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Abstract

Recent advances in data science and machine learning bring new opportunities for the

modeling and optimization of energy system. Applications of machine learning models

in energy system modeling and optimization are explored in the thesis. It is found that

through the combination of feature engineering and machine learning, high-fidelity yet

fast-response surrogate model could be constructed (20% increase in building energy

forecast example). Such machine learning based models are further incorporated into

mixed integer nonlinear programming optimization framework to optimize the energy

efficiency, payback period, and environmental impact of energy system. By combining

greedy search with mixed integer nonlinear programming, CO2 emission of industrial

co-generation system is reduced from 7921tons to 5195tons. A domain ontology for energy

system modeling and optimization is established, the whole modeling and optimization

method is combined with the ontology to develop an intelligent system to enable ontology-

based automatic optimization for Jurong Island eco-industrial park Singapore. The work

of this thesis shows that machine learning models, together with existing optimization

framework, can automatically harness the knowledge database, formulate optimization

problem, facilitate the energy system design and optimization related decision-making

efficiently.
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Chapter 1

Introduction

1.1 Energy system challenges

Energy drives modern society. Since the industrial revolution, almost all human activities

are accompanied by intensive energy consumption. By the latest report of International

Energy Agency (IEA), in 2013 the whole world has consumed 9301.06 million ton of oil

equivalent (Mtoe), increasing by more than 100% since 1973 (Birol et al., 2010). As a con-

sequence, the overall global greenhouse gas (GHG) emissions has touched 32 gigaton CO2

in 2010, which has been identified as a critical reason for global climate change (Sieminski

et al., 2014). Tackling such energy trilemma requires not only material and device-related

innovations, but also coordinated modeling simulation and optimization (MSO) efforts

which could enable system level performance improvement. MSO of energy system is

characterized by its inherent complexity and the multi-objective nature of related decision-

making (Klatt and Marquardt, 2009): on one hand energy system could be modeled and

optimized at various tempo-spatial scales, system could be decomposed into subsystems

and subsystems could be aggregated into system (Scattolini, 2009); on the other hand,

design and operation of energy system always pursues different and often contradictory

objective functions - maximization of energy efficiency meanwhile minimization of in-

vestment and environmental impact (Zhang et al., 2016). Generally, the work of this thesis

originates from such a context.
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Planning

Scheduling

Optimization

Control

• Months to years

• Equipment selection and sizing

• Days to weeks

• Unit commitment

• Hours to days

• Technical parameters specification

• Seconds to hours

• Supervisory and regulatory control

Fig. 1.1 A simple hierarchy of energy system modeling and optimization

A number of works have been conducted regarding the modeling and optimization

of different energy systems, including building energy system (Zhang et al., 2018; Zhao

et al., 2013b), urban energy system (Pecan Street, 2018; Weber et al., 2007), and industrial

energy system (Gong, 2003; Karlsson, 2011). These works answer the questions related

to energy system planning, scheduling, optimization, and control. A simple hierarchy of

these conceptions are shown in Figure 1.1, although such temporal scale based taxonomy

is implicit, it represents the engineering fact that design and operation of energy system is

a non-trivial research problem that spans diverse interests and stakeholders. In addition,

challenges regarding the modelling and optimization of energy system come from the

following aspects:

• Uncertainty. Classic energy system modeling and optimization usually deploys a

deterministic approach without considering uncertainty. Yet design and operation

of modern energy system faces uncertainty challenges from various aspects, such

as time-sensitive electricity and commodity prices (Mitra et al., 2012), intermittent

renewable generation (Pesch et al., 2015), responsive demand side management (Al-

badi and El-Saadany, 2007), and flexibility from multiple storage options (Patteeuw

et al., 2015; Zhao et al., 2013a). Such uncertainties would usually change the de-
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terministic mathematical programming problem into robust or stochastic ones,

bring additional difficulties to model formulation and problem-solving (see Sec-

tion 1.2). How to properly incorporate such uncertainties into the energy system

modeling and optimization framework remains the first open question that needs

to be answered in the thesis.

• Scalability. Design and optimization of energy system is a multi-scale problem by

nature: in the temporal dimension, yearly equipment sizing problem could always

be decomposed into daily unit commitment(see Figure 1.1), whereas daily unit

commitment problem could be treated as step-wise aggregation of hourly economic

dispatch problem and so on (Daoutidis et al., 2018); similarly in spatial dimension,

there is trend to extend energy system modeling to coarser scale, for example,

integrated optimization of energy system and global supply chain (Grossmann,

2012). In such cases, improving the scalability of energy system modeling and

optimization framework (e.g. making sure low-level models could be recursively

used or aggregated into high-level) is another challenge for energy system modeling

and optimization.

Fig. 1.2 Integrating energy system optimization into supply chain(Klatt and Marquardt,
2009)
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• Reusability. In terms of energy system modeling and optimization (synthesis, design,

operation are several similar terminologies which are widely used in literature as

well) researches, a vast number of case studies are available (Liu et al., 2010; Voll

et al., 2013). Although the application situations and system configurations are

different, essentially the solving strategy and mathematical formulation is quite sim-

ilar; however, an important problem is that their reusability is very low (Andiappan,

2017; Voll et al., 2013), that is to say, once the application cases change, the proposed

optimization method would always need manually delicate calibration of model

inputs and algorithm parameters, which significantly hinders their application in

industry (Castro et al., 2018). As is pointed by Klatt and Marquardt (2009) “process

synthesis methodologies relying on rigorous optimization are rarely used in industrial

practice. This statement even holds for special cases such as heat exchanger network

design or distillation column sequencing and design but even more for the treatment

of integrated processes." From here, increasing the reusability of existing energy

system modeling and optimization is equally important as developing new models

and methods, more perspectives on this aspect would be provided in Section 1.3.

1.2 Modeling and optimization

Modeling and optimization of energy system are two interconnected parts in energy sys-

tem design and operation. Modeling could produce mathematical representations of

different components in the energy system, which would then used in the optimization

framework; high-fidelity yet fast-response models are proven to be of vital importance

for efficient optimization solution (Beykal et al., 2018). By default, there are two types

of numerical models used in mimicking the dynamics of energy conversion technolo-

gies, namely first-principle model and empirical model (see Figure 1.3). First principle

model, or equation-based approach, describes the underlying physics of energy con-

version processes (e.g. reaction dynamics, heat and mass transfer). Many delicately

calibrated first-principle models could provide very high fidelity but they are usually
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computationally expensive and have low re-usability due to fixed assumptions (Edgar

and Pistikopoulos, 2018); comparatively empirical model uses empirical equation to de-

scribe the performance of various energy system components. Such empirical models

usually have high computation speed yet relatively low accuracy due to lack of physical

mechanisms (Kumar et al., 2017). In between first-principle model and empirical model

is the semi-empirical model which partially includes description of physical mechanisms

whereas key parameters are specified by empirical values, such models have also been

used in certain applications (Wishart et al., 2006).

First-principle 

model

Accuracy

Speed High

High Low

Low

Empirical

model

Semi-empirical 

model

Data-driven 

model

Fig. 1.3 Accuracy and computational speed of different types of model

In recent years, data-driven model, or surrogate models, provides a new paradigm

for energy system modeling. Data-driven model could discover the algebraic relation-

ships hidden behind the data sets without highlighting the description of physical pro-

cesses (Zhang et al., 2018), making it relatively versatile. Actually, the paradigm shifts from

equation-driven to data-driven is becoming a trend in many engineering fields (Al-Jarrah

et al., 2015), especially in this era of big data (Giaouris et al., 2018). Moreover, the develop-

ment of machine learning (ML) in recent decades is pushing forward the advance of such

data-driven modeling and simulation, various ML techniques are adapted to different

questions in this domain (Lee et al., 2018). Thus, a prosperous interdisciplinary research

area, namely data-driven energy system modeling and optimization in this thesis, is taking
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shape. Indeed, the capability of ML to handle high complexity make it a powerful tool

for solving such energy system design and optimization problem (Sikorski et al., 2016;

Tüfekci, 2014).

Optimization of energy system typically results in a mathematical programming prob-

lem that has objective function and constraints, where the values of decision variables

that could minimize (or maximize) the objective function would be determined in the

constrained variable space as shown in Equation 1.1:

min
x

f (x)

s.t. g (x) ≤ 0

h(x) = 0

(1.1)

x is the decision variables in vector, f is the objective function, g and h are the in-

equality and equality constraints in vector respectively. Furthermore, such optimization

problems could be classified into linear programming (LP), mixed integer linear program-

ming (MILP), nonlinear programming (NLP), and mixed integer nonlinear programming

(MINLP) problems according to linearity of objection function and constraints together

with the continuity of decision variables (i.e. whether there are integer variables in the

decision space). Mathematically LP, MILP, NLP, and MINLP could be denoted as Equa-

tions 1.2-1.5.

min
x

cT x

s.t. Ax = b

x ≥ 0

(1.2)

c and b are vectors of coefficients, and A is matrix of coefficients. It needs to be noted

here that equation 1.2 is the standard form of LP, other LP formulations could always be

reduced to such standard form using slack variables and surplus variables easily (Bertsimas

and Tsitsiklis, 1997). In the same way, the MILP formulation is represented as:
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min
x,y

cT x +d T y

s.t. Ax +B y = b

x ≥ 0

y ∈ {0,1}

(1.3)

c, d and b are vectors of coefficients, and A and B are matrix of coefficients. MILP is

a very common mathematical formulation for energy system design and optimization

because integer variable is needed to represent whether certain components are activated

in energy system or not (Yokoyama et al., 2015). Sequentially, if objective function and/or

constraints are not a linear function of decision variables, the NLP formulation would

have the following notation:

min
x

f (x)

s.t. gm ≤ 0 ∀m ∈ {1,2, · · · , M }

gn(x) ≤ 0 ∀n ∈ {1,2, · · · , N }

x ≥ 0

(1.4)

gm is the constraints that are not explicitly functions of decision variables, gn(x) is the

constraints that could be expressed in mathematical equations. If binary variables are

introduced into the formulation, NLP will evolve into MINLP as follows:

min
x,y

f (x, y)

s.t. gm ≤ 0 ∀m ∈ {1,2, · · · , M }

gn(x, y) ≤ 0 ∀n ∈ {1,2, · · · , N }

x ≥ 0

y ∈ {0,1}

(1.5)

f (x, y) and gn(x, y) are functions of x and y instead of x alone. However, it has to

be underlined that although it is easy to formulate NLP and MINLP, the true optimum
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is not easy to find through current algorithms (Trespalacios and Grossmann, 2017). In

fact, in many optimization frameworks, linearization of nonlinear terms are conducted to

transform the NLP and MINLP into LP and MILP, respectively (Frangopoulos et al., 2002;

Yokoyama et al., 2015) so that more efficient mathematical solution could be achieved.

Detailed discussions regarding such perspectives could be found in Chapter 3.

Solution algorithms for such mathematical programming is another challenge faced

by not only energy system designer and operators but also operation research community

and even mathematicians (Achterberg and Wunderling, 2013). For LP problems, global op-

timal is relatively easy to achieve because LP is convex by nature and its optimal is defined

by the feasible region boundary (Boyd and Vandenberghe, 2004). As a result, most pop-

ular commercial optimization software and solver, such as GAMS (2018), Gurobi (2018),

and CPLEX (2018), could handle such LP and find global optimal with moderate computa-

tional cost; comparatively, NLP is much more difficult to handle because global optimal

usually does not overlap with feasible region boundary. Although NLP in certain forms, for

example, quadratic programming, could be handled, NLP in general form is quite difficult

to tackle mathematically (Bazaraa et al., 2013). Integer programming with binary variables

is usually relaxed into corresponding LP or NLP using branch-and-bound method (Land

and Doig, 1960), which divides the original problem into a set of sub-problems. A com-

mon shortage of such methods is that they could be trapped into local optimal without

reaching the global optimal (Trespalacios and Grossmann, 2017). In order to overcome

such shortages, metaheuristic algorithms, such as evolutionary algorithms (Li et al., 2015),

simulated annealing (Kirkpatrick et al., 1983), and particle swarm optimization (Du and

Swamy, 2016), are proposed as global solutions. Although successful applications have

been reported, such methods usually suffer from slow converging speed and tedious pa-

rameter tuning (Voll et al., 2013), which are the main drawbacks to overcome. A thorough

discussion in terms of solving algorithms need profound mathematical insights, thus is

beyond the scope of this thesis. Most mathematical programming problems in this thesis

are solved by commercial software as mentioned earlier unless special explanation is

given. For those interested in comprehensive comparison of such algorithms, the books
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by Brownlee (2011), Boyd and Vandenberghe (2004) and Bertsimas and Tsitsiklis (1997)

are good references.

1.3 Machine learning fundamentals

The prosperous development of data science and ML in recent years has brought new

opportunities to many traditional industries; the energy industry could be and should be

one of the beneficiaries. The potential benefits of going digital are being actively explored

by government, industry, and academia from various perspectives, ranging from power

generation unit fault diagnosis (Ajami and Daneshvar, 2012) to inter-plant network syn-

thesis in eco-industrial parks (Zhang et al., 2016). The recent IEA report points out that

“digitally interconnected systems could fundamentally transform the current energy indus-

try” (International Energy Agency, 2016); the newly launched US Department of Energy’s

Clean Energy Smart Manufacturing Innovation Institute (CESMII) also supports the future

integration of smart manufacturing and energy industry, of which one important aspect is

exploring the possibility of using smart manufacturing conceptions to improve efficiency

and sustainability of energy industry (Edgar and Pistikopoulos, 2018). Specifically, many

work have been done regarding different possible applications; for instance, various ma-

chine learning algorithms have been applied to predict the energy demand of buildings

(Zhang et al., 2018), industry (Papadaskalopoulos et al., 2015) and transportation (Alam

et al., 2013). Similarly, various computational solutions have been applied to variable

renewable energy (mainly solar and wind) generation forecast (Antonanzas et al., 2016;

Monteiro et al., 2009).

However, despite the successful case studies reported, the design principles and

operation regimes of energy system remain largely unchanged (International Energy

Agency, 2016). In other words, the wealth of data harbored in energy system has not yet

been fully unleashed; this is because on one hand the technology readiness level of some

ML technologies are not high enough to support large-scale commercialization; on the

other hand the integration of such ML and energy systems seems to be quite inarticulate,



10 Introduction

for example, almost every single equipment (e.g. pump, boiler, turbine, pipe) in a thermal

power plant has its own high fidelity simulation models, but they are seldom fully used in

the integrated plant simulation and control. In other words, the digital artifacts of different

components at the lower level have not been well linked to higher level simulation in

energy system modeling. In order to bridge such gaps, the following questions need to be

answered: What kinds of data exist in energy system? How the data could be efficiently

collected and processed given the current data warehouse architecture? What kind of ML

methods could be developed to get insights from such data? Are there any successful ML-

based energy system design and optimization demonstration projects at various scales? If

so, what lessons could be learned from such pilot projects? If not, how should we adapt

the existing ML algorithms so that they could be used in energy system modeling and

optimization? In the interest of answering these questions, the fundamentals of machine

learning are firstly introduced in this section.

