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PAPER

Cross-Lingual Phone Mapping for Large Vocabulary Speech
Recognition of Under-Resourced Languages

Van Hai DO†,††a), Xiong XIAO††b), Nonmembers, Eng Siong CHNG†,††c), and Haizhou LI†,††,†††d), Members

SUMMARY This paper presents a novel acoustic modeling technique
of large vocabulary automatic speech recognition for under-resourced lan-
guages by leveraging well-trained acoustic models of other languages
(called source languages). The idea is to use source language acoustic
model to score the acoustic features of the target language, and then map
these scores to the posteriors of the target phones using a classifier. The
target phone posteriors are then used for decoding in the usual way of hy-
brid acoustic modeling. The motivation of such a strategy is that human
languages usually share similar phone sets and hence it may be easier to
predict the target phone posteriors from the scores generated by source
language acoustic models than to train from scratch an under-resourced
language acoustic model. The proposed method is evaluated using on the
Aurora-4 task with less than 1 hour of training data. Two types of source
language acoustic models are considered, i.e. hybrid HMM/MLP and con-
ventional HMM/GMM models. In addition, we also use triphone tied states
in the mapping. Our experimental results show that by leveraging well
trained Malay and Hungarian acoustic models, we achieved 9.0% word er-
ror rate (WER) given 55 minutes of English training data. This is close
to the WER of 7.9% obtained by using the full 15 hours of training data
and much better than the WER of 14.4% obtained by conventional acoustic
modeling techniques with the same 55 minutes of training data.
key words: speech recognition, under-resourced language, cross-lingual
LVCSR, context-dependent, phone mapping

1. Introduction

Automatic speech recognition (ASR) technology has made
significant progress over the past few decades. Unfortu-
nately, speech researchers have focused only on dozens out
of thousands of spoken languages in the world [1]. One ma-
jor obstacle to build an ASR system for a new language
is that it is expensive to acquire a large amount of labeled
speech data to train the acoustic model. To build a rea-
sonable acoustic model for a large-vocabulary continuous
speech recognition (LVCSR) system, usually tens to hun-
dreds hours of training data are required, which makes a full
fledged acoustic modeling process impractical, especially
for under-resourced languages. This motivates studies to
automatically transfer knowledge from acoustic models of
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resource-rich languages to under-resourced languages.
Various methods have been proposed to transfer acous-

tic knowledge from one language to another. An early study
is called universal phone set [1], [2], which generates a com-
mon phoneme set by pooling the phoneme sets of all lan-
guages. A multilingual acoustic model is then trained from
all languages by using the common phone set. To train the
acoustic model for a new language, the acoustic model is
bootstrapped from the multilingual acoustic model. This
method can also work with unsupervised acoustic model
training by using confident scores to select reliable sen-
tences to train the model [3]. One drawback of the universal
phone set approach is that it requires linguistic knowledge
to build the common phoneme set of languages.

Another cross-lingual technique called cross-lingual
tandem features operates on the feature level. In this
approach, a multilayer perceptron neural network (MLP)
trained on a source language is used to generate phone pos-
terior probabilities on the target language [4]–[6]. These
posteriors are then used as discriminative features for the
conventional HMM/GMM (Hidden Markov Model / Gaus-
sian Mixture Model) models of the target language. To im-
prove performance, the source MLPs can be adapted to fit
the target language better [5].

Besides improving the features, a novel acoustic model
structure has also been proposed to reduce the amount of
training data required for acoustic model training. In cross-
lingual subspace GMM (SGMM) approach [7], [8], the pa-
rameters can be separated into two classes, i.e. the subspace
parameters that are almost independent of languages, and
phone state specific parameters that are language dependent.
Hence, it is possible to borrow subspace parameters from
well trained SGMM-based systems and train only the tar-
get language phone state specific parameters. As the phone
state specific parameters only account for a small proportion
of the overall parameters, they could be reliably trained with
a small amount of training data.

In the techniques discussed so far, we still need to
train the whole or part of the acoustic model from limited
target language training data. However, in cross-lingual
phone mapping approach [9]–[11], the acoustic model of
a source language is used directly and only the mapping
from source language phones to target language phones is
learned. In other words, to recognize an under-resourced tar-
get language, speech data of the target language is first rec-
ognized into the phone sequences or phone posteriorgram
of a source language using the well-trained source acous-
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tic model. These phone sequences or posteriorgram pro-
duced by the source acoustic model are then mapped to the
phone sequences or posteriorgram of the target language us-
ing a knowledge-based [9] or a data driven approach [10],
[11]. Cross-lingual phone mapping is motivated by the fact
that all human languages share similar acoustic space, i.e.
most sound units e.g. phones are shared by different lan-
guages. Hence, a target language speech can be repre-
sented by a phone sequence/posteriorgram produced by an-
other language for speech recognition purpose, if the acous-
tic spaces of the two languages are overlapping. In cases
when there are insufficient training data for the target lan-
guage, cross-lingual phone mapping may be more advanta-
geous than the conventional acoustic model training method
as it requires fewer data to train a phone-to-phone map-
ping system than to train a feature-to-phone mapping sys-
tem from scratch. This can be explained as follows: for
the cross-lingual phone mapping, the source acoustic model
acts as a feature extractor to generate high-level and mean-
ingful features for the mapping. This then allows the use of
a simple mapping trained with little data to map the source
phones to the target phones.

In this paper, we aim to build an LVCSR system for
a language with very few training data (less than 1 hour).
We extend the phone mapping framework in [11] with two
major improvements. First, to retain sharp resolution in
the acoustic space, we map source triphone states to tar-
get triphone states as opposed to mapping from source
monophone states to target monophone states. We call this
context-dependent cross-lingual phone mapping. Second,
we also examine the use of source language’s likelihood
scores generated by a conventional HMM/GMM model for
the mapping. This makes our approach more easily applica-
ble to various types of available source acoustic models than
[11] which uses only posterior probabilities generated by a
hybrid HMM/MLP model. In addition, we also study the
use of multiple source acoustic models in the cross-lingual
phone mapping framework. In one scenario, two source
models trained from the same source language training data
are used together to generate scores for cross-lingual phone
mapping. In another scenario, two source models from two
different source languages are used. In both cases, signifi-
cant improvements are achieved.

The rest of the paper is organized as follows. In
Sect. 2, our proposed context-dependent phone mapping is
described in details. In Sect. 3, we introduce the experimen-
tal setup, results, and discussions. Finally, we conclude in
Sect. 4.

2. Cross-Lingual Phone Mapping

2.1 Prior Work on Cross-Lingual Phone Mapping

Several cross-lingual phone mapping methods have been
studied in the past. In [2], Schultz and Waibel used a hard-
decision phone mapping to build the seed model of the target
language from a well-trained model of the source language.

