

R3: if size is LAR and class is GRE then rc is GRE;

R4: if size is LAR and class is GRE and s-context is GRE then rc is GRE;

R5: if size is LAR and class is GRE and t-context is GRE then rcis GRE;

R6: if size is LAR and class is GRE and s-context is OBS then rc is OBS;

The italic assertion in R1 to R6 is the condition part

of each rule, which is contributed by the detection result

of two sensors. These rules indicate that the size of the

obstacle is not the only criterion to decide categorization of the

obstacle boxes. The image classification result and the context

information are also very important for scene classification.

When the size of obstacle is becoming smaller and smaller,

the image classification result and the context information will

play a more important role for scene classification:

R7: if size is MID and class is OBS then rc is OBS;

R8: if size is MID and class is MID then rc is MID;

R9: if size is MID and class is GRE then rc is MID;

R10: if size is MID and class is MID and s-context is GRE then rc is GRE;

R11: if size is MID and class is GRE and s-context is GRE then rc is GRE;

R12: if size is MID and class is GRE and t-context is GRE then rc is GRE;

R13: if size is MID and class is GRE and height is MID then rc is GRE;

R14: if size is SMA and class is OBS then rc is MID;

R15: if size is SMA and class is OBS and s-context is OBS then rc is OBS;

R16: if size is SMA and class is OBS and s-context is GRE then rc is GRE;

R17: if size is TIN then rc is MID;

The absolute height of one candidate obstacle is also an

important criterion to decide the result. If the obstacle’s height

is very large (e.g., higher than 4 meters), the obstacle is more

likely a tree rather than a car. The height attribute is included

in the following rules:

R18: if class is GRE and height is MID then rc is GRE;

R19: if class is MID and height is MID then rc is GRE;

R20: if height is HIG then rc is GRE;

Although 20 rules do not cover the complete relationships

of different attributes, these rules help to integrate the results

of two sensors and the human knowledge and experience.

C. fuzzy reasoning

After synthesizing these 20 rules for fusion, their roles

are further coordinated through Mamdani’s fuzzy reasoning

method in this section [19]. The process of Mamdani fuzzy

inference involves steps fuzzification, inference, aggregation

and defuzzification. The information flow of the fuzzy rea-

soning is shown in Fig. 5.

Fuzzification converts the input values into a degree via

membership functions. The input is always a crisp numerical

value and the output is a fuzzy degree of membership in

the qualifying linguistic set. The membership functions are

illustrated in Fig. 4. After the inputs are fuzzified, the inference

of a rule uses the minimal operation to combine different

condition assertions for logical operator and and generate the

output grade for the conclusion assertion. Taking rule R7 as

an example, given a set of inputs size size∗ and class∗, the

output grade rs
∗ of the label OBS due to this rule can be



inferred as:

U
7

OBS(rs
∗) = min(UMID(size

∗), UOBS(class
∗)) (2)

where UMID(size∗) and UOBS(class∗) represent the mem-

bership functions of the corresponding labels.

There are two steps involved in the aggregation process:

the maximum operation of the output grades of each output

label due to several rules, and the generation of the output

membership function. The aggregated output grade belonging

to one corresponding label (such as label OBS) is calculated

as:

UOBS(rs
∗) = max(U1

OBS(rs
∗), U2

OBS(rs
∗), · · ·U20

OBS(rs
∗)) (3)

The aggregated output membership function UO(rs) is

obtained by cutting the membership function UOBS(rs),
UMID(rs) and UGRE(rs) respectively at the grades

UOBS(rs)
∗, UMID(rs)

∗ and UGRE(rs)
∗, and combing them

point by point:

UO(rs) = max(min(UOBS(rs
∗), UOBS(rs)), min(UMID(rs

∗),

UMID(rs))), min(UGRE(rs
∗), UGRE(rs)))

(4)

After aggregation, the input for the defuzzification process is a

fuzzy set and the output is a single number. The defuzzification

process finds the center of gravity of the output membership

function as the real value of the output variable:

rs
∗ =

∫
UO(rs)rs drs∫
UO(rs) drs

(5)

rs
∗ is the final crisp classification score for the candidate

box. Based on the classification score, the categories of the

candidate obstacles are decided. If the result score of one

candidate obstacle is large enough (i.e., rc > 0.65), it is

classified as the obstacle. Otherwise, its result depends on

the image classification method. After that, we update the

categories of the patches inside the obstacle bounding boxes

by considering the results of two sensors.