Fig. 1.4 Developing predictive models through supervised learning by Raschka (2015)

The conception of machine learning was firstly defined by Samuel (1959) as “Field of

study that gives computers the ability to learn without being explicitly programmed”, later

in 1998 a more explicit definition is proposed “A computer program is said to learn from

experience E with respect to some task T and some performance measure P, if its performance
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on T, as measured by P, improves with experience E” (Craven et al., 1998). Common ML

algorithms investigated in energy system domain application include supervised learn-

ing, unsupervised learning, and reinforcement learning (Lee et al., 2018). In supervised

learning variables (usually referred as feature) are labeled, which means both feature X

and output y are known, ML algorithms are used to develop predictive models that allow

us to correlate unknown X ∗ and y∗ (see Figure 1.4). Usually, feature data X would be

divided into training data Xtrain and Xtest so that no additional data is needed to bench-

mark the model performance (Raschka, 2015). Depending on whether the outputs are

continuous or categorical, supervised learning is further divided into regression problem

and classification problem. Most ML applications in energy system mentioned above fall

into this category. For unsupervised learning, only feature X is known whereas output

y is unknown. In such cases, the task of ML is to find the hidden patterns (i.e. similari-

ties, correlations) in the feature space for further treatment, such as clustering and data

compression (Zhang et al., 2018). Another branch of ML is reinforcement learning which

allows interaction between software (agent) and environment through reward functions

so that dynamic decision-making could be achieved (see Figure 1.5). Such characteris-

tics of reinforcement learning is extremely helpful for optimization under uncertainty as

discussed in Section 1.1 (O’Neill et al., 2010).

Fig. 1.5 Schematic of reinforcement learning by Raschka (2015)

In terms of ML algorithms, example of some algorithms and their applications in the

context of energy system design and optimization is given in Table 1.1. From Table 1.1, it
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can be seen that various ML algorithms have been applied to various application cases in

energy system design and optimization, the most frequently studied ones include linear

regression, curvilinear or polynomial regression, support vector machine (SVM), random

forest, artificial neural network (ANN), boosting, decision tree, K-nearest neighbors (KNN),

principal component analysis (PCA) and so on. Again mathematics behind these algo-

rithms is beyond the scope of this thesis, they are discussed thoroughly by Pedregosa

et al. (2011) and Wu et al. (2008). For energy system engineer, the most important task is

to learn from such algorithms and explore the possibility of applying them to different

sectors in energy system modeling and optimization so that the accuracy and speed of

our optimization could be increased (Lee et al., 2018). Some demonstrations are provided

all through the thesis, yet it has to be underlined here that exhausted discussion regarding

to various applications are impossible in the thesis because ML is a quick-changing sub-

ject with new algorithms thriving regularly, in that sense the energy system engineering

community should keep an eye on the advances of ML and try to extract useful lessons

(more discussions in Chapter 6).

Another important change ML could bring to energy system modeling and optimiza-

tion is not about algorithms, but about artificial intelligence (AI) system development.

The broad definition of AI system refers to “computer system that could simulate human

intelligence” (Russell and Norvig, 2016); specifically, AI system includes expert system,

speech recognition, computer vision and/or the combination of them. Expert system,

sometimes known as knowledge based system (KBS) (Brodie and Mylopoulos, 2012), is

our main interest in the thesis. KBS is defined as “a computer program that reasons and

uses a knowledge base to solve complex problems” (Akerkar and Sajja, 2010) (see Figure 1.6),

the complex problem in this thesis turns out to be energy system design and optimization.

Application of KBS in energy sector has become an active area of research for the past

two decades. Keirstead et al. (2010) developed KBS for integrated modeling of urban

energy system, the database of this tool contains models of different energy conversion

and transportation technologies, the tool was applied to a case of UK eco-town, the tool

can screen the most proper energy conversion technologies and transport network for
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Table 1.1 Common ML algorithms and their applications in energy system

Algorithm Simple explanation Energy system application

Regression

Linear regression

Curvilinear
regression

Support vector
machine

Random forest
regression

Artificial neural
network

Boosting

Discover linear relationship
between output and one or
more features

Find polynomial relation-
ship between output and one
or more features

Use kernel trick to trans-
form the data then find the
optimal boundary between
outputs

Get mean prediction through
multitude of decision trees

Regression through inter-
connected nodes

Ensemble meta-algorithm

Demand forecast and re-
sponse (Albadi and El-
Saadany, 2007; Kialashaki
and Reisel, 2014; Sikorski et al.,
2016; Zhang et al., 2018)

Renewable generation predic-
tion (Antonanzas et al., 2016;
Monteiro et al., 2009; Voyant
et al., 2017)

Power plant fault diagno-
sis (Ajami and Daneshvar,
2012; MacDougall et al., 2016;
Tüfekci, 2014)

Classification

Decision tree

Naive Bayes

Tree-like graph for classifica-
tion

Classification technique
based on Bayes’ theorem

Energy efficiency classifica-
tion (Nikolaou et al., 2015)

Renewable operation mode
characterization (Iqbal et al.,
2014)

Clustering

K-Nearest
Neighbors

Principle
component analysis

Learn feature probability
distribution through distance
function

Reduce feature space di-
mension through orthogonal
transformation

Grid resilience estimation (An-
war et al., 2015)

Electric vehicle charging
strategy analysis (Zhang and
Xiong, 2015)
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the town. Kontopoulos et al. (2016) presented a KBS approach for optimizing domestic

solar hot water system. The main function of the delivered approach is decision making

support. In their research, the KBS was able to select the optimum system configura-

tion according to different criteria through a user-friendly online interface. Ramakumar

et al. (1992) presented a KBS approach for the design of integrated renewable energy

system. This approach can find the optimal combination of renewable energy sources

and end-use technologies based on lowest capital cost criteria. The usefulness of the

proposed approach is proved through an application case of renewable energy system

design. Abbey et al. (2009) proposed a KBS for control of two-level energy storage for wind

energy system. The knowledge-based management algorithm can better schedule the

power from two levels compared to an alternative scheduling approach. In such a context,

this study strives to demonstrate the possibility of using KBS to facilitate energy system

optimal design and operation.

Fig. 1.6 Architecture of typical knowledge based system

The necessity and benefits of applying KBS in energy system are also tightly related

to the emerging trend of Industrial 4.0 and Internet of Things (IoT). Industrial 4.0 is a
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newly emerging conception of industrialization, it creates what has been called a "smart

factory" (Pan et al., 2015). Within the modular structured smart factories, a cyber-physical

system (CPS) monitor physical processes, create a virtual copy of the physical world and

make decentralized decisions. In the future scenario of Industrial 4.0, networking and

integration of different companies through consistently integration of information and

communication technology is allowed. IoT is a key enabler for Industrial 4.0. IoT can

allow ideally everything to collect and exchange data through the network. It can be

expected that during the data fusion process, great difficulties will emerge: for example,

two databases from different sources may use different identifiers for the same concept; or

the statistics from one agent can serve as feed stream for another software agent while the

format heterogeneity between them will hinder the possibility of autonomous communi-

cation. In all these cases, we need ontology intermediary to enhance the performance of

linked data. In other words, the flexibility of KBS to deal with complex and unstructured

data make it indispensable in knowledge management of complex systems such as energy

system.

In the future scenario of Industrial 4.0 and IoT, management of energy system could

be totally different from what it is now. The current design and optimization approaches

that need large-scale human intervention will not be suitable in such application contexts.

Considering the fact that vast and heterogeneous exists in energy system, traditional

human-based approaches may need to deal with large amount of information every day,

which would result in huge human resources to be consumed. Hence developing KBS

that can properly handle the complex and unstructured big data from energy system

seems to be a promising trend in the future scenario of Industrial 4.0. Two requisites

must be fulfilled at least in order to develop such a KBS: firstly, an explicit knowledge base

that contains core concepts, as well as the relationships between the concepts within

the domain of discourse should be designed; secondly, the syntax and semantics of

knowledge representation must be both human-readable and machine-interpretative to

enable effective communication not only between people but also between machines. In
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this context, ontology-based approach becomes a perfect candidate due to its abilities in

tackling these problems.

Fig. 1.7 An example ontology in human-readable format

A key conception in the proposed KBS is ontology. Ontology, philosophically represent-

ing “theory of existence”, is defined as the explicit description of domain conceptions and

their relationships in engineering science. While ontology has been an active tool in the

community of artificial intelligence for some years, only recently is gaining popularity in

many other disciplines, such as gene informatics, medicine, and energy (Ashburner et al.,

2000; Barnaghi et al., 2012). Three basic components of ontology are classes which corre-

spond to concepts in natural language, slots which correspond to attributes of concepts,

instances which correspond to examples of certain concept. More complex ontology may

also have object properties which describe the relationship between different classes as

well as rules and axioms (Noy et al., 2001). Since ontology is formalized conceptualization,

it needs to be populated with instances to make sense. A simple example ontology is

given here to facilitate the understanding of it. In this example, the knowledge “water has

boiling point of 100oC” is meant to be shared. So, firstly classes (i.e. material, property

and value) need to be defined; for then slots (i.e. magnitude and unit) are defined; also,

the relationship between slots and classes needs to be defined (i.e. “material has prop-

erty, property has value”); and finally, “water”, “boiling point” and “100oC” are assigned

as instances of material, property, and value respectively. The visualization of such an

ontology in human readable format is shown in Figure 1.7.
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Fig. 1.8 The example ontology schema in RDF/XML format

However, a machine-readable format of ontology is also needed to make it accessible

to computers, the most common modeling language in such forms is Web Ontology Lan-

guage (OWL) (Bechhofer, 2009). In this case, an OWL ontology is a Resource Description

Framework (RDF) graph. RDF is a metadata model in the form of subject–predicate–object

expressions, which is usually referred to as a “triple”. So essentially an ontology defined

with OWL is no more than a collection of triples. Particularly the machine-readable format

of the example ontology schema complying to RDF/XML syntax is shown in Figure 1.8:

headers specify this is an ontology about water boiling point as well as Uniform Resource

Identifiers (URI) for different concepts; object properties and data properties specify the

knowledge “material has property, property has value”; classes and individuals specify the

knowledge “water is an example of material which has property of boiling point”.
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1.4 Thesis objective and scope

Through the aforementioned introductions, we identify the several following key questions

we try to answer in the thesis:

1. Understand state-of-the-art modeling methods for energy system at different detail

levels and different sections (see Figure 1.9). The horizontal decomposition shown

in Figure 1.9 (b) is a more traditional perspective for energy system decomposition

whereas the vertical decomposition shown in Figure 1.9 (a) is more suitable for

ontological representation in the thesis. At all levels shown in Figure 1.9 (a), many

numerical models have been developed (both first-principle, empirical and data-

driven as shown in Figure 1.3). For instance, most power generators would test and

label their product performance before letting it enter the market, such factory test

data are essentially numerical models; for some relatively new technologies, such

numerical model developments might be done in lab by ways of experiments and/or

simulations. The application of such numerical models in energy system design and

operation mainly needs change of perspectives: in modeling process, we begin from

input variables and output variables, correlations are formulated; however, in energy

system optimization perspective, we begin from input variables and correlations,

output variables are predicted. This is also the meaning of data-driven modeling

in Chapter 2. Staring from data in energy system, building data-driven component

model at different scales is the first objective in the thesis.

2. Formulation of data-driven multi-objective optimization framework. Given the

modeling and optimization techniques introduced in Section 1.2 and the machine

learning advances in Section 1.3, it is important to set up an integrated pipeline

from raw data to a predictive model, to robust optimization. The first step is getting

knowledge from data through ML (see Figure 1.10), such a procedure usually begins

with raw data, go through the procedure of data wrangling (e.g. data selection,

cleaning, and pre-processing), feature engineering, machine learning, and ends

with knowledge evaluation.
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Fig. 1.9 Schematic of energy system by vertical and horizontal decomposition

Fig. 1.10 Data-driven modeling process through machine learning
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After getting such model approximation of different energy system components, sin-

gle objective optimization framework (see Equations 1.1-1.5) could be formulated.

The next step is to combine different single objective optimization problem into a

multi-objective optimization problem. Such multi-objective optimization problem

usually takes the following form:

min
x

( f1(x), f2(x), . . . , fk (x))T

s.t. x ∈ S
(1.6)

f1(x) to fk (x) are the objective functions and S is the feasible region. The ideal idea of

mutli-objective optimization is to find a point x̂ in S that simultaneously optimizes

f1(x) to fk (x); yet such a point almost never exists, in most cases only Pareto-front x̂

could be found, such Pareto-optimal is subject to the following condition:

fi (x) ≤ fi (x̂) ∀i ∈ {1,2, · · · ,K } (1.7)

where at least one strict inequality holds. Multi-objective optimization problem is

usually transformed into single-objective optimization problem through either prior

methods or posterior methods (Pistikopoulos, 2009), two of the most commonly

used methods are weighting method and ε-constrained method. Weighting method

takes the weighted sum of different single objective functions as follow:

min
x

k∑
i=1

wi fi (x)

s.t. x ∈ S

(1.8)

wi is the weighting coefficients that typically are normalized with
∑k

i=1 wi = 1. In

ε-constrained method, the multi-objective optimization problem is converted into

a series of single objective optimization problem through introducing upper bounds

ε for other objective functions:
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min
x

fs(x) ∀s = 1,2, · · · ,K

s.t. ft (x) ≤ εt ∀t = 1,2, · · · ,K , s ̸= t

x ∈ S

(1.9)

εt is the specified upper bound for function ft (x). It is clear that although ε-

constrained method results in richer Pareto-front, it is also more computationally

expensive (Mavrotas, 2009). Somehow there is a trade-off between optimization

efficiency and computational cost in energy system design and optimization, that

is to say, whether it is worthwhile to invest more in refining the modeling and

optimization methods with considerable payback in energy system performance

improvement (Teske, 2014). Discussions in this perspective would also be provided

in Chapter 3.

3. Establishment of domain knowledge base. As mentioned in Section 1.1, one major

problem of the current energy system design and optimization method is low re-

usability caused by manual calibration. In order to overcome such shortages, KBS

approach is proposed in the thesis, and ontology engineering is a powerful tool for

computer-based information modeling and management that aims to conceptualize

the physical world in a formal and explicit manner (Marquardt et al., 2009). So

another main objective of the thesis is to establish a domain knowledge base for

energy system modeling and optimization. Some pioneer work has been done

by Sirikijpanichkul et al. (2007); Trokanas et al. (2015); Van Dam (2009), an ontology

for socio-technical systems that describes the energy system from two perspectives,

namely, a physical network of technical artifacts and a social network of actors.

Relations were defined to connect the physical network and social network. By

following the modeling rule, complex socio-technical infrastructure systems were

modeled, covering oil refinery supply chains, electrical power systems and public

transportation systems. Similarly, ontology for intelligent transportation system

control, efficiency analysis of complex systems, planning of inter-modal freight
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hub locations, abnormal situation management of refinery supply chain, multi-

agent systems for the control of electricity infrastructure and energy and transport

infrastructures (Sirikijpanichkul et al., 2007; Van Dam et al., 2006, 2009). In addition,

the ontology was applied to the Rotterdam-Rijnmond industrial cluster and an

agent-based model was developed to illustrate the design of a model of industry-

infrastructure evolution (Nikolic et al., 2006). Among the reported ontology works,

a limited few are dedicated to the modeling and representation of energy system

applications. The existing ontology works dedicated to energy system normally deal

with one or two facets of a complex system, for example, supply chain or power

system. In order to capture the system complexity, this work presents an ontology

for energy system that is of higher dimension and resolution.