Le and Besacier [9] created a phone mapping based on ex-
pert knowledge. Each target language phone is mapped
to a fixed source language phone. In [10], Sim and Li
proposed a probabilistic phone mapping to map a source
phone sequence to a target language phone sequence us-
ing a maximum likelihood criterion. This method works
well with a limited amount of training data due to the small
number of parameters. As a one-to-one mapping between
phones of two languages is rare, it is desirable to have “soft-
mapping” of phones rather than “hard-mapping”. In [11], a
soft-mapping method is proposed which maps source phone
posteriorgram to the target phone posteriorgram. The use
of phone posteriorgram avoids the loss of information due
to the “quantization effect” of phone recognition as in [10].
The mapping of the source phone posteriors to the target
phone posteriors is implemented using a product-of-expert
method realized by an MLP.

2.2 Context Independent Cross-Lingual Phone Mapping

In this section, we first describe the context independent
cross-lingual phone mapping proposed in [11]. In the next
section, we will describe our proposed context-dependent
mapping.

In cross-lingual phone mapping, the first step is to con-
vert the speech data of the target language to either phone
sequences [10] or phone posteriors [11] of the source lan-
guage. Take monophone state posteriors [11] as an example,
for the tth frame of the target language speech, ot, a source
posterior vector is generated in which each element repre-
sents the posterior probability of a source phone state given
the speech frame, i.e. p(si|ot), where si is the ith phone state
of the source language acoustic model. The source posterior
vector is denoted as ut = [p(s1|ot), . . . , p(sNS |ot)]T , where
NS is the number of states in the source language. Figure 1
illustrates a posteriorgram of an English sentence generated
by a Malay MLP monophone recognizer. The x-axis is time
while the y-axis represents phone states-ID of the Malay
MLP recognizer. The intensity of each point in the poste-
riorgram illustrates posterior probability p(si|ot).

Fig. 1 Posteriorgram of an English utterance generated by a Malay MLP
phone recognizer where x-axis is time, y-axis is Malay phone states-ID,
intensity of each point represents posterior probability.
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The representation ut is then mapped to the phone state
posteriors of the target language states:

p(q j|ut) = f j(ut), j = 1, . . . ,NT (1)

where f j(·) is a mapping function to be learned, q j is the jth

state of the target language acoustic model, and NT is the
number of target phone states. The target phone posteriors
are then converted to likelihoods using the Bayes formula
and used for decoding.

In the previous study of cross-lingual phone map-
ping [11], monophone states are used as the class units in
both the source and target languages. As a result, the acous-
tic resolution of the system is low and this may affect the
performance of the cross-lingual system. In this paper, we
adopt the above soft-mapping framework and made two im-
provements. One is to use triphone states rather than mono-
phone states as the acoustic units in both the source and tar-
get languages. In this way, the resolution of the system is
increased. Second, we not only use posteriors generated hy-
brid models, but also propose to use likelihood scores gener-
ated by a conventional source HMM/GMM model as the in-
put for phone mapping. To the best of our knowledge, this is
the first work where likelihood scores from the HMM/GMM
acoustic model of a foreign language are successfully used
to cross-lingual speech recognition. We will explain these
two improvements in the following sections.

2.3 Context-dependent Cross-Lingual Phone Mapping

To build a high resolution acoustic model for the target
language, the input representation of the acoustic space
should be as detailed as possible. We know that mono-
phone states are just a coarse representation of the acoustic
space. A triphone acoustic system that takes phone con-
text into consideration has a sharper acoustic resolution and
has been widely used in conventional HMM/GMM-based
LVCSR systems. Therefore, we propose to extend mono-
phone mapping to triphone mapping between source and
target languages. There are several advantages of using
triphone states. One obvious advantage is that triphone-
based acoustic models are easy to obtain as the mainstream
acoustic model technology for LVCSR is based on tri-
phone modeling. Well-trained triphone-based acoustic mod-
els of many popular languages can easily be obtained and
used for cross-lingual mapping. Another advantage of us-
ing HMM/GMM model in the source language to generate
acoustic scores is that, many acoustic modeling techniques,
such as model adaptation, can be more easily applied to
conventional HMM/GMM systems than to hybrid systems.
Hence, cross-lingual phone mapping may potentially bene-
fit from these existing techniques. For example, when we
move from clean to noisy environments, we can adapt the
source acoustic model to the noisy environments to reduce
the acoustic mismatch.

In our proposed context-dependent cross-lingual phone
mapping, a target language feature frame ot is encoded into
a vector of source acoustic scores, vt, which can be source

likelihoods:

vt = [p(ot |s1), . . . , p(ot |sNS )]T (2)

or source posteriors:

vt = [p(s1|ot), . . . , p(sNS |ot)]
T (3)

where NS is the number of tied-states in the source acoustic
model, si in (2), (3) is the ith tied-state in the source acoustic
model. Similar to the monophone state mapping, the source
triphone acoustic scores vt is mapped to the target triphone
tied-states by

p(q j|vt) = f j(vt), j = 1, . . . ,NT (4)

where NT is the number of tied-states in the target language
acoustic model. In our paper, the mapping function f is im-
plemented by a 3-layer MLP. We will explain why 3-layer
MLPs are used as the phone mapping in the next section.

The training of our cross-lingual phone mapping is il-
lustrated in Fig. 2 and summarized in the following steps:

Step 1 Build the conventional HMM/GMM baseline acous-
tic model from the limited training data of the target
language. Use decision tree to tie the triphone states to
a predefined number. Generate the triphone state label
for the training data using forced alignment.

Step 2 Evaluate the feature vector ot of the target language
training data on the source acoustic model to generate
the acoustic score vector vt as in (2) or (3).

Step 3 Train the mapping MLP, f j(.) of Eq. (4). Use vt as
the input of the mapping and the triphone state label
generated in Step 1 as the target of the mapping.

The decoding process with a cross-lingual phone map-
ping acoustic model for LVCSR can be summarized as fol-
lows and illustrated in Fig. 3.

Step 1 Generate source acoustic score vector sequences vt

for the test data in the same way as in Step 2 of the
training procedure.

Step 2 Use the trained phone mapping to map vt to the tar-
get language tied-state posteriors p(q j|vt).

Step 3 Convert the target tied-states posteriors to likeli-
hoods p(vt |q j) by normalizing them with their corre-
sponding priors p(q j). The priors are obtained from
the target training label.

Fig. 2 A diagram of the training process for cross-lingual phone-
mapping.
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Fig. 3 A diagram of the decoding process using cross-lingual phone
mapping.

Step 4 Use the state likelihoods, together with target lan-
guage model and lexicon for Viterbi decoding.

2.4 Combination of Different Types of Inputs for Phone
Mapping

Since our proposed method can handle different types of
source acoustic models and different source languages as
well to generate acoustic scores for phone mapping, an
improvement can be obtained by combining these input
streams if they provide complementary information. In this
study, we investigate two levels of combination: feature
combination and probability combination [18], [24]–[26].