IV. PERFORMANCE EVALUATION

To evaluate our approach, we test it on the datasets collected

by an autonomous ground vehicle testbed when driving the

vehicle in the rural area. In addition, we compare the result

of our fusion approach and that of the image classification

approach.

A. Dataset

Two datasets are collected by an autonomous ground vehicle

testbed while the vehicle is outfitted with a Velodyne 3D-

LIDAR scanner, a monocular camera and other sensors. The

first dataset corresponds to an open ground in the rural area

while the second one corresponds to the road in the rural

area. As shown in Table I, the first dataset consists about 440

keyframes and the second one consists about 450 keyframes.

The vehicle runs about 3 minutes to collect each dataset.

TABLE I
THE INFORMATION OF TWO DATASETS.

Dataset Frame No. Labelled Obstacle No. Correctly detected No.

Dataset 1 440 170 170

Dataset 2 450 53 53

B. Scene classification and Obstacle detection

To quantify the performance of the proposed approach, we

manually labelled the ground truth positions of the instances

of obstacles in about 20% of all keyframes. Consider the

scenario of autonomous ground vehicles, only the obstacles

above the traversable ground area are labelled. Let DR and

GT be the discovered obstacle regions and the bounding

boxes of ground truth, respectively. The performance is mea-

sured by two criteria: precision = |GT∩DR|
|DR| and recall =

|GT∩DR|
|GT | . By combining precision and recall, we use a

single F -measure as the metric for performance evaluation.

F -measure = 2×recall×precision
recall+precision

is the weighted harmonic

mean of precision and recall. We evaluate the fusion method

on these two datasets. Fig. 7 shows the result of several

keyframes. The top panel shows the result of dataset 1 and the

bottom panel shows the result of dataset 2. In each panel, the

first row shows the original camera image and the second row

shows the image classification result. The red color illustrates

the region of detected obstacles and other colors have similar

meaning as in Fig. 3(d). The third row shows the detected

result using scanner pointcloud and the results are projected to

the camera image. Each bounding box localizes one candidate

obstacle. The green circles represent the projection of ground

points and the blue circles represent the projection of above-

ground points. There are ground points inside several bounding

boxes due to the 3D-2D projection. The fourth row shows

the result of our fusion method. Each white bounding box

localizes one detected obstacle. In the sequences, the obstacles

are subject to variations introduced by moving vehicles and

pedestrians, static obstacles, road curvature changes, etc. It is

possible that some keyframes contain only one obstacle and

some keyframes do not contain any obstacles.

Table I shows the number of total labelled obstacles and the

number of correctly detected obstacles for each dataset. It can

be seen that the proposed method has a obstacle detection rate

close to 100%. These results show that the proposed approach

performs well for scene classification and obstacle detection

from real-world driving environment.

To further evaluate the proposed method, we compare its

result with that of image classification method. As shown in

Fig. 6, our proposed fusion approach improves the obstacle

classification significantly in terms of F -measure value. This

is because the detected results of our method include major

parts of or the complete obstacle regions. On the contrary, the

image classification method only detects small parts of the

obstacle regions due to the diversity of the obstacles. Therefore

it obtains a high precision value but with a low recall value.

These comparisons clearly demonstrate the advantages of the

proposed fusion method.
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Fig. 6. The performance evaluation of the proposed fusion based scene classification method (Fusion) and the image classification method.
(a) shows the F -measure value of dataset 1; (b) shows precision value of dataset 1; (c) shows recall value of dataset 1; (d) shows the
F -measure value of dataset 2; (e) shows precision value of dataset 2; (f) shows recall value of dataset 2.

V. CONCLUSIONS

In this paper, we propose a fuzzy inference based fusion

method for scene classification using laser scanner and video

camera. It can incorporate not only the results of two sensors,

but also the human experience and knowledge. The proposed

approach was evaluated with datasets collected by an au-

tonomous ground vehicle testbed in the rural area. The fused

results are more reliable and more completable than those

provided by individual sensors.
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(a)

(b)

Fig. 7. Sample results of scene classification and obstacle detection using two datasets in rural area. The panel (a) presents the result of
dataset 1 while the panel (b) presents the result of dataset 2. In each panel, the first row shows the original camera image and the second
row shows the image classification result. The red color illustrates the region of detected obstacles and other colors have similar meaning
as in Fig. 3(d). The third row shows the detected result using scanner pointcloud and the results are projected to the camera image. Each
bounding box localizes one candidate obstacle. The green circles represent the projection of ground points and the blue circles represent
the projection of above-ground points. There are ground points inside several bounding boxes due to the 3D-2D projection. The fourth row
shows the result of our fusion method. Each white bounding box localizes one detected obstacle.