4. Demonstration of automated design and optimization through intelligent system.

Developing an intelligent system which could automatically harness the knowledge

database, formulate optimization problem, solve it using the most efficient method,

and supporting the energy system design and optimization related decision making

is the ultimate goal of the thesis. An analogy of between such ontology-based

decision making and human being decision-making is shown in Figure 1.11.From

Figure 1.11, ontology is the counterpart of brain in human decision making process,

which all serves the role of knowledge base in the system. Ideally, all domain human

expert’s knowledge should be covered in the intelligent system so that relevant

information can be called when it is needed. Semantic query plays the role of

communication in the proposed intelligent system as opposed to the role of nerve

system in human being, it can facilitate the communication between ontology-

based knowledge base and sensor network. Finally, the sensor and actuators in the

sensor network layer can implement the signals sent through query, then control

and optimize the corresponding physical entities in energy system. In summary,

the developed ontology should be integrated with corresponding user interfaces to

make a systematic intelligent system. In this study, such an intelligent system for

energy system design and optimization would be developed.
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Fig. 1.11 Analogy of decision making between human being and intelligent system

1.5 Thesis structure

In order to cover the aforementioned objectives and scope, the thesis is organized as

follow (see Figure 1.12):

Energy 

system 

modeling 

and 

optimization

Model 

development

Optimization 

framework

Knowledge base 

development

Intelligent decision 

making

First-principle model, empirical model

Machine learning based surrogate model

Ontology framework development

Domain knowledge base

Integrated design and operation

Intelligent decision making

Single objective optimization

Multi objective optimization

Fig. 1.12 Structure of thesis

Chapter 2 reports principles and methods for machine learning based energy system

modeling. Applications of feature engineering and machine learning methods in building

energy forecast are reported. The research question of how different construction methods
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for ML-based surrogate model, together with strategies for feature space dimension

reduction, are introduced is answered in the chapter.

Chapter 3 reports a single-objective optimization procedure for power and heat co-

generation dispatch problem based on minimization of CO2 emission. Application in

the power system of Jurong Island eco-industrial park (EIP) Singapore is reported. The

research question is mainly on how to overcome the prohibitive computation cost induced

by exhaustive search, a hybrid greedy search and mixed integer nonlinear programming

dispatch method is presented;

Chapter 4 develops a multi-objective optimization method where different objective

functions regarding energy efficiency, economic as well as environmental sustainability

are used to direct the optimal design and operation of energy system. Application in Jurong

Island eco-industrial park (EIP) Singapore comprising of five plants and two communities

is used to demonstrate the capability of the proposed methodology;

Chapter 5 shows an intelligent system based on ontology development. The main

research question is how such intelligent system can be used in increasing knowledge in-

teroperability between different sectors in energy system and intelligent decision making

by using disparate data from remote databases. Knowledge management of Jurong Island

eco-industrial park (EIP) Singapore is used as application case in this chapter;

Chapter 6 gives the conclusion and proposes future perspectives.



Chapter 2

Surrogate modeling through machine

learning

In this chapter, parts of sentences, full sentences or whole paragraphs are based on the

manuscript of

Chuan Zhang, Liwei Cao, and Alessandro Romagnoli. On the feature engineering of

building energy data mining. Sustainable Cities and Society, 39 (2018): 508-518.

2.1 Introduction

Surrogate model, or so-called meta-modelling, is an advanced modeling technique that

could significantly reduce computational complexity and computation time while main-

taining high fidelity, especially considering uncertainty (see Figure 1.3 in Section 1.2). A

rigorous definition of surrogate model is given by Forrester et al. (2008):

“Learn a mapping y = f (x) that lives in a black box by collecting the output

values y (1), y (2), . . . , y (n) that results from inputs x(1), x(2), . . . , x(n), find a best

guess f̂ (x) for the black box mapping f based on the known observations.”
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Surrogate model sometimes is referred as black box model because the true transfor-

mation function f (x) is usually unknown, also in most case the surrogate model produced

approximation ŷ is accompanied by error ϵ in the form:

y = f̂ (x)+ϵ (2.1)

Ideally, surrogate model could be mathematical approximation of any kind of data,

such as experimental results, manufacturing data, simulation model, and sensor out-

put (Jin et al., 2003). Construction of surrogate model typically involves three steps:

1. Collecting inputs and outputs at known observations (also noted as training data

in ML). There is no doubt that the quality of surrogate model is usually related to

the size of training data which is costly to acquire in some cases wherein design of

experiment (DOE) techniques are usually deployed in preparing the data so that the

most representative points could be sampled (Gorissen et al., 2010). On the other

hand, if the design space dimension is too high, it would also be computationally

expensive to train the surrogate model, in such cases deployment of feature engi-

neering methods to get proper feature input is also important (Yu et al., 2010) (see

Section 2.2 for detailed discussion).

2. Train the surrogate model and get optimal parameter estimation for the model.

As mentioned in Section 1.2 and 1.3, multiple ML algorithms have been applied

in the surrogate model construction. All algorithms have specific parameters (e.g.

coefficients, weights etc.), training the surrogate model essentially means get opti-

mal estimation of these parameters. For most popular models, obtaining optimal

parameter estimation does not require tailored mathematical derivation, instead

mature libraries in various packages could automate the parameter optimization

process (Raschka, 2015).

3. Test the model and choose the most appropriate candidates. For describing the

complex function f (x), usually multiple surrogate models f̂ (x) are available, so the
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next task is picking up the most appropriate candidate in terms of model perfor-

mance, or sometimes hybrid model of them (Ji and Chee, 2011; Liu et al., 2012). In

order to achieve this, model testing at unknown data points (also noted as validation

in ML) is needed, further comparison between different model types are necessary

to select the best methods.

Surrogate modelInput Output

Experimental

results

Manufacturer

data

Simulation 

model

Sensor 

network

Fig. 2.1 Different inputs for surrogate model construction

In light of these steps, feature engineering is firstly discussed in Section 2.1 in the

Chapter, common surrogate model types are then discussed in Section 2.2, finally illus-

trative examples are given in Section 2.3. Through the discussion in this Chapter, it is

expected that the pipeline for data-driven energy system modeling at various scales could

be established also suitable model types for some typical modeling applications would be

recommended.

2.2 Feature engineering

As described in Figure 1.10, surrogate model construction through ML is an integrated

pipeline from data to knowledge. Traditionally, development of ML models (e.g. f̂ ) has
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been paid more attention to, however, with maturation of ML techniques, more and

more people realize that feature engineering(e.g.x) is equally, if not more, important than

ML model development during the pipeline of surrogate model construction shown in

Figure 1.10. Feature engineering, defined as “process of using domain knowledge of the

data to create features that make machine learning algorithms work more efficiently"

(Domingos, 2012), is mainly addressing the question which factors (referred as features in

ML) have the largest effect on the effectiveness and accuracy of ML algorithms. Particularly,

in the design and optimization of energy system, objective function is jointly influenced

by various features originating from physics, meteorology, and human behavior. So the

questions are: Which features have more impacts on the ML model effectiveness, which

have less? How the feature importance change with ML models? Which features should

be used as inputs for different ML models? Are there any efficient and computationally

cheap methods to do feature engineering for different ML based energy system modeling?

These are the questions which will be addressed in this section.

2.2.1 Principles and methods

ML based surrogate modeling could be divided into two types: supervised and unsu-

pervised learning. In supervised learning problems, the data are labeled; whereas in

unsupervised learning problems, the data are not (see Section 1.3). In supervised learn-

ing problems (either classification or regression), for each data record, we already have

information about the correct model output, noted as y in the thesis. Furthermore, the

vector of input features x = [x1, x2, . . . , xD ] compose a feature spaceΩ. Under such defini-

tions, the objective of feature engineering can be described in the following mathematical

language:

min
x̂, f

∥∥ f (x̂)− y
∥∥ (2.2)

where x̂ = [x1, x2, . . . , xK ] compose a feature subspace Ω̂ ⊆ Ω, given that K ⩽ D. f

represents the ML models that can transform the input features x̂ into outputs so that the
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distance between predicted output and correct output is minimized. Such distances can

be measured by different metrics, Euclidean distance for instance (Davies and Bouldin,

1979).

Similarly, in unsupervised learning problems (e.g. clustering), the task of feature

engineering is to find an optimal feature subspace Ω̂⊆Ω that minimizes the performance

metric difference between P ( f , x) and P ( f , x̂) as follow:

min
x̂, f

∥∥P ( f , x̂)−P ( f , x)
∥∥ (2.3)

In other words, the overall objective of feature engineering is no more than selecting

the optimal feature subspace that gives the prescribed ML model best performance. So it

is not difficult to understand that feature engineering is actually dependent on ML models,

meaning that the optimal feature subspace could be different for different ML models.

As a result, investigation of all feature engineering possibilities corresponding to all ML

models is a non-trivial work beyond the scope of this thesis; in this thesis, only three

typical feature engineering methods are discussed, namely feature visualization, feature

selection, and feature extraction. The detailed procedures for other feature engineering

methods with different ML models might be different, yet the general principles remain

the same.

2.2.2 Feature visualization

Feature visualization is a helpful technique that can provide a clear and comprehensive

understanding of the feature space; however, feature visualization is not an easy task

because usually, the feature space is very high dimensional. So, instead of visualizing the

feature space at one time, it is recommended to analyze the pair-wise correlations through

Exploratory Data Analytics (EDA). One of the most common EDA techniques is correlation

matrix. The correlation matrix is a square matrix based on Pearson product-moment

correlation coefficients (Pearson’s r), which is a metric for linear dependence between

features and outputs. Pearson’s r is calculated by the following formula:
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r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

(2.4)

Pearson’s r provides a quantitative index for measuring the linear correlation between

feature (x) and output (y). If y is perfectly positive linear related with x, r equals to 1; if y

is perfectly negative linear related with x, r equals to -1; if y is not linear related with x at

all, r equals to 0. Based on such interpretation, Pearson’s r based EDA can help to get some

basic insights about the linear correlations between outputs and features; sequentially, the

features that are relatively high related to outputs can be chosen as “exploratory feature"

for further ML model construction.

2.2.3 Feature selection

In cases where the given data are high dimensional, it is always suggested to conduct

dimensionality reduction through feature selection. The basic idea of feature selection is

to remove the features that have less influence on the performance of ML models while

only keep the features that are most influential on the ML models. Again it has to be

underlined that when ML models are different, the selected features are usually different

as well.

Feature selection is usually conducted by is Sequential Backward Selection (SBS)

algorithm. In SBS algorithm, features are sequentially removed from the initial space until

the reduced space only contains the desired feature number. The steps of SBS can be

noted as:

1. Initialize the algorithm with original feature space dimension D and desired feature

subspace K .

2. Remove feature x1, x2, . . . , xD one by one, use “one versus all” method to get the

feature x− that has the least influence on the model performance.

3. Remove feature x− ∈ [x1, x2, . . . , xD ] from original feature space and repeat step 2.
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4. Terminate if feature subspace dimension equals to K .

By applying such SBS algorithms, the most important K features in random forest

algorithm can be picked up, thus improving the following ML model efficiency. Intu-

itively, feature importance could be implied from the variance variables, features with low

variance could be eliminated. For example, for Boolean features, variance of Bernoulli

distribution could be used to denote the variance of feature as follow:

V ar (X ) = p(1−p) (2.5)

After getting such variance, the features with V ar (X ) below specified threshold could

be eliminated. In other cases, various statistical test, for example χ2 test and F test, could

be used to test the dependency between features, those with higher inter-dependency

could be eliminated too. Another commonly used feature selection algorithm is random

forest. The schematic of random forest algorithm is shown in Figure 2.2; it can be seen

from Figure 2.2 that random forest is essentially an ensemble model of decision tree

classifiers or predictors.The detailed explanations of random forest can be referred to

(Liaw and Wiener, 2002), thorough discussion will not be provided here since the emphasis

of this thesis is on feature engineering rather than model development.

2.2.4 Feature extraction

Besides feature selection, feature extraction is another quite useful skill for dimensionality

reduction in feature engineering. Compared to the former two methods, feature extraction

aims to create a new feature subspace by projecting the original feature space with certain

rules.

Principal Component Analysis (PCA) perhaps in the best-known technique, as its

name implies, PCA aims to find the principal component of the features in the sense

that the covariance between such component and outputs are largest. In PCA, a D ×K

dimensional transformation matrix W is constructed to convert the original feature space

x = [x1, x2, . . . , xD ] into a new feature space ẑ = [z1, z2, . . . , zK ] to facilitate further analysis:
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Fig. 2.2 Schematic of random forest algorithm

ẑ = xW (2.6)

Usually, the transformation matrix W is constructed based on the covariance matrix

between different features. The covariance between feature xi and x j can be calculated

as:

σi j = 1

n

n∑
k=1

(xi
k − x̄i )(x j

k − x̄ j ) (2.7)

Based on such covariance definition, a D×D dimensional covariance matrix for feature

space x = [x1, x2, . . . , xD ] can be gotten; then by choosing the K largest eigenvalues and

the corresponding eigenvectors of covariance matrix, the transformation matrix W could

be constructed. In such a framework, the feature importance is just defined as the ratio

between its corresponding eigenvalue and the overall sum of all eigenvalues:

λi∑D
i=1λi

(2.8)

Although PCA is an effective dimensionality reduction technique in ML, it is an unsu-

pervised method which only uses the information about x without y . Another popular
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supervised data compression method in feature engineering is Linear Discriminant Analy-

sis (LDA). In LDA, firstly class based mean vector mi and overall mean m are calculated

as:

mi = 1

ni

c∑
x∈Di

xm (2.9)

m = 1

D

D∑
i=1

mi (2.10)

Based on such information, the scatter matrix si of different class could be calculated

as:

Si =
c∑

x∈Di

(x −mi )(x −mi )T (2.11)

By combining Si of different class, the within-class scatter matrix Sw could be obtained

as:

Sw =
c∑

i=1
Si (2.12)

In same way, the between-class scatter matrix SB could be obtained as:

SB =
c∑

i=1
Ni (mi −m)(mi −m)T (2.13)

Finally, within-class scatter matrix Sw and between-class scatter matrix SB could be

combined into matrix S−1
w SB whose eigenvalues and eigenvectors could be computed.

Again by choosing the k largest eigenvalues and corresponding eigenvectors, a D ×K

dimensional transformation matrix W could be formulated. Furthermore, by analyzing

PCA and LDA, it could be generalized that the key step of feature extraction is getting a

nonlinear mapping function φ that could transform D dimensional feature space into

K dimensional feature space which would then by evaluated to get the key components.

Such procedure could also be facilitated by kernel function, which basically provides

measure of similarity in multiple ways. Common kernels include:
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• Polynomial kernel:

k(x(i ), x( j )) = (x(i )T x( j ) +θ)p (2.14)

• Sigmoid kernel:

k(x(i ), x( j )) = tanh(ηx(i )T x( j ) +θ) (2.15)

• Gaussian kernel:

k(x(i ), x( j )) = exp(−γ
∥∥∥x(i ) −x( j )

∥∥∥2
) (2.16)

Details discussion about such kernels and their applications are beyond the scope of

this thesis, those who are interested in the difference could refer to Raschka (2015) for

details.