The feature combination scheme is a simple and
straightforward approach. In this approach, different fea-
tures are concatenated to form a single input feature vec-
tor. For example, in the case when we use two types of
source acoustic models i.e. HMM/GMM and HMM/MLP,
likelihood scores generated by the source HMM/GMM and
posterior scores generated by the source HMM/MLP models
are concatenated to form the input of the mapping.

In the probability combination method, target state
probabilities are combined using linear or nonlinear func-
tions. In this paper, we simply combine multiple phone
mapping models at the target probability level using the
unweighted sum rule. Combined posterior probability
pC(q j|vt) of target state q j given by input vector vt is com-
puted by taking the average value of all individual tar-
get state posterior probability pk(q j|vt) estimated by the kth

phone mapping as illustrated in Eq. (5),

pC(q j|vt) =
1
N

N∑

k=1

pk(q j|vt) (5)

where N is the number of individual phone mappings.

3. Experiments

3.1 Tasks and Databases

To verify the performance the proposed cross-lingual phone
mapping method, we use Malay - an Asian language as
the source language and English (Aurora-4 task [12]) as the
presumed under-resourced language. The Aurora-4 task
adapted from the Wall Street Journal (WSJ0) corpus has
been chosen as the target under-resourced language as the
effect of sufficient training data for it is well known, and
we can hence clearly demonstrate the effect of reduced re-
sources and our proposed work. In the Aurora-4 corpus,
there are 7138 clean training sentences, or roughly 15 hours
of speech data. We randomly select sentences from the 7138
sentences to generate the training sets of sizes 7 minutes, 16
minutes, and 55 minutes. For testing, we used the small
clean test set of Aurora-4, which consists of 166 sentences,
or 20 minutes of speech. Malay-to-English phone mappings
are trained from a limited amount of English training data.
In addition, we also use Hungarian as a source language to
investigate the effect of multiple source languages in phone
mapping.

In this study, we concentrate on fast acoustic model
training with a limited amount of speech data. We assume
that the language model and pronunciation dictionary of the
target language are available.

3.2 Experimental Setup

Source acoustic models: We evaluate two different Malay
source acoustic models: conventional HMM/GMM model
and hybrid HMM/MLP model. Both models are trained
from more than 100 hours of Malay read speech data [13].
In the HMM/GMM model, triphone HMMs are used and
the triphone states are clustered to 1592 tied states by us-
ing decision tree based clustering. The emission probability
distribution of each tied state is represented by a GMM with
32 Gaussian mixtures. The hybrid HMM/MLP model uses
the same HMM structure as the HMM/GMM model, and
state posterior probabilities are estimated by a 3-layer-MLP
with 2000 hidden units. Both HMM/GMM and HMM/MLP
source acoustic models have about 4 million free parame-
ters. We also trained two monophone based HMM/GMM
and HMM/MLP source acoustic models with 102 mono-
phone states for comparison purpose.

Besides Malay source models, we also experiment with
Hungarian HMM/MLP monophone model.

Features: The features used in this study are the
conventional 12th-order Mel frequency cepstral coefficients
(MFCCs) and C0 energy, along with their first and second
temporal derivatives. The frame length is 25 ms and the
frame shift is 10 ms. To reduce recording mismatch be-
tween the source and target corpora, utterance-based mean
and variance normalization (MVN) is applied to both train-
ing features of Malay and training and testing features of
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English. The hybrid HMM/MLP model uses input feature
vectors concatenated from 9 frames of MFCC features.

Language model and dictionary: The standard Wall
Street Journal English bigram language model is used in
word recognition experiments. The test set contains a vo-
cabulary of 5 k words. The CMU dictionary are used which
consists of 40 phones, including the silence phone.

MLP network training: To train MLP neural net-
works for both phone mapping and the monolingual hybrid
baseline models to generate state posterior probabilities, the
limited training set is separated into two parts randomly.
The first part is used as the training data to update network
weights and contains around 90% of the training set. The
rest is used as the development set to prevent the network
from over-fitting. The network weight set which produces
the lowest frame error rate in the development set is selected
(early stopping). In all experiments, 3-layer MLPs with 500
hidden units are used. Our study shows that the performance
of the phone mapping is quite stable when 500 or more hid-
den units are used. Although the amount of parameters in
the phone mapping neural network is quite large, the use of
early stopping criterion prevents overtraining effectively.

Transition probabilities in HMM model: In the
cross-lingual and hybrid baseline acoustic models, for each
HMM state, the probability of jumping to the next state is
simply set to 0.5. The probability of remaining in the state
is hence also 0.5.

3.3 Baseline Acoustic Models

In this section, we describe two baseline monolingual acous-
tic models for English, i.e. the HMM/GMM model and the
HMM/MLP model. The experiments are carried to examine
how the performance of conventional acoustic modeling is
affected by insufficient training data. In addition, we con-
duct a cross-lingual tandem acoustic model for comparison
purpose.

3.3.1 Monolingual HMM/GMM Acoustic Models

We build two baseline HMM/GMM acoustic models using
16 minutes of English training data, one is a monophone
model and the other is a tied-states triphone model. In the
monophone model, there are 120 states (i.e. 40 phones x
3 states/phone); while in the triphone model, there are 243
tied-states. The reason for using a relative small number of
tied-states in the triphone model is that only 16 minutes of
training data is available for building the state-tying deci-
sion tree and for training the resulting triphone models. The
number of tied-states in the triphone model is chosen to be
about twice the number of monophone states to evaluate the
effect of context-dependent acoustic modeling.

Table 1 shows the performance of the monophone and
triphone models with different model complexities. It is ob-
served that the best triphone model (4 Gaussian mixtures)
outperforms the best monophone model (8 Gaussian mix-
tures), although the two acoustic models contains compara-

Table 1 Word error rate (WER) (%) of the monolingual monophone and
triphone baseline HMM/GMM models for 16 minutes of training data with
different model complexities.

% Number of Monophone Triphone
Gaussian mixtures Model Model

2 36.2 26.6
4 29.9 23.1
8 24.9 24.2
16 25.0 -

ble total number of parameters. The results show that tri-
phone model is more robust than monophone model even
when only a very limited amount of training data is avail-
able. The best WER obtained by triphone model is 23.1%,
which is much higher than the 7.9% obtained by the tri-
phone model with the full 15 hours of training data. This
shows that conventional HMM/GMM system does not per-
form well under very small training size scenario.

3.3.2 Monolingual Hybrid HMM/MLP Acoustic Models

We have also trained two English monolingual hybrid
HMM/MLP models [14] using the same 16 minutes of train-
ing data to compare against the two models reported in
Sect. 3.3.1. Hybrid HMM/MLP acoustic models offer sev-
eral advantages over the HMM/GMM approach such as:
MLPs are discriminative as compared to GMMs. Further-
more, HMM/MLP does not make parametric assumption
about the distribution of inputs. The HMM/MLP approach
has been applied successfully for phone recognition [15] and
recently for word recognition [16].

In this experiment, MLPs are used to predict the poste-
rior probabilities of the monophone states and triphone tied-
states. The frame-level state labels used for MLP training
are obtained from the HMM/GMM baseline models above.
The WER for the hybrid monophone and triphone models
are 24.6% and 22.5% (the second row of Table 2), respec-
tively. These results show a slight improvement over the
best corresponding HMM/GMM models.

3.3.3 Cross-Lingual Tandem Baseline

In this paper, we also build cross-lingual tandem systems
which were proposed for resource-limited acoustic model-
ing. In the cross-lingual tandem approach, the source MLP
recognizer is used to generate phone or state posterior scores
for the target speech. These scores are then used as the fea-
ture for the target HMM/GMM in the tandem approach [4]–
[6].

In our experiments, the Malay MLP is used to generate
state posterior probabilities. The natural logarithm is ap-
plied on the posteriors to make them closer to the Gaussian
distribution. As the dimensionality of posterior is usually
high, principal component analysis (PCA) is used to project
the log posterior vectors to 39-dimensional feature vec-
tors. After that the posterior feature vectors are augmented
with 39-dimensional MFCCs to form 78-dimensional vec-
tors which are used as the input feature for an HMM/GMM
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Table 2 The WER (%) of different monolingual and cross-lingual acous-
tic models with 16 minutes of English training data.

Target model
Monophone Triphone
(NT = 120) (NT = 243)

Baseline monolingual acoustic model
Monolingual HMM/GMM 24.9 23.1
Monolingual HMM/MLP 24.6 22.5

Baseline cross-lingual tandem acoustic model
Source monophone 22.2 19.4
Source triphone 22.9 20.1
Proposed cross-lingual acoustic model (source HMM/GMM)

Source monophone (NS = 102) 20.6 18.3
Source triphone (NS = 1592) 19.3 16.7

Proposed cross-lingual acoustic model (source HMM/MLP)
Source monophone (NS = 102) 19.6 17.6
Source triphone (NS = 1592) 18.3 16.4

model.
In this paper, two types of source MLPs are used,

i.e. monophone and triphone networks which have 102 and
1592 outputs, respectively. The result of the tandem ap-
proach with the two different types of source MLPs is shown
in the third and forth rows of Table 2. It can be seen that both
the two cross-lingual tandem models outperform the mono-
lingual HMM/GMM and HMM/MLP models (the first two
rows) significantly. These results demonstrate the benefit
of using acoustic scores of a well-trained source acoustic
model. However, using the source triphone MLP to gener-
ate tandem feature performs slightly worse than using the
source monophone MLP. This can be explained as follows:
although feature generated by the triphone MLP may con-
tain richer information with higher resolution, it loses more
information after the dimensionality reduction step from
1592 to 39 dimensions. In the case of under-resourced lan-
guage, it is hard to increase the number of preserved dimen-
sions because of the curse of dimensionality in the target
HMM/GMM model with a limited amount of training data.

3.4 Cross-Lingual Phone Mapping Acoustic Models

Now we report the experiments of the proposed cross-
lingual acoustic model trained on the same amount of train-
ing data as that in the baseline models on the Aurora-4
task. As shown in Fig. 3, 39-dimensional MFCC feature
vector, ot is passed through the source acoustic model to ob-
tain NS likelihood scores or NS posteriors from the source
HMM/GMM and HMM/MLP models, respectively. In this
study, we examine both context independent and context-
dependent source acoustic models:

1. The Malay monophone acoustic model with 102 states
(i.e. 34 phones x 3 states/phone).

2. The Malay triphone acoustic model with 1592 tied-
states.

These NS scores are mapped to NT states of the target
language. NT can be 120 states for the English monophone
model or 243 tied-states for the English triphone model.

Table 2 shows the results for word recognition with 16

minutes of English training data. The first two rows are
the WERs for the two monolingual baseline acoustic mod-
els. The next rows are the result of the cross-lingual tan-
dem approach. The last four rows represent the results for
the proposed cross-lingual acoustic models which use the
HMM/GMM and hybrid HMM/MLP source models. From
the table, we have four major observations.

First, all proposed cross-lingual phone mappings out-
perform the monolingual baseline models significantly. Our
WERs are also considerably lower than the cross-lingual
tandem approach although both approaches use source
acoustic scores as the input feature. In this case, the phone
mapping approach is more advantageous than modeling
source acoustic scores by Gaussian distributions as in the
tandem approach.

Second, by comparing the last four rows of Table 2, it
is clear that using source triphone as the input of the cross-
lingual phone mapping produces better results than using
source monophone. This is due to the fact that the source
triphones states provide more detailed representation of the
target speech than the source monophone states. This re-
sult is contrary to the result on the cross-lingual tandem ap-
proach. It can be explained that MLP phone mapping can
handle all inputs and does not lose information via the di-
mensionality reduction step as in the tandem approach. And
hence, it can take the advantage of higher resolution feature
generated by the source context-dependent model.

Third, by comparing the second and third columns of
the table, it is observed that using target language triphone
states as the label of the phone mapping consistently out-
performs using target language monophone states. The best
performance of the cross-lingual phone mapping is WER =
16.7% and 16.4% for the source HMM/GMM and source
HMM/MLP, respectively. These results are obtained by us-
ing triphone representation in both the source and target lan-
guages.

Fourth, using the source hybrid HMM/MLP can pro-
duce a small improvement over the source conventional
HMM/GMM. However, with the best configuration (i.e.
triphone-to-triphone mapping), the performance of the two
systems is almost the same. Also note that it took more than
one week to train the source Malay hybrid triphone model
while the training process of the conventional HMM/GMM
was done in few hours.

In summary, the results in Table 2 shows that the cross-
lingual phone mapping outperforms the conventional acous-
tic modeling techniques and the cross-lingual tandem fea-
tures approach. In addition, the proposed context-dependent
cross-lingual phone mapping produces significantly better
results than the context independent cross-lingual phone
mapping in [11].

3.5 Effect of Training Data Size

In this section, we will examine the effect of training data
size on the performance of the cross-lingual phone mapping
acoustic model. Three training data sizes are in our study,
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Table 3 The WER (%) of different acoustic models with different
amounts of target training data (the target acoustic model is triphone).

Method Amount of training data
7 minutes 16 minutes 55 minutes

Baseline monolingual acoustic model
Monolingual HMM/GMM 30.9 23.1 14.8
Monolingual HMM/MLP 29.9 22.5 14.4

Baseline cross-lingual tandem acoustic model
Source monophone 26.1 19.4 13.5
Source triphone 26.5 20.1 13.6

Proposed cross-lingual acoustic model (source HMM/GMM)
Source monophone 21.7 18.3 13.4
Source triphone 20.3 16.7 11.7

Proposed cross-lingual acoustic model (source HMM/MLP)
Source monophone 19.7 17.6 12.9
Source triphone 19.3 16.4 11.9
Combination of source HMM/GMM and source HMM/MLP (monophone)
Feature combination 18.8 16.3 12.1
Probability combination 18.5 16.3 12.2

Combination of source HMM/GMM and source HMM/MLP (triphone)
Feature combination 19.3 15.6 10.8
Probability combination 17.9 14.8 10.5

i.e. 7 minutes, 16 minutes, and 55 minutes of English target
data.