2.3 Machine learning models

Modeling energy system components at various scale corresponds to different machine

learning tasks that could be solved by different models (see Table 1.1). Several repre-

sentative models have been reviewed in this section, most of the modeling techniques

introduced in this section have been proved as effective manner to tackle certain modeling

challenges in energy system.

2.3.1 Principles and methods

For ML models, the key process is model selection where optimal values of hyperparame-

ters are gotten. Trade-off between bias and variance is a key question during this step, in

order to achieve balance between overfitting and underfitting, k-fold cross-validation is

usually used. In k-fold cross-validation method (Figure 2.3), training data is divided into

k folds (number of folds depends on the size of training data), then k rounds of model

training are conducted one by one, each time one fold is reserved as test fold whereas the

remaining k-1 folds are used as training input. For each iteration, a performance metric
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Ei could be obtained, average of all performance metrics are used as the final model

performance metric.

Fig. 2.3 Schematic of k-fold cross-validation (Raschka, 2015)

Typically, deployment of k-fold cross-validation is necessary for training most ML

models, yet in some cases where model perfectly fits the data, only one round of k-fold

cross-validation is needed. In this thesis, all ML models are gotten through k-fold cross-

validation unless special notation is given.

2.3.2 Linear regression

Linear regression is one of the most simplest yet powerful algorithms in ML. In many ML

applications, although linear regression can not be directly applied, it could always be

combined with other models to solve at least part of the problem (Sousa et al., 2007). An

univariate linear regression model could be noted as:

y = w0 +w1x (2.17)

w0 is the intercept and w1 is the coefficient of feature. During the training process of

linear regression model, the values of w0 and w1 could be learned such that the prediction
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error of linear regression model is minimized. Similarly, multiple linear regression model

could be noted as:

y = w0x0 +w1x1 +·· ·+wm xm =
n∑

i=0
wi xi = w T x (2.18)

w0 is the intercept with x0 = 1. Estimation of parameter in linear regression could be

facilitated by the Ordinary Least Squares (OLS) method where cost function of parameters

are defined as:

J (w) = 1

2

n∑
i=1

(y (i ) − ŷ (i ))2 (2.19)

By computing the partial derivation of J(w) regarding to w as ∆J(w), the change of

parameters could be noted as:

∆w =−η∆J (w) (2.20)

η is the learning rate. In order to overcome the overfitting problem described in Sec-

tion 2.2, a complexity penalty term L could be added to the righ-hand side of Equation 2.19,

when sum of squared parameters w is used, the cost function would become:

J (w) = 1

2

n∑
i=1

(y (i ) − ŷ (i ))2 +λ
m∑

j=1
w 2

j (2.21)

i is the number of training data entries whereas j is the number of features. Regular-

ized linear regression in the form of Equation 2.21 is also named ridge regression, which

is a commonly used technique in different contexts. Similarly, when sum of absolute of

parameters w is used as penalty term, the regularized linear regression would evolve into

a Least Absolute Shrinkage and Selection Operator (LASSO) as:

J (w) = 1

2

n∑
i=1

(y (i ) − ŷ (i ))2 +λ
m∑

j=1

∣∣w j
∣∣ (2.22)

Combination of LASSO and ridge regression is also possible to make a Elastic Net

regression as:
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J (w) = 1

2

n∑
i=1

(y (i ) − ŷ (i ))2 +λ1

m∑
j=1

w 2
j +λ2

m∑
j=1

∣∣w j
∣∣ (2.23)

Linear regression model could also be easily turned into polynomial regression by

replacing the linear terms with polynomial terms as:

y = w0x +w1x +w2x2 +·· ·+wd xd (2.24)

It needs to be noted that the right-hand term in Equation 2.19 is also a common model

accuracy index in ML known as Mean Squared Error (MSE):

MSE = 1

n

n∑
i=1

(y (i ) − ŷ (i ))2 (2.25)

Other common accuracy index includes Mean Absolute Error (MAE), Mean Absolute

Percentage Error (MAPE), Root Mean Absolute Error (RMSE):

M AE = 1

n

n∑
i=1

∣∣∣(y (i ) − ŷ (i ))
∣∣∣ (2.26)

M APE = 1

n

n∑
i=1

∣∣∣∣ y (i ) − ŷ (i )

y (i )

∣∣∣∣ (2.27)

MSE =
√

1

n

n∑
i=1

(y (i ) − ŷ (i ))2 (2.28)

Such indices are not only applicable for evaluating performance of linear regression

but also other ML models.

2.3.3 Support vector machine

Support vector machine is another common ML models based on maximum margin

hyperplane method, which aims to find a hyperplane (e.g. decision boundary) that

maximizes the generalization error. For linearly separable feature space, SVM is equivalent

to the following optimization problem:
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Kernel Trick: General Idea 
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Fig. 2.4 Schematic of support vector machine model

min
w

∥w∥2
2

2

s.t. yi × (wi ·xi +b) ≥ 1, i = 1,2, . . . , N

(2.29)

For non-separable case, slack variables are usually used in the optimization framework

as:

min
w

∥w∥2
2

2
+C (

N∑
i=1

ξi )

s.t. yi × (wi ·xi +b) ≥ 1−ξi , i = 1,2, . . . , N

ξi ≥ 0

(2.30)

ξi is used to supplement the estimation error of decision boundary on training exam-

ple xi , b and C are constants. Furthermore, if decision boundary become nonlinear, the

original feature space xi would be transformed into higher dimensional feature space

ψ(xi ) where variables are easily to classify (see Figure 2.4). The problem is such trans-

formed feature space is usually very high dimension, making the above optimization

problem difficult to handle:

min
w

∥w∥2
2

2

s.t. yi × (wi ·ϕ(xi )+b) ≥ 1, i = 1,2, . . . , N

(2.31)
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By applying Lagrange multiplier λ method to the problem, the dual form of optimiza-

tion could be obtained:

LD (λ) =−(
1

2

∑
i , j
λiλ j yi y j (ϕ(xi ) ·ϕ(x j )))−

N∑
i=1

λi ) (2.32)

By replacing the inner product in feature space with kernel function k(xi , x j ), the

decision boundary could be obtained as:

N∑
i=1

λi yi k(xi , x j )+b = 0 (2.33)

Common kernel functions used in SVM could be found in Section 2.2.4, the detailed

mathematical derivations could be found in the book by Steinwart and Christmann (2008).

2.3.4 Artificial neural network

Fig. 2.5 Schematic of perceptron model

Artificial neural network is a method inspired by biological neural system. Perceptron

is the simplest neural network with only one layer (see Figure 2.5), each input node

is connected via a weighted link to the output node. Mathematically, the output of a

perceptron model can be expressed as:
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yi = sign(
m∑

j=1
w j xi j −θ) (2.34)

The learning algorithm for perceptron weights w includes the following steps:

1. Get training examples Xtrain = {(xi , yi )|i = 1,2, . . . , N }.

2. Initialize w with random values w 0.

3. For each training example (xi , yi ), compute the predicted output hi . Update w by

w t+1 = w t +λ(yi −hi )xi .

4. Terminate if stopping condition is satisfied (e.g. prediction accurary is below certain

range).General Structure: Multilayer ANN 

34 
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Fig. 2.6 General structure of multilayer ANN

Although perceptron learning algorithm is guaranteed to converge for linear hyper-

plane, it is not suitable for more general nonlinear feature space. In such context, mul-

tilayer ANN is proposed (see Figure 2.6). In multilayer ANN structure, neurons are con-

nected in different layers, including one input layer, one output layer and one or multiple

hidden layers. One neuron usually consists of two parts: integration function and ac-

tivation function. Besides the linear integration function mentioned in Equation 2.34,
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quadratic function (Equation 2.35) and spherical function (Equation 2.36) are also often

used:

f (xi ) =
m∑

j=1
w j x2

i j −θ (2.35)

f (xi ) =
m∑

j=1
(xi j −w j )2 −θ (2.36)

Similarly, besides the sign function used in Equation 2.34, sigmoid function is another

common activation function:

g (x) = 1

1+e−x
(2.37)

For multilayer ANN, weight learning can not follow the aforementioned algorithm

because prediction errors could not be computed directly. In such case, back propagation

(BP) algorithm is proposed. The basic idea of back propagation is starting with the output

layer, then propagating error back to the previous layer in order to update the weights,

until the input layer is reached. Through training of back propagating ANN, parameter

learning could be finished.

2.3.5 Ensemble learning

Although single ML models could have good performance in many cases, sometimes

ensemble method is needed to further improve the model performance. In ensemble

learning, a set of base models, for example the models discussed in previous sections,

could be combined to make better prediction (see Figure 2.7). Two necessary conditions

to guarantee an ensemble model performing better than single model are:

• The base model should be independent of each other. In practice, this condition

can be relaxed that the base model can be slightly correlated.

• The base model should do better than a model that performs random guessing (e.g.,

for binary classification, accuracy should be better than 0.5).
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Fig. 2.7 Schematic of ensemble learning

Two common ensemble learning methods are bagging and boosting (Yap et al., 2014).

Bagging, also known as bootstrap aggregating, repeatedly conduct sample with replace-

ment according to a uniform probability distribution, base model is then built on each

bootstrap sample, finally voting is deployed to determine the model output. Compara-

tively, boosting adaptively change the distribution of training data so that the base model

will focus more on previously low-performance records. The procedure of boosting could

be noted as:

1. Training examples are assigned equal weights 1/n so that they are equally likely to

be chosen for training. A sample is drawn uniformly to obtain a new training set.

2. Base model is induced to the training set and applied to all the examples in the

original training set.
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3. The weights of the training examples are updated at the end of each boosting round:

records that have low accuracy will have their weights increased, whereas records

that have high accuracy will have their weights decreased.

4. Ensemble model is obtained by aggregating the base models obtained from each

boosting round.

Different voting methods could be used in combining the models, including majority

voting, plurality voting, weighted voting for classification problem and simple average,

weighted average for prediction problem.

2.4 Illustrative example

To facilitate the understanding of aforementioned feature engineering and ML model ap-

plication in energy system modeling, an illustrative example is given in this section. In the

illustrative example, we focus on the prediction of building energy consumption. Build-

ing energy consumption accounts for a considerable portion of the overall energy con-

sumption in contemporary society. The underlying mechanism behind building energy

consumption is a complex issue that has attracted research interests worldwide (Fumo,

2014; Shiraki et al., 2016).The efforts aiming at mimicking the dynamics of building en-

ergy consumption come from two perspectives: engineering approach and statistical

approach. Engineering approach, or equation-based approach, strives to describe the

interaction between building, energy, and environments, such as the heat and mass trans-

fer process between building envelope and surrounding, in mathematical equations or

equivalent modeling techniques. However, since building energy consumption is related

with building physicals, meteorological parameters, and occupant behavior as shown in

Figure 2.8, the relationships between building energy consumption and these influence

factors are usually nonlinear and non-stationary, thus the engineering approach usually

fails to capture such inherent nonlinearity and stochastic of building energy consumption

in an efficient way. Even state-of-the-art equation-based software could describe all the
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components at a very detailed level, it is still pointed out the engineering method pro-

duced simulation results usually present significant gap compared to the field measured

data (De Wilde, 2014). In such context, ML based surrogate modelling method provides

another perspective for such building energy use modeling.

Fig. 2.8 Interaction between building physics, weather condition, and occupant behavior

The dataset used in this study comes from the Pecan Street Project (Street, 2010).

Pecan Street Project is an Energy Internet demonstration project located in Austin, Texas,

initialized by U.S. Department of Energy; it monitors the home energy consumption of

1,000 residences of the community in a real-time manner. It also records information

about weather data and occupant behavior. It is treated as one of the most compre-

hensive databases as the testbed for building energy data mining. All the gathered data

can be retrieved from a cloud storage named DATAPORT that can be freely accessed by

academia. In this study, information from the following four tables in the database are

used: electricity-egauge-hours, survey-2013-all-participants, audits-2013-main, weather.

Electricity-egauge-hours table stores the electricity consumption information of different

buildings collected by Pecan Street’s smart meters; survey-2013-all-participants table and
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audits-2013-main table store information gathered from the survey and audits conducted

in 2013 respectively; weather table stores the meteorological parameters. Specifically,

variables from survey-2013-all-participants, audits-2013-main and weather are used as

input features (shown in Table A.1), variables from electricity-egauge-hours are used as

model output.

2.4.1 Feature engineering

From Table A.1, it can be seen that the feature space investigated in this thesis is 124

dimensional. There are two types of data in the feature space: numerical and categorical.

Numerical data are those with quantitative values, such as house volume, temperature,

etc.; categorical data are the data that are only described qualitatively without numerical

values, such as front door orientation, house foundation type, etc. All candidate options for

the categorical data could be further referred to the supplemental materials of this thesis.

Category data are further classified into nominal data and ordinal data; nominal category

data cannot be sorted; whereas ordinal category data can. For instance, resident age is

ordinal category data whereas the ethical group is nominal. One important data wrangling

step is mapping these categorical data into integers through dictionary-mapping approach.

Another important issue during data wrangling is handling the missing data. It is common

that there are missing values in the dataset due to various reasons, so it is important to

come up with a solution that can fill in such null values before further modeling with

them. In the case study, the popular statistics methods are used; particularly the mode

number of the corresponding features are used as placeholders for the missing value. It is

assumed that other missing data handling strategies can be implemented similarly with

moderate effort, so no detailed discussion would be provided here.

The scale of the targeted dataset in this study is another topic merits discussion. In the

electricity-egauge-hours table, survey-2013-all-participants table, and audits-2013-main

table, information about 826, 301, and 67 different buildings are recorded respectively;

however there are only 38 buildings in common between them. So these 38 buildings are

targeted as research objects in this thesis because all the feature information described in
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Table A.1 about them is available. Since the survey and audits were conducted in 2013, the

electricity consumption information in 2014 is used for analytic in the study. It is assumed

that all information gathered through the survey and audits in 2013 are still up-to-date in

2014. Combining all these tables together, ideally, would lead to a table with 38×24×365

rows and 124 columns (e.g. features). In reality, a 314121×124 dimensional table can be

gotten after querying into the tables above (referred to the supplemental materials of this

thesis). Although some data entries are missing in our table, the scale of cell numbers is

still at 108 level. Indeed, it is very hard to apply traditional data analytic techniques to such

high volume data without feature engineering, so in the following sections, a systematic

feature engineering analysis upon such data is conducted. It is expected that some basic

insights about the dataset could be gathered from the feature engineering results so that

better understanding about the building energy consumption natures can be achieved.

Fig. 2.9 Feature importance in exploratory data analysis

By applying the feature engineering methods introduced in Section 2.2 to the dataset

described in Table A.1, the direct outcome would be rankings of feature importance. The

feature importance rankings under different feature engineering methods are shown in
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Fig. 2.10 Feature importance in random forest

Fig. 2.11 Feature importance in principal component analysis
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Figures 2.9-2.11 respectively. Due to large amount of features investigated, the feature

names are not listed in the figures; the whole list of such feature importance rankings can

be referred to the supporting online materials of this thesis. In Figure 2.9, the features are

ranked according to Pearson’s r values, which the linear correlations between features and

outputs; similarly, in Figure 2.10 and Figure 2.11, the features are also ranked according

to the corresponding importance. From this figures, firstly it can be seen that there are

19 features which have exact zero impact on the output in all three methods, which

means there is no relationship between these features and the building overall electricity

consumption at all. Surely these 19 features should be zeroed out during further ML

modeling. Secondly, it can be seen from these figures that there are no simple dominant

features for building energy prediction problem. Even the most important features in EDA

are only 0.3 positively and 0.2 negatively linear correlated with output, which actually

implies a weak relationship between such features and output. This further support the

argument that building energy consumption is jointly, to some extent evenly, influenced

by various features; which proofs the complexity of building energy consumption.