In the previous sections, we have shown that the
context-dependent triphone is a better choice than the mono-
phone model for the target acoustic modeling. Therefore, in
this section, the target language speech units are always tri-
phone while the source language units could be either mono-
phone or triphone. For each training data size, we follow the
training steps in Sect. 2.3 to build the phone mapping. Note
that we keep the number of triphone tied-states in the target
language acoustic models to be always 243 for fair compar-
ison.

Table 3 shows the performance of different acoustic
models with three different amounts of training data. The
first four rows are the monolingual and cross-lingual tan-
dem acoustic models. We can see that the performance of
all baseline models degrades quickly when less training data
is used. The cross-lingual tandem approach outperforms
the two monolingual models significantly for all data sizes.
Also note that using source triphone MLP to generate poste-
rior feature for the cross-lingual tandem approach does not
help to improve performance over using the source mono-
phone MLP. This result is also consistent with the recent
research in [17] where the tandem approach was applied in
a monolingual model. Using monophone states as the out-
put representation of MLP is adequate to generate tandem
feature. Increase the number of outputs (i.e. using tied-state
triphone) generally does not help to improve even sometime
it performs worse than using the monophone MLP.

The next four rows of Table 3 show the performance
of our cross-lingual acoustic models which use the source
HMM/GMM and hybrid HMM/MLP models. It is observed
that the relative improvement of our cross-lingual phone
mapping over the monolingual as well as the cross-lingual
baselines increases as the amount of training data decreases.
This shows that the proposed cross-lingual phone mapping

is especially useful when a small amount of target training
data is available. Although both our phone mapping and the
cross-lingual tandem approaches use source acoustic scores
as the input feature, modeling them by a mixture of Gaus-
sian distributions in the tandem approach does not work well
for the case of very limited training data. In this case, finding
the “mapping” between the source phone set and the target
phone set as in the proposed method is more effective.

We can also see that in case of source monophone mod-
els, using the source hybrid HMM/MLP can bring a small
benefit over the source HMM/GMM. However, in the tri-
phone cases, there are no much difference between the two
source acoustic models.

Another observation is that using source triphone rep-
resentation as the input of the mapping consistently outper-
forms using source monophone in all the training data sizes.
However, this benefit reduces when less target training data
is available. It can be explained that by using acoustic scores
from the source triphone model, the number of inputs for
mapping is much higher than those of the source mono-
phone. When we have a extremely small amount of target
training data, using source triphone may suffer from overfit-
ting.

3.6 Combination of Different Types of Source Acoustic
Models

As we discussed in Sect. 2.4, we can benefit from com-
bining multiple input streams if they provide complemen-
tary information. In this section, the two phone mappings
which use source HMM/GMM and source HMM/MLP re-
spectively are combined at feature and probability levels.
The result for the combined models is shown in the last four
rows of Table 3. It is clearly shown that the combined sys-
tems outperform both the individual phone mappings sig-
nificantly. Although the two source acoustic models are
trained with the same data from the same language, the dif-
ferent model structures and different training criteria make
information generated by the two acoustic models comple-
mentary. While the HMM/GMM is trained on a maximum
likelihood criterion, the HMM/MLP models use a discrimi-
native criterion to optimize the model parameters.

There is also a difference between the two combination
methods. In case of both the two source acoustic models are
monophone, the probability combination outperforms the
feature combination method when a very small amount of
training data is available i.e. 7 minutes. However, when we
have more training data i.e. 55 minutes, the feature combi-
nation method performs better than the probability combi-
nation. In the case of both the two source acoustic models
are triphone, combination at probability level gives a lower
WER over combination at feature level especially when a
very small amount of training data is available. It can be
explained that although the feature combination approach
seems a better choice for multi-stream input for MLPs, it
may suffer from overfitting when a very small amount of
training data is available. Especially, when source triphone
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models are used, the number of inputs for the mapping is
large if we concatenate multistreams at input level. In this
case, the probability combination method can be a better op-
tion.

3.7 Using Multiple Source Languages

In this section, we investigate the performance of our phone
mapping method with different source languages. We use a
well-trained monophone hybrid MLP Hungarian phone rec-
ognizer downloaded from Brno University of Technology
(BUT)† [19]. Given an English speech waveform, the Hun-
garian recognizer produces 186 monophone state posterior
probabilities. These probabilities are mapped to 243 English
tied states as in the Malay-to-English case. Note that BUT
Hungarian recognizer uses 8-kHz sampling waveform as the
input while our target English corpus (i.e. Aurora-4) is 16-
kHz. We need to down-sample the target corpus to 8-kHz
before applying to the Hungarian recognizer.

Table 4 shows the results of the two phone mapping
systems with two different source languages. The first row
is WER of the phone mapping with the source language
Malay as in the previous sections. In this case source acous-
tic scores are generated by the Malay triphone HMM/GMM
model. The result for Hungarian-to-English mapping is
shown in the second row. It can be seen that when a very
small amount of target training data is available (i.e. 7 and
16 minutes) using the Hungarian source acoustic model pro-
vides better performance than using the Malay model. One
possible reason is that Hungarian and English are more simi-
lar than the pair Malay-English. As a result, the Hungarian-
to-English phone mapping can be implemented easier and
hence provides better performance even with an extremely
small amount of target training data. However, when more
training data is available, using the source Malay model gets
better performance. This can be explained as the BUT Hun-
garian MLP is a monophone recognizer while the Malay
HMM/GMM model is a triphone recognizer which provides
higher resolution feature input for phone mapping. This will
be useful when we have more target data to train the map-
ping.

The last two rows of Table 4 show the result when
Malay-to-English and Hungarian-to-English mappings are
combined at feature and probability levels. Interestingly, the

Table 4 The WER (%) of the proposed phone mapping for two source
languages with different amounts of target training data (the target acoustic
model is triphone).

Method Amount of training data
7 minutes 16 minutes 55 minutes

Malay-to-English 20.3 16.7 11.7
Hungarian-to-English 18.2 16.1 12.3

Combined models
Feature combination 15.0 13.1 9.1
Probability combination 14.7 13.3 9.4

†http://speech.fit.vutbr.cz/software/phoneme-recognizer-
based-long-temporal-context

combined models provide a big improvement over both the
individual mappings. It demonstrates that the two models
of the two source languages provide complementary infor-
mation. In other words, combination of different source lan-
guages can give a better acoustic coverage for phone map-
ping. It is also noted that with 55 minutes of English training
data, the best combined phone mapping can give 9.1% WER
which is close to 7.9% WER of the monolingual model
trained with the whole 15 hours of English training data.