To inspect the most important features more precisely, the top 20 most important

features in all three feature engineering methods as shown in Figures 2.12-2.14 respectively.

The features are further classified into top 10 positively important features in Figure 2.12a

and top 10 negatively important features in Figure 2.12b because EDA provides us not

only the magnitude of correlations but also the sign of correlations. Through comparison

of the top 20 important features for three different methods, it is found that there are 10

common features among them, namely house volume, temperature, construction year,

house square feet, air conditioned area, ACH50 calculation (index of house air tightness),

bedroom number, attic insulation, irrigation system, and 13-18 years old residents number.

Moreover, there are nine features appearing more than twice in these three methods,

namely TV number, PV system, EV number, total window area in the south direction,

sprinkler system number, total window area in the west direction, humidity, and distance

from neighbors. Compared to features listed in Table A.1, these features can be treated

as the so-called major features that will mostly affect the building energy consumption;
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(a) Top 10 positively important features in EDA

(b) Top 10 negatively important features in EDA

Fig. 2.12 Top 20 important features in EDA
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Fig. 2.13 Top 20 important features in random forest

Fig. 2.14 Top 20 important features in PCA
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intuitively, by applying the feature engineering methods, the feature space dimension can

be reduced from 124 to 19.

To better illustrate how feature engineering help ML modeling, some feature space

visualization effort is shown in this section (Figures 2.15-2.16). Although it is quite difficult

to visualize the feature distribution in high dimensional space, there are still several

useful techniques that could give us some fundamental insights. Pairwise scatter plot

is one of them. In pairwise scatter plot, the features are plotted against output such

that the one-dimensional distribution of output in the feature space can be obtained.In

Figure 2.15, pairwise scatter plot in the original feature space is shown; only the five most

important features, namely apparent temperature, house volume, 13-18 residents number,

ACH50 air tightness index, and house square feet data, together with the hourly electricity

consumption (in the unit of kWh) are analyzed in this figure as proof of conception. It

has to be noted that all features shown in Figure 2.15 are normalized non-dimensional

data to achieve higher PCA accuracy. Similarly, in Figure 2.16, pairwise scatter plot in

the transformed feature space through PCA is shown, again only the five most important

features are explored in the plot. Principal Component in Figure 2.16 are non-dimensional

variables in the new feature space without any real physical meaning. In Figure 2.15, it

can be seen that the outputs are largely clustered, especially among the feature dimension

where feature data type is categorical; for instance, the “electricity consumption versus

13 to 18 residents” sub-figure in Figure 2.15. Since the reported number of 13 to 18

years old residents are categorized, as a result the data distribution in this dimension

becomes striped. However, through the feature transformation of PCA, the distribution

of data becomes much more sparse. For instance, the “electricity consumption versus

PC2” sub-figure in Figure 2.16, although there is still no obvious patterns in this figure, yet

compared to the original feature space, the distribution has been widely flatted, which

of course would make it easier to develop more efficient predictors. Similar patterns can

be observed from the visualization at other dimensions in the PCA-transformed feature

space. That is, feature engineering not only helps to significantly reduce the feature space
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dimension but also contributes to construct a new feature space where data are more

sparsely distributed, therefore ML models are easier to develop.

Fig. 2.15 Scatter plot between building energy and the 5 most important original features

2.4.2 Machine learning modelling

Through different feature engineering methods discussed in Section 2.4.1, different feature

space could be obtained as input of different ML models. In this section, the ML models

discussed in Section 2.3 are applied to the building energy use prediction problem. In
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Fig. 2.16 Scatter plot between building energy and the 5 most important PCA-transformed
features
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particular, we are concerned with the next-hour electricity consumption prediction in

the thesis, for prediction with different time horizon, it is expected that the proposed

method could be easily adapted as well. Building energy use during the whole year,

representative summer and winter month, representative summer and winter day, is

shown in Figure 2.17, Figure 2.18, and Figure 2.19 respectively. From such figures, it can be

seen that hourly building energy use forecast have high fluctuations at various temporal

scales, such fluctuations are related to different features discussed in Section 2.2, so in this

section we apply to the different ML models covered in Section 2.3, the results of different

ML models with different feature engineering methods are compared (see Table 2.1).

K-fold cross-validation method is used in the thesis by setting k at 10 (Raschka, 2015), the

implementation of such ML models are realized through Python in the thesis, the detailed

codes could be referred to Github https://github.com/chuanzhang1990/building_feature_

engineering and the codes are also available upon request.

Fig. 2.17 Hourly building energy use during the whole year

Ideally, feature engineering is a process that could combine domain knowledge and

machine intelligence; however, in Section 2.3 no domain knowledge has been used in

https://github.com/chuanzhang1990/building_feature_engineering
https://github.com/chuanzhang1990/building_feature_engineering
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Fig. 2.18 Hourly building energy use during the summer and winter month

Fig. 2.19 Hourly building energy use during the summer and winter day
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the feature engineering; this is designed like so on purpose, because we just feed all the

data available to the feature engineering and let itself pick up whatever is useful. On one

hand, this is good because this is exactly where the advantages of machine intelligence

come from; on the other hand, this is not a good practice because firstly handling too

many features might bring additional computational cost. Moreover, given the feature

engineering produced results in Section 2.3, it is found that there are three kinds of rules

discovered through feature engineering analytic: the first type aligns with our domain

knowledge quite well. For instance, building overall energy consumption is positively

correlated with the house volume, negatively correlated with the attic insulation. Such

relationships are something that can even be projected before conducting feature engi-

neering, the results of feature engineering further confirm our supposes; the second type

of rules might not align with human domain knowledge, yet do make sense upon further

reflection. For instance, building overall energy consumption is positively correlated

with the 13 to 18 years old resident number in the building. Such co-variance might be

difficult to project before feature engineering, yet once being discovered through feature

engineering, is supported by the domain knowledge as well. The third kind of rules is

actually quite difficult to understand even after feature engineering has pointed them out.

For instance, it is very hard to realize that hairdryer use pattern would be an important

feature in random forest ML models even though the big data analytic clearly specifies

it. It leads to a question: Should we try to understand the machine intelligence based on

human domain knowledge, or is that viable? Another problem is if the dataset described in

Table A.1 is given to an expert of building energy system, he or she is then asked to pick up

the top 20 most important features by his domain knowledge, how much is the possibility

that he or she would pick up the same features as machine intelligence does? Furthermore,

if we feed the ML models a dataset tailored by domain knowledge beforehand, will the

performance of ML models increase or decrease? These are all open questions that merit

further discussion.

In Section 2.3 the top 20 most important features are selected for each feature engi-

neering methods, but 20 is indeed an arbitrarily decided number here, why not 10 or 30?
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Furthermore, how many features would enable the best performance of the ML models?

This leads to a curse of dimensionality problem in feature engineering. To better explain

this problem, the relationship between ML model (use random forest as an example) per-

formance and feature numbers is investigated in this paper. Particularly, 70 percentage of

the given dataset is used to train the random forest model under different feature numbers

(e.g. the top K most important features shown in Figure 2.10), the remaining 30 percent

dataset is used to label the model performance. Again the Pearson’s r (refer to Section 2.3)

is used as a performance index to measure the model prediction accuracy: if the predicted

values align with the real values perfectly, r equals to 1; in the worst case, r equal to 0.

Such curse of dimensionality analysis for random forest model is shown in Figure 2.2. It

can be seen from Figure 2.20 that there is an optimal feature number that would enable

the best performance of the proposed random forest model. In our case, when around

12 features are used, the model produced best results. If less features are used, there is

an under-fitting problem, which means the random forest model is not able to capture

the inherent dynamics in the training dataset, sequentially the prediction performance is

poor; if more features are used, there is over-fitting problem, which means the random

forest model uses too many parameters to follow the patterns in the training dataset; as

a result, its performance on the test dataset is relatively poor due to its high complexity.

Again, the open question here is: it seems that 12 is the threshold of feature numbers in

this random forest building energy data model, yet what about the other models for other

datasets? How can the optimal feature numbers for these models be found? Is there a

general method to conduct such curse of dimensionality analysis for different ML models

in the context of building energy data mining? This is also an interesting question that

deserves investigating.

The final topic explored in this section is computational cost. It is mentioned in

Section 2.3 that there is high overlap among the top 20 important features discovered

by the three different feature engineering methods covered in this study. However, the

computational costs to get such insights from these methods are entirely different. On

a PC with Intel Core i7-47900 CPU 3.6GHz × 2, 12GB RAM, the implementation of EDA



58 Surrogate modeling through machine learning

Fig. 2.20 Curse of dimensionality in random forest model

in a Python 3 environment only takes 10 minutes, whereas PCA and random forest take

30 minutes and 50 minutes respectively. So if the most important features obtained

from all feature engineering methods are almost identical, why not just use the most

computationally cheap ones? Starting from here, the performance of random forest model

when different feature sets are used as its input are compared. It turns out that the model

performance is almost identical when the top 20 most important features discovered from

the three different methods are used as inputs. So this study recommends the usage of

simple and computationally cheap feature engineering methods, such as EDA, to conduct

feature selection task no matter what ML models would be used sequentially. At least,

more advanced feature selection and extraction methods do not show advantages in this

thesis.
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2.5 Summary and remark

In this chapter, we introduced the principles and methods for machine learning based

energy system modeling. In particular, the importance of feature engineering is under-

lined in the thesis because it is largely omitted in most existing research. In the illustrative

example of building energy forecast, the analysis in the thesis shows that by deploying

feature engineering, the accuracy of machine learning models could increase by an order

of magnitude whereas the computational cost could be reduced as well. In addition, in

both cases with and without feature engineering, ensemble learning (e.g. combination

of linear regression, SVM and ANN) provides the best performance, ANN is the second

accurate model and SVM is the third, they both provide prediction accuracy which is

an order of magnitude higher than linear regression model. In particular, with feature

engineering, the RMSE of ensemble learning, ANN, SVM, and linear regression are 0.021,

0.0524, 0.0874, and 0.3494 respectively; without feature engineering, the RMSE would be

0.0222, 0.0798, 0.0905 and 0.4751 respectively. Similarly, the MAE of ensemble learning,

ANN, SVM, and linear regression are 0.0165, 0.0412, 0.0686, and 0.3494 respectively with

feature engineering and 0.01814, 0.0611, 0.0902, and 0.335 without feature engineering. It

is also found that there are still open questions about using machine learning as a general

method for energy system modeling, such as lack of data, curse of dimension etc.



Chapter 3

Single-objective optimization

In this chapter, parts of sentences, full sentences or whole paragraphs are based on the

manuscript of

Chuan Zhang, Rémy Rigo-Mariani, Alessandro Romagnoli and Markus Kraft. A Combined

Cycle Gas Turbine Model for Heat and Power Dispatch Subject to Grid Constraints. IEEE

transaction on sustainable energy, in press.

Chuan Zhang, Alessandro Romagnoli and Markus Kraft. Surrogate model based opti-

mization of industrial cogeneration system under real-time energy commodity market.

12th Conference on Sustainable Development of Energy, Water and Environment Systems,

October, 2017.

3.1 Modeling of energy system

In order to optimize the design and operation of energy system, modeling of key compo-

nents in energy system is necessary. In last section, an example of using ML based models

for modeling building energy use is provided. In this section, modeling and optimization

of a combined heat and power (CHP) system is used as another case study to illustrate the

procedure of how ML model could be applied in energy system design and optimization.
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Fig. 3.1 ML model based optimization framework for CHP system
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CHP systems are widely used assets for both residential and industrial applications due

to their high global efficiency as well as economic and environmental benefits. Operations

of such units has been extensively addressed in the literature, mainly targeting a total

revenue maximization and/or emissions minimization. Optimal scheduling problems are

commonly investigated to supply both heat and electrical loads in the presence of storage

devices or renewable energy sources (Kia et al., 2017).So far through the collaborative

effects through these researchers, plenty of issues related to the design and optimization

of industrial cogeneration system have been well addressed. However, the recent progress

in the following aspects gives some new perspectives to look at the problem:

• The paradigm shift from equation based modelling to data driven modelling. It

means most current models of CHP system are based on energy and mass balance

equations, yet as the rapid development of smart metering, it becomes possible

to acquire huge amount of operational data at various monitoring points at the

CHP system. Starting from such wealth of data, advanced data driven modelling

approach, namely surrogate model, will be used in this study.

• The demand forecasting ability enabled by surrogate model. Once surrogate model

of industrial processes is established, it can forecast the variability of process heating

demand in terms of different process parameters specified in the paper (e.g. raw

material stream flow rate, temperature, pressure). Starting from process operational

parameters, it is possible to forecast the industrial process heating demand which

can be further used as inputs for the optimization formulation.

• The liberalization of energy commodity market. As more and more countries

throughout the world are liberalizing their energy market, it can be expected that

the future electricity and energy commodity price (e.g. natural gas) would become

highly time sensitive. Some evidence from the current U.S. energy market also

supported this argument. In such a context, the capability of taking the price fluctu-

ations into the optimization formulation is also of vital importance.
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Most of those optimization frameworks assume coarse models for the generators.

Usually, an operation area for the units power and heat outputs is assumed resulting in

linear constraints for the scheduling problems. Another drawback often encountered in

the literature lies in the lack of representation of both thermal and electrical networks.

Latest studies have pointed that couple of thermal grid and electricity grid in the co-

generation system would bring additional flexibility as well as complexity to the system

operation regime, making the optimization of such cogeneration systems difficult (Ye

and Yuan, 2017). This study aims at addressing the two aforementioned points. At first,

a realistic model of combined cycle gas turbine (CCGT) is considered. Especially, that

representation estimates the CO2 emissions of the units all along their operating range,

with the computation of the chemical reaction within the combustion chamber. Secondly,

the optimal scheduling of the units takes both power and heat networks constraints into

account as well as the losses within the cables and the pipes. The last contribution of the

study lies in the hybridization of a Mixed Integer Linear Programming (MILP) scheduling

with a greedy search method. The objective is to avoid prohibitive computational times

when greater numbers of units are considered.

As discussed in Section 2.3, there are various ways to construct surrogate model. In this

study, three different surrogate model algorithms, namely ANN, SVM, and the ensemble

model, are used in the paper to simulate the performance of CCGT cogeneration plant,

natural gas fired plant as well as the bio-diesel plant. The detailed model of them in

Aspen Plus are shown in Figure 3.2. In this study, the inputs for surrogate model come

from these Aspen simulation models, yet it is not necessarily to be so in other cases. For

example, if there are sufficient data available from real sensors about the intended inputs

and outputs of a certain model, then surrogate model can be constructed based on these

data instead of simulation results. The surrogate model inputs and outputs for the three

models are listed in Table 3.1. For co-generation plant, power generation amount and

steam generation amount are chosen as the model output, the flow rate, temperature and

pressure of fuel stream are chosen as inputs for both models; Similarly, for the surrogate

model of boiler and bio-diesel plant, steam generation amount, process heat and power
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(a) CCGT cogeneration plant

(b) Natural gas fired boiler

(c) Bio-diesel plant

Fig. 3.2 Simulation model of different CHP system components in Aspen Plus
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Table 3.1 Different ML models used in CHP modeling

Modeling object Model output Model input ML models

CCGT plant
Power generation Fuel flow rate, tem-

perature, pressure
LR, ANN, SVM, En-
semble

Steam generation Fuel flow rate, tem-
perature, pressure

LR, ANN, SVM, En-
semble

Natural gas boiler Steam generation Fuel flow rate, tem-
perature, pressure

LR, ANN, SVM, En-
semble

Bio-diesel process
Process heat de-
mand

Raw material flow
rate, temperature,
pressure

LR, ANN, SVM, En-
semble

Process power de-
mand

Raw material flow
rate, temperature,
pressure

LR, ANN, SVM, En-
semble

demand are chosen as model outputs, while flow rate, temperature and pressure of fuel

stream and raw material stream are chosen as inputs. In such a manner, we are able

to correlate the model outputs with different inputs through surrogate models; in the

coming optimization framework, these surrogate models will be used to describe the

system dynamic performance.

Another issue we want to address in the study is how to select best surrogate model

techniques in the context of co-generation plant modelling. We wonder whether highly

complicated data modelling techniques, such as ANN and SVM, really help to increase

the performance of optimization, or conventional data modelling methods, such as lin-

ear regression, are pretty much enough for the optimization of co-generation system.

So, in this thesis we used three different methods to construct surrogate for the same

component (as shown in Table 3.1) so that their performance can be compared in the

following optimization. Similar to building energy forecast case, ensemble learning (e.g.

combination of linear regression, SVM and ANN) provides the best performance, ANN is

the second accurate model and SVM is the third, they both provide prediction accuracy

which is an order of magnitude higher than linear regression model. In particular, with
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feature engineering, the RMSE of ensemble learning, ANN, SVM, and linear regression are

0.0131, 0.0489, 0.0653, and 0.42 respectively.

3.2 Mathematical MILP formulation

The objective of the proposed heat and power dispatch is to supply both thermal and

electrical loads with minimal emissions of CO2. A MILP approach is considered in order

to ensure reasonable computational time when several units are considered (typically

a dozen). The gas turbine output and the power/heat ratio of the units are considered

as control features. Additional variables and constraints need to be introduced in order

to model both electrical and thermal outputs for a given set of controls. Linearization

methods for functions of two variables are considered. Traditional triangular or rectan-

gular approaches offer the best performances but require a great number of variables

(continuous and binary) that could lead to prohibitive computational times. For the

sake of simplicity, a 1D method is considered here. With functions of two variables, the

idea to keep a continuous variable (P g t
i ,t here) while the other is discretized. Thus αph

i ,t is

substituted here by a binary variable αph_b
i ,t ,r with r ∈ R the set of possible values for the

power/heat ratio. The electrical and heat outputs are then computed by defining a special

ordered set over P g t with a two blocks piece-wise linearization (set S). The following equa-

tions describes the set of variables and constraints to model the power output (subscript

e) - similar work is done for the thermal component (subscript h). At first, an additional

binary variable w e
i ,t ,r,s is introduced and is equal to 1 if unit i is operated with ratio r

in block s at time t . Constraints 3.1 ensures that only one operating block is identified

provided that the unit is on at time t (i.e. ui ,t = 1). A continuous variable βe
i ,t ,r,k represents

the weight coefficients attached to the k breakpoints that border each block s (K = S +1).

With constraints 3.2, only the weights for the two breakpoints around the operating block

are non-null. In the used notations sx−1 and sx+1 denotes the two segments around a

breakpoint kx with w e
i ,t ,r,sx

= 0 for the “extrema” breakpoints (i.e. x = 0 and x = K +1). As

the sum of those weights is equal to one with equation 3.3, the GT power is computed
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following constrains 3.4 with the breakpoints G g te

i ,t ,r,k entered as parameters. Figure 3.3

shows an example for the GT power computation of a unit operating in a specific block s1

for a given heat/power ratio. Constraints 3.5 are introduced over the whole set R in order

to compute the electrical output corresponding to the operating heat/power ratio and the

calculated P g te

i ,t ) . With an appropriate “Big M” value (typically 106) only the constraints

referring to αph_b
r = 1 will be active. Equation 3.6 ensures that only a single value of the

power/heat ratio is considered for every units at each time step. P g te

i ,t ) is then computed

similarly to the GT output with the weight coefficients for the breakpoints Ge
i ,t ,r,k entered

as parameters.

 3 

 
Fig. 3: CCGT power/heat operation – a) power output – b) heat output 

Fig. 3 shows the results obtained while running the model 

for a 400 MW CCGT unit with a 240 MW GT and a 160 MW 

ST. As expected, both electrical and heat outputs increase with 

the operating point of the gas turbine. A case with 𝛼i,t

ph
=1 

corresponds to the nominal operation described in Fig. 1 with 

the maximum electrical output reached for a gas turbine 

operating at 100 % (Fig. 3a). That power generation 

significantly decreases when the power//heat ratio becomes 

lower, leading to more waste heat (Fig. 3b). Note that in such a 

case, no heat in the GT exhaust gases is used to generate steam 

in the HSRG. Consequently, the output of the steam turbine is 

supposed to be null and the CCGT power only correspond to 

the gas turbine output. 

B.  MILP Formulation for CCGT Operation 

As it will be presented in the next section, the objective of 
the proposed heat and power dispatch is to supply both thermal 
and electrical loads with minimal emissions of CO2. A MILP 
approach is considered in order to ensure reasonable 
computational time when several units are considered (typically 
a dozen). The gas turbine output and the power/heat ratio of the 
units are considered as control features. Additional variables 
and constraints need to be introduced in order to model both 
electrical and thermal outputs for a given set of controls. In 
other words, the concern here is to represent the surfaces plotted 
in Fig. 3 in the MILP formulation. Thus linearization methods 
for functions of two variables are considered [11]. Traditional 
triangular or rectangular approaches offer the best 
performances but require a great number of variables 
(continuous and binary) that could lead to prohibitive 
computational times. For the sake of simplicity, a 1D method is 
considered here. With functions of two variables, the idea to 

keep a continuous variable ( Pi,t

gt
 here) while the other is 

discretized. Thus 𝛼i,t

ph
 is substituted here by a binary variable 

𝛼i,t,r

ph_b
 with r ∈ R the set of possible values for the power/heat 

ratio. Arbitrary, a set of eleven different values is chosen and 
corresponds to the sampling displayed in Fig. 3 (i.e. r = 1 for 

𝛼i,t

ph
= 0  and r = 11 for 𝛼i,t

ph
= 1 ). Thus 𝛼i,t,r

ph_b
=1 allows to 

identify at which ratio r a unit i is operated at time t. The 
electrical and heat outputs are then computed by defining a 

special ordered set over Pi,t

gt
 [11] with a two blocks piecewise 

linearization (set S). The following equations describes the set 
of variables and constraints to model the power output 
(subscript e) - similar work is done for the thermal component 
(subscript h). At first, an additional binary variable w𝑖,t,r,s

𝑒  is 
introduced and is equal to 1 if unit i is operated with ratio r in 
block s at time t. Constraints (1) ensures that only one operating 

block is identified provided that the unit is on at time t (i.e. 
ui,t = 1). A continuous variable 𝛽𝑖,t,r,k

𝑒  represents the weight 
coefficients attached to the k breakpoints that border each block 
s (K=S+1). With constraints in (2), only the weights for the two 
breakpoints around the operating block are non-null. In the used 
notations sx-1 and sx+1 denotes the two segments around a 
breakpoint kx with w𝑖,t,r,sx

𝑒 = 0  for the “extrema” breakpoints 

(i.e. x=0 and x=K+1). As the sum of those weights is equal to 
one with (3), the GT power is computed following (4) with the 

breakpoints Gi,t,r,k

gt_e
 entered as parameters. Fig. 4 shows an 

example for the GT power computation of a unit operating in a 
specific block s1 for a given heat/power ratio. Constraints in (5) 
are introduced over the whole set R in order to compute the 
electrical output corresponding to the operating heat/power 

ratio and the calculated 𝑃𝑖,𝑡
g𝑡_𝑒

 . With an appropriate “Big M” 

value (typically 106) only the constraints referring to 𝛼i,t,r

ph_b
=1 

will be active [11]. Equation (6) ensures that only a single value 
of the power/heat ratio is considered for every units at each time 

step. 𝑃𝑖,𝑡
g𝑡_𝑒

 is then computed similarly to the GT output with the 

weight coefficients for the breakpoints Gi,t,r,k
e  entered as 

parameters. 
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Fig. 4: Example of unit i operating in block s1 with ratio r1 at time t 
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Fig. 3.3 Example of unit i operating in block s1 with ratio r1 at time t

∑
s∈S

w e
i ,t ,r,s = ui ,t (3.1)
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
βe

i ,t ,r,k ≥ 0

βe
i ,t ,r,kx

≤ w e
i ,t ,r,kx−1

+w e
i ,t ,r,kx+1

(3.2)

∑
k∈K

βe
i ,t ,r,k = ui ,t (3.3)

P g t
i ,t =

∑
k∈K

βe
i ,t ,r,k ×G g t_e

i ,r,k (3.4)


P e

i ,t ≤
∑

k∈K β
e
i ,t ,r,k ×Ge

i ,r,k +M × (1−αph_b
i ,t ,r )

P e
i ,t ≥

∑
k∈K β

e
i ,t ,r,k ×Ge

i ,r,k −M × (1−αph_b
i ,t ,r )

(3.5)

∑
r∈R

α
ph_b
i ,t ,r = 1 (3.6)

The model developed in the previous section is now included in an environmental

unit commitment for both heat and power dispatch. As already mentioned the objective

is to supply power P L_h
t and heat P L_e

t load profiles with a set of different CCGT units and

with minimal CO2 emissions. A classical two blocks (c ∈C ) linearization of the carbon cost

is considered regarding the GT output. The objective over the time horizon is computed

following objective function 3.7 with an hourly time step. That function depends on the

operating block for the GT of unit I at time P g t
i ,t ,c) and considering the corresponding block

slope Ai ,c , the base cost C0i and the start-up cot SUi with vi ,t = 1 when unit i starts up at

time t . An additional boiler with CO2 coefficient Abl (in kg/MWh) is considered to supply

the heat load if the units’ heat outputs are not enough – surplus denoted as P bl
t (in MW).

In order to ensure the convergence a thermal damp load P d p
t also needs to be introduced

if the units generate too much heat. Thus, implicitly priority is given to the supply of the

electrical load in the current implementation. Note that both P bl
t and P d p

t are unbounded

positive variables.
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min
ui ,t ,vi ,t ,P

g t
i ,t ,c

∑
t∈T

∑
i∈I

(C0i ×ui ,t +
∑
c∈C

Ai ,c ×P g t
i ,t ,c +SUi × vi ,t )+ Abl ×P bl

t (3.7)

ui ,t ×P g t_m
i ≤ P g t

i .t ≤ ui ,t ×P g t_M
i (3.8)

Pg ,t = ui ,t ×P g t_m
i + ∑

c∈C
P g t

i ,t ,c (3.9)

0 ≤ P g t
i ,t ,c ≤ P g t_M

i (3.10)

vi ,t ≥ ui ,t −ui ,t−1 (3.11)

∑
i∈I

P e
i ,t = P L_e

t (3.12)

∑
i∈I

P h
i ,t +P bl

t −P d p
t = P L_h

t (3.13)

Constraints 3.8 to 3.10 ensure that all the units properly work in the linear block

identified in the objective function. Typical operating constraints in UC refer to minimum

up and down times for the units, ramping limits or shut down cost. For clarity they do not

appear here and only the logical constraints 3.11 is considered. Finally, constraints 3.12

and 3.13 allow to fulfill both power and heat balances at each time step. The problem

is formulated in MATLAB using YALMIP and solved using CPLEX 12.7.1 (16 threads in

parallel, 16 GB RAM, 3.2 GHz processor).
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3.3 Economic dispatch optimization

3.3.1 Combined heat and power dispatch

A first set of simulation is performed for a dispatch with two units. Unit 1 is a high

efficiency 400 MW CCGT with specific CO2 emissions of 390 kg/MWh (at its nominal

point). Unit 2 is “dirtier” with 450 kg/MWh (at its nominal point) for a maximum capacity

of 250 MW. More information on the considered technologies and the modeling aspects

can be found in Rigo-Mariani et al. (2018). Three different strategies are discussed. In S0

the two units are optimally dispatched to feed the electrical load while the totality of the

heat demand is supplied by the boiler. The same dispatch strategy is considered in S1 but

the CCGT waste heat is injected in a thermal network. The boiler and damp load allow to

adjust the amount of provided heat. Finally, S2 denotes the power/heat ratio management

previously described. For S0 and S1 the optimal results correspond to the cleaner unit

working at its maximum electrical output while Unit 2 provides the surplus of energy

during the peak period (Figure 3.4.a). The ability to control the power/heat ratio tends to

lower the power output of Unit 1 in order to favor its heat generation (Figure 3.4.b). In the

same time the operating point of Unit 2 (in term of GT power) is increased with higher

power and heat outputs in S2. Note that with a significant electrical load compared to the

heat demand, the power/heat ratio cannot reach lower values to ensure the convergence

(Figures 3.4.c and d).

In S2 more waste heat from the CCGT units is transferred to the thermal network

which lowers the need of the additional boiler. Consequently, the overall amount of CO2

generated while supplying heat and power is reduced. – from 5214 tons to 5195 tons in the

previous simulations with specific emissions of 300 kg/MWh for the boiler. Obviously, the

CO2 reduction becomes more significant with “dirtier” boilers as shown in Table 3.2. The

same observation can be made when the level of the heat load increases regarding the

power demand with δ= P L_h
t /P L_e

t (simulation in Figure 3.4 corresponds to δ= 75%). For

higher heat load levels the improvement provided by the management of the power/heat

ratios are more significant regardless of the boiler emissions (Figure 3.5).
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Fig. 3.4 Obtained results with two units: a) power dispatch; b) heat dispatch; c) power/heat
ratio of unit 1; d) power/heat ratio of unit 2

Table 3.2 Influence of boiler emission on operation strategy

Abl (kg/MWh) S0 S1 S2

300 7921 5214 5195

500 9812 5286 5201

700 11704 5337 5201
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Fig. 3.5 CO2 emission versus heat load level:a) Abl = 300; b) Abl = 500; c) Abl = 700

The computational time for the previous simulation with two units was very low at

around 18s. However, preliminary tests with five units showed no convergence after

more than four hours of computation. Indeed, although the solver can easily handle the

5376 binary variables in the two CCGT problem, it is not the case with five units (13440

binary variables) or dozen units (around 104 binary variables). The complexity of the

developed model mainly lies in the introduction of multiple possible values for αph_b
i ,t ,r . A

first simplification could consist in reducing the size of the set R with fewer values for the

power/heat ratios (e.g. 0, 0.3, 0.6, 1). Instead, a constant ratio over the time horizon is

considered here. The set R remains the same as previously (i.e. 11 possible values) and

constraint 3.6 is rewritten as follow with r r e f
i the constant power/heat ratio of unit i over

the day (with r an integer in {1, . . . ,11}).