There is a also a slight difference between the two com-
bination approaches. While probability combination outper-
forms feature combination for the case of 7 minutes of train-
ing data, with bigger amounts of training data i.e. 16 and 55
minutes, feature combination is a better choice. Note that
the dimension of posterior vectors generated by the Hun-
garian phone recognizer is only 186, which is much lower
than the number of tied states in the Malay triphone model.
Hence, it is less likely to have overtraining problem when
16 minutes or more English training data is available. This
may explain why feature combination is better than proba-
bility combination in Table 4 and vice versa in Table 3 (the
last two rows).

3.8 Discussion on Mapping Structure

In the previous sections, we showed that for the case of
under-resourced language, our phone mapping method us-
ing MLPs is much more effective than the tandem approach
which tries to model source acoustic scores using Gaussian
distributions. It demonstrates that in this case choosing an
appropriate model to relate the source acoustic scores to tar-
get phone posteriors is very important. In all of our previous
experiments, 3-layer MLPs were used as the phone mapping
from source language to the target language. In this section,
we will explain why this MLP topology is chosen for phone
mapping.

As we stated in the previous sections, source acous-
tic scores i.e. posteriors, likelihoods can be considered as
higher level features as compared to conventional features
such as MFCCs for speech recognition. This raises the ques-
tion of whether we can use a simple mapping to perform
this task, for example linear combination. To answer this
question, we conduct phone mapping experiments using 2-
layer neural networks (NN) (i.e. with no hidden layer) using
linear activation function as the output layer. In the decod-
ing phase, the output of NN is normalized using softmax
function. In the case of monolingual hybrid HMM/MLP, the
MLP is also considered as a mapping from the input cepstral
feature i.e. MFCCs to HMM states.

Table 5 shows the phone mapping results with differ-
ent inputs and different NN architectures for 16 minutes of
target training data. Three different types of input are: (i)
MFCCs with 351 inputs (i.e. 9 frames of 39-dimensional
MFCC vectors), (ii) source monophone likelihoods with 102
inputs, (iii) source triphone likelihoods with 1592 inputs.
243 outputs are used to model 243 tied states in the target
context-dependent acoustic model. The second column rep-
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Table 5 The WER (%) of different mapping architectures with 16 min-
utes of target training data (the target acoustic model is triphone). Number
in (.) in the first and the last column indicates the number of inputs and
number of hidden units, respectively. Number in (.) of the third column
represents relative improvement over the corresponding 2-layer NN.

Input Mapping architecture
2-layer NN 3-layer NN 3-layer NN

(500 HUs) (*)
MFCC (351) 30.1 22.5 (25.1%) 26.0 (144 HUs)
Source monophone (102) 21.6 18.3 (15.3%) 20.3 (72 HUs)
Source triphone (1592) 17.6 16.7 (5.0%) 16.9 (211 HUs)

resents WER using 2-layer NN. The third column is the re-
sult using 3-layer NN with 500 neurons in the hidden layer.
The number in (.) represents relative improvement over 2-
layer NN mapping. By comparing these two columns of
Table 5, it is observed that in all three cases, 3-layer NNs
outperform corresponding 2-layer NNs significantly, espe-
cially for the case of MFCC input. The results show that
for low level MFCC features, 3-layer MLP performs much
better than 2-layer NN due to that the system needs to be
powerful enough to accurately map MFCC to states of the
target language. For high level features such as source tri-
phone scores, although the difference between the 2-layer
and 3-layer networks is smaller, a more flexible 3-layer net-
work is still preferred. Our result is also consistent with the
result reported in [11] where the posterior weighted product-
of-expert approach realized by a 3-layer NN outperformed
the product-of-posterior model realized by a 2-layer NN in
a cross-lingual phone recognition task.

Now we investigate whether the improvement of 3-
layer NNs over 2-layer NNs comes from larger number of
parameters or its 3-layer architecture. The result shown in
the last column of Table 5 is obtained using 3-layer NNs
those have the same number of parameters as the corre-
sponding 2-layer NNs. Number in (.) represents number
of hidden units in the 3-layer NN. It is observed that al-
though the performance deteriorates when smaller hidden
layers are used, 3-layer NNs perform better than 2-layer
NNs even with the same number of parameters. One advan-
tage of using 3-layer NNs is that while it is impossible to
change number of parameters in 2-layer NNs, it is very easy
to select a suitable model complexity for different phone
mapping problems by changing number of hidden units in
3-layer NNs. Note that in all of our mapping experiments,
we simply choose 3-layer NNs with 500 hidden units. We
believe that further improvement can be obtained if this pa-
rameter is chosen carefully for each experiment.

To investigate in details the advantage of 3-layer NNs
over 2-layer NNs for phone mapping, we extend the previ-
ous experiment by using 3 different amounts of target train-
ing data: 7, 16, and 55 minutes. It is observed in Table 6 that
the 3-layer NN mapping outperforms the corresponding 2-
layer NN mapping in all cases and the relative improvement
increases consistently when we have more training data. It
demonstrates that when more training data is available, a
more powerful mapping is required. However, even in the
case of extremely small amount of training data (i.e. 7 min-

Table 6 The WER (%) of 2 different phone mapping acoustic models
with 3 different amounts of target training data (the target acoustic model
is triphone). Percentages are indicated in (.) is the relative improvement of
the 3-layer NN over the 2-layer NN acoustic model.

Input Amount of training data
7 minutes 16 minutes 55 minutes

Mapping using 2-layer neural network
MFCC (351) 36.9 30.1 23.5
Source monophone (102) 23.9 21.6 16.6
Source triphone (1592) 20.8 17.6 14.3

Mapping using 3-layer neural network (500 HUs)
MFCC (351) 29.9 (19.1%) 22.5 (25.1%) 14.4 (38.9%)
Source monophone (102) 21.7 (9.2%) 18.3 (15.3%) 13.4 (19.7%)
Source triphone (1592) 20.3 (2.1%) 16.7 (5.0%) 11.7 (18.0%)

utes), using 3-layer NN mapping brings more benefit.
Recently, deep neural networks have been applied suc-

cessfully for speech recognition [20]–[23]. They show sig-
nificant improvements over 3-layer NNs. However in our
preliminary experiments, deep neural networks do not help
to improve the phone mapping performance. As we proved
in this section mapping from acoustic scores of the source
language to the target language is simpler than from raw fea-
tures such as MFCCs. One possible reason is that in phone
mapping, 3-layer NNs is powerful enough while deep neu-
ral network can suffer from over-fitting in the case of under-
resourced language where a small amount of training sam-
ples may not be able to train a deep network with many hid-
den layers. We will investigate this issue in details in the
future work.