α

ph_b
i ,t ,r = 1 if r = r r e f

i ∀t ∈ T

α
ph_b
i ,t ,r = 0 otherwise

(3.14)

In order to inspect the impact of power/heat ratio on the optimization results, s new

set of simulations is performed while varying the references for the power/heat ratios of

the two units (Figure 3.6) . Also, the impact of the power load level is investigated with

three cases: low (L at 50% as in Figure 3.6.a), middle (M at 75% as in Figure 3.6.b) and high

(H at 100% as in Figure 3.6.c). The heat load profile remains the same as previously and
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Fig. 6: CO2 Vs the heat load level – a) Abl=300 - b) Abl=500 - c) Abl=700 

C.  Constant Power/Heat Ratios  

The computational time for the previous simulation with 

two units was very low at around 18 s. However, preliminary 

tests with five units showed no convergence after more than 

four hours of computation. Indeed, although the solver can 

easily handle the 5376 binary variables in the two CCGT 

problem, it is not the case with five units (13440 binary 

variables) or thirteen units (34944 binary variables) like in the 

Jurong Island model. The complexity of the developed model 

mainly lies in the introduction of multiple possible values for 

𝛼i,t,r

ph_b
. A first simplification could consist in reducing the size 

of the set R with fewer values for the power/heat ratios (e.g. {0, 

0.3, 0.6, 1}). Instead, a constant ratio over the time horizon is 

considered here. The set R remains the same as previously (i.e. 

11 possible values) and constraint (6) is rewritten as follow with 

ri

ref
 the constant power/heat ratio of unit i over the day (with r 

an integer in {1,..,11}).  
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A new set of simulations is performed while varying the 

references for the power/heat ratios of the two units. Also, the 

impact of the power load level is investigated with three cases: 

low (L at 50%), middle (M at 75 %) and high (H at 100 %). 

The heat load profile remains the same as previously and 

Abl = 500 kg/MWh. An exhaustive search is performed to find 

the best set of constant ratios (r1

ref
 and r2

ref
) that minimizes the 

emissions. That approach is denoted as S3. As already observed 

in the previous subsection, results obtained with S2 are better 

than in a case where the power/heat ration of the unit remains 

at one (i.e. S1) (Table II). The improvements increase when the 

heat load is more significant compared to the electrical demand 

(i.e. moving from H to L here). The strategy S3 with constant 

ratios displays intermediate results that become closer to the 

performances of S2 with lower power loads. Fig. 7 plots the 

results obtained while varying ratios r1

ref
 and r2

ref
 for the 

different power load levels. For higher electrical demands the 

dispatch strategy cannot converge with low ratios. In such cases 

the combined power output of the two units is not enough to 

supply the load (Fig. 7b,c). Considering case L, the 

convergence is obtained no matter the chosen reference ratios 

(Fig. 7a). Each of the plotted surfaces displays a global 

minimum that corresponds to the optimal set of power/heat 

ratios with the lowest CO2 emissions. 

 
Fig. 7: Obtained results with S3 – a) level L – b) level M – c) level H 

TABLE II 

CO2 emissions for different power load levels 

Power load level S1 S2 S3 

L 4282 3665 3693 

M 4684 4411 4476 

H 5286 5201 5243 

The exhaustive search performed by S3 is possible in a case 

with two units and only requires 30 min with 121 different sets 

of ratios estimated (i.e. 112). However, computational times 

might become prohibitive when more generators are considered 

(e.g. 1113 possible sets for the Jurong Island model). To 

overcome that difficulty a greedy search method is 

implemented and the MILP dispatch is successively run for 

different set of power/heat ratios. The idea of the method is to 

iteratively decrease the ratios of the units until no improvement 

is possible in the objective (obj*). At each iteration the method 

identifies the unit whose power/heat ratio should be decreased 

in order to reduce the emissions as much as possible (Table III). 

That is done by independently decreasing the ratio of each unit 

i and computing the corresponding emissions (obji). For the 

three different power load levels (i.e. low L, medium M and 

high H) the developed algorithm returns the same solution than 

the exhaustive search S3. However, it is obvious that the greedy 

approach cannot guarantee a global optimum in every case. The 

main advantage lies in a limited computational time with a 

maximum number of evaluation (i.e. runs of the MILP dispatch) 

directly linked to the number of units and the size of the set R – 

maximum of R×I ×I evaluations. 
TABLE III 

Hybrid Greedy/MILP dispatch 

Outputs Return ri

ref
 for i∈I  

Set ri

ref
= 1  and obj

i
 = 0 for i∈I 

Run MILP dispatch and compute obj*
 

While min(obj
i
) < obj

*
 

For i∈I 

If ri

ref
> 1 

ri

ref
⟵ ri

ref
−1  

Run MILP dispatch and compute obj
i
 

If no convergence, obj
i
= ∞ , End If 

ri

ref
⟵ ri

ref
+1 

Else obj
i
= ∞ 

End If 
End For 

If min(obj
i
) < obj

*
 

obj
* ⟵ min(obj

i
) 

ri

ref
⟵ ri

ref
−1 for i corresponding to min(obj

i
)  

End If 

End While 
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Fig. 3.6 CO2 emission versus power load level:a) level L; b) level M; c) level H

Table 3.3 Influence of different power load level on CO2 emission

Power load level S1 S2 S3

L 4282 3665 3693

M 4684 4411 4476

H 5286 5201 5243

Abl = 500kg /MW h. An exhaustive search is performed to find the best set of constant

ratios (r r e f
1 and r r e f

2 ) that minimizes the emissions. That approach is denoted as S3. As

already observed in the previous subsection, results obtained with S2 are better than in

a case where the power/heat ration of the unit remains at one (i.e. S1) (Table 3.3). The

improvements increase when the heat load is more significant compared to the electrical

demand (i.e. moving from H to L here). The strategy S3 with constant ratios displays

intermediate results that become closer to the performances of S2 with lower power loads.

Figure 3.6 plots the results obtained while varying ratios r r e f
1 and r r e f

2 for the different

power load levels. For higher electrical demands the dispatch strategy cannot converge

with low ratios. In such cases the combined power output of the two units is not enough

to supply the load (Figure 3.6.b and Figure 3.6.c). Considering case L, the convergence is

obtained no matter the chosen reference ratios (Figure 3.6.a). Each of the plotted surfaces

displays a global minimum that corresponds to the optimal set of power/heat ratios with

the lowest CO2 emissions.
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The exhaustive search performed by S3 is possible in a case with two units and only re-

quires 30 min with 121 different sets of ratios estimated (i.e. 112). However, computational

times might become prohibitive when more generators are considered (e.g. 1110 possible

sets for ten units). To overcome that difficulty a greedy search method is implemented

and the MILP dispatch is successively run for different set of power/heat ratios. The idea

of the method is to iteratively decrease the ratios of the units until no improvement is

possible in the objective (ob j∗). At each iteration the method identifies the unit whose

power/heat ratio should be decreased in order to reduce the emissions as much as possi-

ble (). That is done by independently decreasing the ratio of each unit i and computing

the corresponding emissions (ob ji ). For the three different power load levels (i.e. low

L, medium M and high H) the developed algorithm returns the same solution than the

exhaustive search S3. However, it is obvious that the greedy approach cannot guarantee a

global optimum in every case. The main advantage lies in a limited computational time

with a maximum number of evaluation (i.e. runs of the MILP dispatch) directly linked to
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the number of units and the size of the set R – maximum of R × I × I evaluations.

Algorithm 1: Hybrid greedy search and MILP dispatch algorithm

Input: r r e f
i = 1 and ob ji = 0 for i ∈ I

Output: r r e f
i for i ∈ I

while min(ob ji ) < ob j∗ do

for i ∈ I do

if r r e f
i > 1 then

r r e f
i ← r r e f

i −1

Run MILP dispatch and compute ob ji

if no convergence then
ob ji =∞

else
Continue

end

r r e f
i ← r r e f

i +1

else
ob ji =∞

end

end

if min(ob ji ) < ob j∗ then
ob j∗ ← min(ob ji )

r r e f
i ← r r e f

i −1

else
Continue

end

end

3.3.2 Security constrained dispatch

The previous subsection introduced an optimal power/heat dispatch in the presence of

cogeneration units. A security constrained unit commitment is now considered with the
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implementation of the models for power and thermal networks. The objective is to take

account of possible constraints regarding the flows within electrical cables or steam pipes.

For the power system a traditional DC power flow model is considered with the com-

putation of Shift Factors SFLE×B (Barbulescu et al., 2009). Then the power flow within a

line l e at time t is computed by considering both positive and negative components F e+
l e ,t ,

F e−
l e ,t as well as the power injection at each bus. A linear coefficient θe

l e for the branch losses

is introduced together with the matrix MB I and M e
BLE that represent the grid topology:

Mbi = 1 if unit i is connected to bus b; M e
bl e = 1 if line l e starts/ends at bus b. Finally,

line power flow is computed according to Equation 3.15. As in the method developed

by Li (2011) the losses within a line are equally distributed at the start and end buses as

additional loads. The power balance constraint is modified following Equation 3.16 to

consider the balance at each bus b for every time step t. Finally, constraints 3.17 ensures

that the line power flow remains below the specified limit F e_M
l e .

F e+
l e ,t −F e−

l e ,t =
∑

b∈B
SFl e b × (

∑
i∈I

Mbi ×P e
i ,t −P L_e

b,t +M e
bl e ×

δe
l e

2
× (F e+

l e ,t +F e−
l e ,t )) (3.15)

∑
i∈I

Mbi ×P e
i ,t +

∑
l e∈LE

M e
bl e ×

δe
l e

2
× (F e+

l e ,t +F e−
l e ,t ) = P L_e

b,t (3.16)


F e+

l e ,t ,F e−
l e ,t ≥ 0

−F e_M
l e ≤ F e+

l e ,t −F e−
l e ,t ≤ F e_M

l e

(3.17)

The thermal grid displays two main differences compared to the power system. Firstly,

the steam flows F h
l h ,t

in the pipe l h are strictly unidirectional because of the irreversibility

of turbo machinery. Secondly, those steam flows can only take values below a predefined

capacity F h_des
l h within a certain range θ (typically 25 %) (Wang et al., 2017). In order to

ensure the convergence of the scheduling problem, controllable damp loads P d p
b,t and

boilers P bl
b,t should be considered at each bus. Especially, they allow more flexibility if

the units’ operating conditions and the heat flow limits do not allow to supply the loads
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P h
bl h or if there is a local excess of heat generation. Finally the heat balance at each bus is

expressed following Equation 3.19 with M h+
BLH and M h−

BLH B ×LH matrix that map the heat

network: M h+
BLH = 1 if line l h ending at bus b and M h−

BLH = 1 if l h starting from bus b. The

equation also considers linear loss coefficients δh
l h that depends on the pipe length.

(1− θ

100
)×F h_des

l h ≤ F h
l h ≤ F h_des

l h (3.18)

∑
i∈I

Mbi ×P h
i ,t +

∑
l h∈LH

M h_
bl h × (1−δh

l h )×F h
l h ,t

−M h+
bl h ×F h

l h ,t
= P d p

b,t +P L_e
b,t −P bl

b,t (3.19)

Fig. 3.7 Five bus system: a) electrical network; b) thermal network

The power/heat dispatch problem with grid constraints is implemented for the five

buses system displayed on Figure 3.7. Parameters for power lines and maximum outputs

of the generators are derived from Li and Bo (2010). A thermal network is designed with

the topology depicted on Fig. 8b with specified directions for the steam flows. The pipes

capacities as well as the heat loss coefficients are given in Table IV. Three daily profiles are

considered for the electrical loads at buses 2,3 and 4. The heat profiles are assumed to

follow the same patterns and different levels of power/heat demands can be investigated.
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Table 3.4 Steam pipes parameters in 5 bus system

Pipe 1-2 2-3 3-4 4-5 5-1

F h_des
l h (MW) 400 200 100 200 300

δh
l h (%) 3.9 1.5 4.2 4.2 0.9

At first, an optimal scheduling is considered with a heat load equals to 150% of the power

demand profile and the boilers specific CO2 emission is set at 500 kg/MWh. A preliminary

test is performed while running the optimal dispatch with all the power/heat ratios set to 1

for every unit (S1) and it corresponds 9639 tons of CO2 emitted for the representative day.

Then the hybrid Greedy/MILP dispatch (SGD) presented in the previous section is applied

to minimize the CO2 emissions with adjusted r r e f
i (integers in {1,11} for power/heat ratio

in [0,1]). Emissions are significantly reduced to 8123 tons (16% reduction) with the CCGT

units generating more heat than in S1.

As displayed on Figure 3.8a the increase of the waste heat generation in SGD allows to

avoid extensive use of the boilers resulting in reduced CO2 emissions. For low heat load

levels, the CCGT heat production is even greater than the demand. The use of damp loads

is then required, which is not necessary in S1. During peak load hours the heat generation

remains slightly greater than the load as it feeds the system heat losses (Figure 3.8a).

The convergence of the greedy method is reached after 45 min of computation with 34

iterations, which corresponds to 169 evaluations of the objective function (i.e. runs of the

MILP dispatch with constant ratios). The optimal solution returned displays relatively

low values for the power/heat ratios compared to the previous case study with two units

(unit A: 0.9, unit B: 0.1, unit C: 0, unit D: 0.6 and unit E: 0.1). That is explained by the

electrical power load significantly lower than the installed capacity: the peak load is 620

MW for 1.2 GW of total capacity. There is no problem for the CCGT units to operate at

lower power/heat ratios while supplying the electrical demand. Thus those ratios decrease

along the iterations of the greedy search method as well as the CO2 emissions until no

improvement is possible (Figure 3.8b). Figure 3.9 displays the line flows normalized by the

maximum capacities. The powers within the electrical lines are not important (below 50%
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of load) as the electrical demand level is low compared to the system capacity (Figure 3.9a).

Regarding the steam pipes, the lower bound for the heat flows appears to be a biding

constraint (Figure 3.9b). Indeed, except for line 1-2 all the flows remain close to the

minimum value which then require the generation of additional heat (either with the

boilers of the CCGT units).

Fig. 3.8 Five bus model optimization results: a) heat load supply; b) greedy search method

Fig. 3.9 Five bus model optimization branch flow: a) electrical network; b) thermal network
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Table 3.5 Impact of steam pipes parameters on optimization

Heat load level
50% 100% 150%

S1 SGD S1 SGD S1 SGD

θ = 25% 6741 6235 7595 6999 9639 8123

θ = 50% 5425 5425 6821 6484 9539 7647

θ = 75% 5111 5111 6207 6187 9474 7617

θ = 100% 5111 5111 6169 6122 9448 7610

An additional set of simulations is performed while varying the heat load level (in %

of power demand) as well as relaxing the steam flow constraint with greater values for θ

(which is not realistic). The CO2 emissions are computed for the two scenarios S1 and

SGD and the obtained results are compiled in Table 3.5. As already observed in Section IV

the improvements provided by an optimal dispatch compared to S1 tend to increase with

greater levels of heat demand. The relaxation of the thermal flows constraint also allows

greater CO2 reductions in every cases. The obtained results confirm that the constraint

is a binding limit for all the considered load level and while applying both dispatch S1

and SGD. Thus the design capacity of the pipe should be appropriately determined in

the planning phase when dealing with cogeneration problems. On one hand, undersized

pipes would limit the use of the heat generation capacity of the units. On the other,

oversized lines might require additional boilers to operates under low load condition to

maintain a minimal flow in the branches.