3.9 Target Model Complexity Optimization

In the previous experiments, the number of tied states in the
target acoustic model was kept fixed at 243 for comparison
purpose. It is an appropriate choice when a small amount
of training data is available such as 7 or 16 minutes. How-
ever, in the case we have more training data i.e. 55 minutes,
higher number of tied states may improve the performance.
In this section, we re-run all experiments for the case of
55 minutes of training data with different numbers of tied
states.

Table 7 shows the WERs of different models with three
different numbers of tied states in the target acoustic model
i.e. 243, 501 and 1003. The first two rows are results
given by the two monolingual baseline models. The WER
of the cross-lingual tandem system is reported in the next
row, while the next three rows present the WERs of our
phone mapping approach. The last four rows show the per-
formance of combined models with different combination
schemes. From the table, it can be observed that although
the performance of different systems varies differently for
different number of states generally, with 55 minutes of
training data, using 501 tied states provides lowest WERs
for almost all models compared with the cases of 243 and
1003 states. Combined models outperform individual mod-
els significantly for all three cases. The feature combination
method gives a lower WER in the case when the triphone
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Table 7 The WER (%) of different acoustic models with 55 minutes of
target training data for 3 different number of tied states in the target acoustic
model.

Method Number of tied states
243 501 1003

Baseline monolingual acoustic model
HMM/GMM 14.8 14.0 13.9
HMM/MLP 14.4 14.1 13.9

Baseline cross-lingual tandem acoustic model
Tandem 13.5 12.9 13.4

Propose cross-lingual acoustic model
Triphone Malay HMM/GMM 11.7 11.0 11.8
Triphone Malay HMM/MLP 11.9 11.3 12.4
Monophone Hungarian HMM/MLP 12.3 11.4 11.3

Malay HMM/GMM and Malay HMM/MLP combination
Feature combination 10.8 10.4 10.9
Probability combination 10.5 9.8 11.0

Malay HMM/GMM and Hungarian HMM/MLP combination
Feature combination 9.1 9.0 9.2
Probability combination 9.4 9.5 9.3

Malay HMM/GMM and monophone Hungarian models are
combined. While in the case of combination triphone Malay
HMM/GMM and HMM/MLP models, the probability com-
bination method outperforms the feature combination ap-
proach except in the 1003 states case.

4. Conclusion

In this paper, we proposed a context-dependent cross-
lingual phone mapping for fast training of acoustic model
for under-resourced languages. Our experimental results
verified the effectiveness of the proposed phone mapping
technique for building LVCSR models. There are two ad-
vantages in our method, i.e. the use of triphone states for
improved acoustic resolution of both the source and tar-
get models and the ability of using various types of source
acoustic models which results in an additional improvement
when combining them even they are trained from the same
data. Our paper also indicated that combination of different
source languages can significantly improve the performance
of phone mapping as we may have a better acoustic coverage
for the target language. In this work, we conclude that using
a “phone mapping” is a better choice than modeling source
acoustic scores by a mixture of Gaussian distributions in the
case of under-resourced speech recognition.

In the paper, we showed that although the mapping
from acoustic scores of the source language to the target
language is simpler than from low level features such as
MFCCs, using 3-layer neural networks as the mapping can
achieve better results over weak mappings such as linear
combination even for the case of very limited amount of tar-
get training data. Our preliminary results indicated that us-
ing deeper structure mapping does not help to improve the
performance. However, it is an interesting issue for future
research as deep neural networks can handle unlabeled train-
ing data effectively in the unsupervised pre-training pro-
cess [23]. We can benefit from using unlabeled training data
from many sources.

Cross-lingual phone mapping is a relatively new topic
and many aspects of the technique are not well known yet.
For example, how do we measure the similarity of the acous-
tic spaces of two languages and how does this similarity
affect cross-lingual phone mapping performance. We will
examine these questions in future work.

References

[1] T. Schultz and K. Kirchhoff, Multilingual Speech Processing, 1st
ed., Elsevier, Academic Press, 2006.

[2] T. Schultz and A. Waibel, “Experiments on cross-language acous-
tic modeling,” Proc. International Conference on Spoken Language
Processing (ICSLP), pp.2721–2724, 2001.

[3] T. Vu, F. Kraus, and T. Schultz, “Cross-language bootstrapping
based on completely unsupervised training using multilingual A-
stabil,” Proc. IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp.5000–5003, 2011.

[4] A. Stolcke, F. Grezl, M. Hwang, X. Lei, N. Morgan, and D. Vergyri,
“Cross-domain and cross-language portability of acoustic features
estimated by multilayer perceptrons,” Proc. IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
pp.321–324, 2006.

[5] S. Thomas, S. Ganapathy, and H. Hermansky, “Cross-lingual and
multistream posterior features for low resource LVCSR systems,”
Proc. Annual Conference of the International Speech Communica-
tion Association (INTERSPEECH), pp.877–880, 2010.

[6] P. Lal, “Cross-lingual Automatic Speech Recognition using Tandem
Features,” Ph.D. thesis, The University of Edinburgh, 2011.

[7] L. Burget, et al., “Multilingual acoustic modeling for speech recog-
nition based on subspace Gaussian mixture models,” Proc. IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp.4334–4337, 2010.

[8] L. Liang, A. Ghoshal, and S. Renals, “Maximum a posteriori adap-
tation of subspace Gaussian mixture models for cross-lingual speech
recognition,” Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp.4877–4880, 2012.

[9] V-B. Le and L. Besacier, “Automatic speech recognition for under-
resourced languages: Application to vietnamese language,” IEEE
Trans. Audio Speech Language Process., vol.17, no.8, pp.1471–
1482, Nov. 2009.

[10] K.C. Sim and H. Li, “Context sensitive probabilistic phone mapping
model for cross-lingual speech recognition,” Proc. Annual Confer-
ence of the International Speech Communication Association (IN-
TERSPEECH), pp.2715–2718, 2008.

[11] K.C. Sim, “Discriminative product-of-expert acoustic mapping for
crosslingual phone recognition,” Proc. IEEE Workshop on Auto-
matic Speech Recognition and Understanding (ASRU), pp.546–551,
2009.

[12] N. Parihar and J. Picone, “Aurora working group: DSR front end
LVCSR evaluation AU/384/02,” Inst. for Signal and Infomation Pro-
cess., Mississippi State Univ., Mississippi, Tech. Rep., 2002.

[13] X. Xiao, E.S. Chng, T.P. Tan, and H. Li, “Development of a malay
LVCSR system,” Proc. Oriental COCOSDA, 2010, pp.25–30.

[14] H. Bourlard and N. Morgan, “Continuous speech recognition by
connectionist statistical methods,” IEEE Trans. Neural Netw., vol.4,
pp.893–909, 1993.

[15] P. Matejka, P. Schwarz, and J. Cernocky, “Towards lower error rates
in phoneme recognition,” TSD, Brno, Czech Republic, 2004.

[16] A. Abad, T. Pellegrini, I. Trancoso, and J. Neto, “Context dependent
modelling approaches for hybrid speech recognizers,” Proc. Annual
Conference of the International Speech Communication Association
(INTERSPEECH), pp.2950–2953, 2010.

[17] Z. Tuske, M. Sundermeyer, R. Schluter, and H. Ney, “Context-
dependent MLPs for LVCSR: TANDEM, hybrid or both?,” Proc.
Annual Conference of the International Speech Communication As-



DO et al.: CROSS-LINGUAL PHONE MAPPING FOR LARGE VOCABULARY SPEECH RECOGNITION OF UNDER-RESOURCED LANGUAGES
295

sociation (INTERSPEECH), 2012.
[18] K. Kirchhoff, “Combining articulatory and acoustic information for

speech recognition in noisy and reverberant environments,” Proc.
Fifth International Conference on Spoken Language Processing,
1998.

[19] P. Schwarz, P. Matejka, and J. Cernocky, “Hierarchical structures of
neural networks for phoneme recognition,” Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp.325–328, 2006.

[20] A. Mohamed, G.E. Dahl, and G. Hinton, “Deep belief networks for
phone recognition,” Proc. NIPS 2009 Workshop on Deep Learning
for Speech Recognition and Related Applications, 2009.

[21] A. Mohamed, G.E. Dahl, and G. Hinton, “Acoustic modeling using
deep belief networks,” IEEE Trans. Audio Speech Language Pro-
cess., vol.20, no.1, pp.14–22, 2012.

[22] G.E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recogni-
tion,” IEEE Trans. Audio Speech Language Process., vol.20, no.1,
pp.30–42, 2012.

[23] V.H. Do, X. Xiao, and E.S. Chng, “Comparison and combination
of multilayer perceptrons and deep belief networks in hybrid auto-
matic speech recognition systems,” Proc. Asia-Pacific Signal and In-
formation Processing Association Annual Summit and Conference
(APSIPA ASC), 2011.

[24] X. Li, “Combination and generation of parallel feature streams for
improved speech recognition,” PhD thesis, Carnegie Mellon Univer-
sity, 2005.

[25] X. Cui, J. Xue, B. Xiang, and B. Zhou, “A study of bootstrap-
ping with multiple acoustic features for improved automatic speech
recognition,” Proc. Annual Conference of the International Speech
Communication Association (INTERSPEECH), 2009.

[26] C. Ma, H. Kuo, H. Soltau, X. Cui, U. Chaudhari, L. Mangu, and
C.-H. Lee, “A comparative study on system combination schemes
for lvcsr,” Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp.4394–4397, 2010.

Van Hai Do received the B.Eng. and M.Sc.
degrees in Electronics and Telecommunications
from the Hanoi University of Science and Tech-
nology, Vietnam, in 2002 and 2006, respec-
tively. Since August, 2009 he is pursuing his
Ph.D. at the School of Computer Engineering,
Nanyang Technological University, Singapore.
His research focuses on hybrid acoustic mod-
els, cross-lingual speech recognition for under-
resourced languages. From September, 2012 to
March, 2013 he was at the International Com-

puter Science Institute (ICSI), Berkeley, USA as an attachment. At ICSI, he
contributed to the BABEL project which aims to develop keyword search
capability for under-resourced languages rapidly.

Xiong Xiao received his B.Eng. degree
and PhD degree in 2004 and 2010, respectively,
both from the School of Computer Engineer-
ing, Nanyang Technological University (NTU),
Singapore. Since 2009, he has been a research
staff in the speech team of Temasek Lab@NTU,
where he is now a senior research scientist. His
research interests include robust speech recogni-
tion, pattern recognition, and signal processing.

Eng Siong Chng is currently an Asso-
ciate Professor in the School of Computer Engi-
neering (SCE), Nanyang Technological Univer-
sity (NTU), Singapore. Concurrently, he is the
deputy director of Emerging Research Lab (ER
Lab@SCE) in the same school. Prior to joining
NTU in 2003, he has worked in several leading
research centers/companies, namely: Knowles
Electronics (USA), Lernout and Hauspie (Bel-
gium), Institute of Infocomm Research (I2R,
Singapore), and RIKEN (Japan). He received

both PhD and BENG (Hons) from Edinburgh University, Scotland, in 1996
and 1991 respectively. His area of focus is in speech research and signal
processing. To date, he has received numerous external research grants as
principal investigator with a total funding amount of S$3.4 million for the
Speech and Language Technology Program (SLTP) at SCE. His publica-
tions include 2 edited books and over 100 journal/conference papers. He
has graduated 4 PhD students. He has served as the publication chair for 3
international conferences (APSIPA-2010, APSIPA-2011, ISCSLP-2006),
and has served as program committees, session chairs, and organizers in
many technical sessions at various international conferences. He has been
an associate editor for IEICE (special issue 2012), a reviewer for Speech
Communications, Eupsico, IEEE Trans Man, System and Cybernectics Part
B, Journal of Signal Processing System, ACM Multimedia Systems, IEEE
Trans Neural Network, IEEE Trans CAS-II, and Signal Processing. Dr
Chng is the recipient of the Tan Chin Tuan fellowship (2007) to visit Ts-
inghua University, the JSPS travel grant award (2008) to visit Tokyo Insti-
tute of Technology, and the Merlion Singapore-France research collabora-
tion award in 2009.

Haizhou Li received the B.Sc., M.Sc.,
and Ph.D. degrees in electrical & electronic
engineering from the South China University
of Technology (SCUT), Guangzhou, in 1984,
1987, and 1990, respectively. Dr Li was a Re-
search Assistant from 1988 to 1990 at the Uni-
versity of Hong Kong, Hong Kong, China. In
1990, he joined SCUT as an Associate Profes-
sor. From 1994 to 1995, he was a Visiting Pro-
fessor at CRIN, Nancy, France. In 1995, he
became the Manager of the ASR group at the

Apple-ISS Research Centre in Singapore where he led the research of Ap-
ple’s Chinese Dictation Kit for Macintosh. In 1999, he was appointed Re-
search Director of Lernout & Hauspie Asia Pacific. From 2001 to 2003,
he was the Vice President of InfoTalk Corp. Ltd. Since 2003, he has
been with the Institute for Infocomm Research (I2R), Singapore, where
he is now the Principal Scientist and Head of Human Language Technol-
ogy Department. His current research interests include automatic speech
recognition, speaker and language recognition and natural language pro-
cessing. Dr Li was named one of the two Nokia Visiting Professors 2009
by the Nokia Foundation in recognition of his contributions to Speaker and
Language Recognition research. He was a recipient of the National In-
focomm Award 2002 in Singapore. He is now an Associate Editor for
Springer International Journal of Social Robotics, IEEE Transactions on
Audio, Speech and Language Processing, Computer Speech and Language,
and ACM Transactions on Speech and Language Processing. He is also an
elected Board Member of International Speech Communication Associa-
tion (2009–2013).