3.4 Summary and remark

This section proposed a single-objective optimization for power and heat co-generation

dispatch problem based on minimization of CO2 emission. Three different strategies are

discussed. In S0 power are optimally dispatched to feed the electrical load while the totality

of the heat demand is supplied by the boiler. The same dispatch strategy is considered in

S1 but the CCGT waste heat is injected in a thermal network. The boiler and damp load
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allow to adjust the amount of provided heat. Finally, S2 denotes a strategy where power

to heat ratio could be manipulated according to the proposed optimization method.

In order to overcome the prohibitive computation cost induced by exhaustive search

(e.g. the power-to-heat ratio of different generation units), a hybrid greedy search and

MILP dispatch method is presented. In a two generating units example, boiler emission

intensity has large impact on the optimization results: when boiler emission is low (e.g.

300kg CO2 per MWh), S0, S1, and S2 have emission at 7921tons, 5214tons, and 5195tons

respectively; when boiler emission intensity is increased to 500 kg/MWh, the emission

would increase to 9812tons, 5286tons, and 5201tons correspondingly; with boiler emission

intensity at 700kg/MWh, the overall emission would be 11704tons, 5337tons, and 5201tons.

Incorporation of possible constraints regarding power and thermal networks would affect

the optimization results, in the test case, by changing the steam pipe design capacity from

50% to 100% and 150%, the CO2 emission would be 5111tons, 6122tons, and 7610tons

respectively. Such observations also showed the necessity to appropriately size the steam

pipes as the lower bound for the heat flow are binding constraints in most cases. Also cost

components should be included in the dispatch objective function that only considers the

CO2 emissions so far. This would lead to the formulation of multi-objective optimization

problem described in next section.



Chapter 4

Multi-objective optimization

In this chapter, parts of sentences, full sentences or whole paragraphs are based on the

manuscript of

Chuan Zhang, Alessandro Romagnoli and Markus Kraft. A novel methodology for the

design of waste heat recovery network in eco-industrial park using techno-economic

analysis and multi-objective optimization. Applied Energy, 2016(184):88-102.

4.1 Method overview

In Chapter 3, a single-objective optimization framework for energy system optimization

is proposed; however, as discussed in Chapter 1, energy system design and optimization

is a multiple criteria decision-making. Various objective functions, including energy

efficiency, payback period, CO2 emission reduction, etc. have been proposed in the

literature (Boix et al., 2015), as a result different objective functions can be selected. In this

chapter possibility to satisfy multiple and possibly conflicting objectives simultaneously

is discussed. Design and optimization of waste heat recovery (WHR) in eco-industrial

park (EIP) is used as an example in this chapter. A general methodology for WHR in EIP is

proposed; its structure is shown in Figure 4.1, whereby Step 1 - identification of source

plants and sink plants in EIP is described. In this step, the necessary information for
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WHR network optimization is gathered, the waste heat temperature and quantity, the

geographical location of different plants and communities as well as the economic and

environmental parameters to be used in the optimization model; Step 2 - waste heat

transportation system modelling is detailed. In this step, the waste heat transportation

from hot stream in source plants to cold stream in sink plants will be described together

with the temperature drop and energy loss associated with the transportation process;

Step 3 - techno-economic-environmental modelling is discussed. In this step, different

objective functions with regard to the techno-economic-environmental aspects of WHR

network would be used to optimize the configuration of WHR network; Step 4 - multi-

objective optimization is discussed. In this step, multi-objective optimization will be used

to seek trade-off between different objective functions.

Fig. 4.1 Methodology of WHR network optimization in EIP
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Accurately identifying thermal and chemical properties of waste heat is important

for WHR. In a specific plant, usually there are two kinds of streams, namely the hot

and the cold stream; the composition of these streams is usually chemicals that are

either reactants or products of chemical reactions. The temperatures before and after the

heating or cooling of these streams are named source temperature and target temperature

respectively; the energy source for heating or cooling of the streams comes from heating

utilities and cooling utilities. Typically, the steam or hot water for process heating is

generated by utility boiler, whereas the chilled water for process cooling is generated

by either cooling tower or refrigeration cycle. Figure 4.2-(a) shows the energy cascading

scenario between heat source, heat sink, heating and cooling utilities, hot streams and cold

streams in two plants. If one plant is taken as control volume (dashed line in Figure 4.2),

the heating and cooling energy will flow from the heat source to the heating utility and

from the cooling utility to the heat sink respectively; additionally, intra-plant WHR may

happen between hot stream and cold stream. If the view is changed from plant level to

EIP level, WHR opportunities change as well. Theoretically if the exhaust temperature of

cooling utility in plant 1 is larger than the supply temperature of heating utility in plant 2,

we could transfer heat from cooling utility 1 to heating utility 2; as a result, energy flow

from cooling utility 1 to heat sink 1 will reduce, meanwhile energy flow from heat source 2

to heating utility 2 will reduce too. Ideally one plant can be both source plant and sink

plant at the same time, which means its cooling utility can reject heat to heating utilities in

other plants while its heating utility can receive heat from cooling utilities in other plants.

After having defined the source plant and sink plant, it is important to identify the

quality and quantity of waste heat and heating demand related to source plant and sink

plant respectively. In order to do so, temperature-enthalpy (T-H) diagrams are widely used.

Hot composite T-H curve and cold composite T-H curve can be constructed (Figure 4.3);

the method to construct the curve is detailed in reference (March, 1998). If a plant with

T-H curve shown in Figure 4.3 is a sink plant, its heating demand quality and heating

demand quantity can be extracted from the composite cold stream; in this case the heating

demand quality for this plant corresponds to T 6, whereas the heating demand quantity is
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Fig. 4.2 Energy cascading inside an EIP: (a) without WHR network; (b) with WHR network

either H6 −H4 (without intra-plant recovery) or H6 −H5 (with intra-plant heat recovery).

Similarly, if this plant is a source plant, its waste heat quality and waste heat quantity

can be extracted from the composite hot stream; in this case the waste heat quality for

this plant corresponds to T3, whereas the waste heat quantity is either H1 −H3 (without

intra-plant heat recovery) or H2 −H3 (with intra-plant heat recovery).

After describing the parameters required for source and sink plants, the next step is

the establishment of WHR network. The challenge of this step is that all the possible

scenarios should initially be included. Suppose that there is an EIP with N plants and

M communities as shown in Figure 4.4(a); theoretically each of these plants could be

both sink plant and source plant as shown in Figure 4.4(b). The energy flow between heat

sources and neighboring communities are shown in Figure 4.4(c) as well. For plant i ,

the heat addition from heat source is noted as Ei ,i n , while heat rejection to heat sink is

indicated as Ei ,out . The heat transported from source plant i to sink plant j is noted as Ei j ;

the heat transported from source plant i to neighboring community k is noted as Ci k . The
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Fig. 4.3 An illustrative T-H curve for composite hot and cold stream

total number of connections between plants in an EIP is N × (N −1). In addition, the total

number of connections between plants and the neighboring communities is N ×M ; as a

result, the final total possible WHR connections within the EIP are N × (N −1)+N ×M .

The waste heat quality and quantity for source plant i is noted as Ti ,wh , Hi ,wh , whereas

the heating demand quality and quantity for sink plant j is noted as T j ,hd , H j ,hd . Based

on these parameters, the possible maximum heat transported from plant i to plant j Ei j ,

max can be calculated by the following equation:

Ei j ,max =
 0:Ti ,wh −∆Ti j ,trans ≤ T j ,hd

min{Hi ,wh −∆Hi j ,trans, H j ,hd}:Ti ,wh −∆Ti j ,trans > T j ,hd

(4.1)

∆Ti j ,tr ans and ∆Hi j ,tr ans is the temperature drop and energy loss due to the trans-

portation of waste heat from plant i to plant j . The physical meaning of Equation 4.1

is that the WHR from source plant i to sink plant j is only feasible when the waste heat

temperature from source plant i minus the temperature drop during transportation, is

larger than the heating demand temperature for the sink plant j (Ti ,wh−∆Ti j ,tr ans > T j ,hd )

; on the contrary, if the waste heat temperature from source plant i minus the temperature
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drop during transportation is smaller than the heating demand temperature for the sink

plant j (Ti ,wh −∆Ti j ,tr ans < T j ,hd ), WHR is deemed as infeasible.

The waste heat transportation from the heat source (e.g. hot stream in source plant)

to the heat sink (e.g. cold stream in sink plant) is shown in Figure 4.5. In Figure 4.5 it

is assumed that the waste heat transportation process from the source plant to the sink

plant will occur starting from intermediate heat transfer fluid in source plant, followed by

waste heat carrier in source and sink plant respectively, ending with intermediate heat

transfer fluid in sink plant. It needs to be noted that the scenario shown in Figure 4.5 is a

superstructure (Voll et al., 2013), which means that all the potentially possible elements for

the WHR transportation network are included. In reality, the WHR transportation network

could be simplified, for instance, if steam was used as waste heat carrier, no intermediate

heat transfer fluid would be required between heat source and steam. However, in cases

where phase change material is used as waste heat carrier, usually some intermediate

heat transfer fluid would be needed because direct heat transfer between hot stream in

source plant and phase change materials is hard to achieve. According to Figure 4.5, the

overall temperature drop between the waste heat source and waste heat sink can then be

calculated by the following equation:

∆Ti j ,trans =∆T1 +∆T2 +∆T3 +∆T4 +∆T5 (4.2)

Similarly, the transportation energy loss can be expressed as:

∆Hi j ,trans =∆H1 +∆H2 +∆H3 +∆H4 +∆H5 (4.3)

∆T1,∆T2,∆T3,∆T4,∆T5 is the temperature drop between different components of the

waste heat transportation system, whereas ∆H1,∆H2,∆H3,∆H4,∆H5 is the energy loss

between different components of the waste heat transportation system. Substituting

Equations 4.2 and 4.3 into Equation 4.1, we can derive the potentially maximum value for

each energy flow in Figure 4.4. There are two potential outcomes for Ei j ,max , either zero

or the smaller between the source plant waste heat and the sink plant heating demand. If
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(a) Before WHR network

(b) From source plant to sink plant after WHR network

(c) From source plant to neighboring communities

Fig. 4.4 Energy flow diagram in EIP: (a) before WHR network; (b) from source plant to sink
plant after WHR network; (c) from source plant to neighboring communities
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Ei j ,max is equal to zero, it can be excluded from the analysis, otherwise it can be used as a

constraint in the optimization process of the WHR network.

Fig. 4.5 Temperature drop and energy loss during waste heat transport

4.2 Techno-economic-environmental optimization

After Step 1 and Step 2 in Figure 4.1, a maximum number (e.g. N × (N −1)+N ×M) of

WHR of connections can be identified. The task of Step 3 is to select the most favorable

option by means of optimization. With respect to single objective modelling, several

objective functions have been developed in literature (Kastner et al., 2015), commonly

used constrains include energy balance, equipment life period and investment limit.

In this thesis during the techno-economic-environmental modelling, only one typical

objective function is selected for each aspect.

4.2.1 Technical modeling

For the technical model, energy efficiency of the EIP is used as the objective function

for this chapter. The energy flow of one specific plant is shown in Figure 4.6. The single
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plant i is treated as a control volume, and its energy efficiency before WHR ηi ,before can be

expressed as:

ηi ,before =
Ei ,in −Ei ,out

Ei ,in
(4.4)

Ei ,i n is the heat addition from the heat source, Ei ,out is the heat rejection to the heat

sink. Considering all the plants in the EIP, its total energy efficiency ηtot ,be f or e can be

expressed as:

ηtot,before =

N∑
i=1

Ei ,in −
N∑

i=1
Ei ,out

N∑
i=1

Ei ,in

(4.5)

After WHR the total energy efficiency of the whole EIP can be expressed as:

ηtot,after =

N∑
i=1

(Ei ,in −
N∑

j=1, j ̸=i
E j i )−

N∑
i=1

(Ei ,out −
N∑

j=1, j ̸=i
Ei j −

M∑
k=1

Ci k )

N∑
i=1

(Ei ,in −
N∑

j=1, j ̸=i
E j i )

=

N∑
i=1

Ei ,in −
N∑

i=1
Ei ,out +

N∑
i=1

M∑
k=1

Ci k

N∑
i=1

Ei ,in −
N∑

i=1

N∑
j=1, j ̸=i

E j i

(4.6)

Ei j is the heat transported from source plant i to sink plant j , Ci k is the heat trans-

ported from plant i to the neighboring community k. Compared to Equation 4.5, Equa-

tion 4.6 has two additional terms. In the numerator, due to the heat transfer from the

source plants to the neighboring communities,
N∑

i=1

M∑
k=1

Ci k is added, which implies the

total energy efficiency is increased; in the denominator,
N∑

i=1

N∑
j=1, j ̸=i

E j i is subtracted, which

means that the total amount of energy that EIP takes from the heat sources is decreased.

The constrains that Ei j and Ci k must satisfy are:
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

N∑
j=1, j ̸=i

Ei j +
M∑

k=1
Ci k ≤ Ei ,out

N∑
j=1, j ̸=i

E j i ≤ Ei ,in

N∑
i=1

Ci k ≤Ck,demand

(4.7)

Ck,demand is the heating demand of the neighbouring community k. After the technical

model optimization, an optimal WHR network that gives maximum total energy efficiency

can be obtained. This WHR network can be noted as a vector V1 whose components

are the energy flows for each connection in the WHR network. According to the analysis

above, the maximum dimension of this vector is N × (N −1)+N ×M .

(a) For plant

(b) For community

Fig. 4.6 Energy flow before and after WHR network: (a) for plant i ; (b) for community k
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4.2.2 Economic modeling

For the economic model, payback period is used as the objective function. The bills of

heating utilities before WHRϕbefore and after WHRϕafter can be expressed by Equation 4.8:

ϕbefore =
N∑

i=1
f (Ei ,in,αi , t )

ϕafter =
N∑

i=1
f [(Ei ,in −

N∑
j=1, j ̸=i

E j i ),αi , t ]
(4.8)

αi is the energy price of heating utilities for plant i , t is the operation time of plants.

As per the capital investment due to the construction and operation of the waste heat

transportation network ϕtrans, this can be expressed as:

ϕtrans =
N∑

i=1
f (L j i ,E j i ,β j i ,γ j i ,Di k ,Ci k ,β’

i k ,γ
′
i k , t ) (4.9)

L j i is the transportation distance from plant j to plant i , β j i is the initial construc-

tion cost of transportation system from plant j to plant i , γ j i is the operation cost of

transportation system from plant j to plant i , Di k is the transportation distance from

plant i to neighboring community k, β’
i k is the initial construction cost of transportation

system from plant i to neighboring community k and γ’
i k is the operation cost of trans-

portation system from plant i to neighboring community k. Then the payback period T
′

for the WHR network can be calculated under the condition that ϕtrans =ϕbefore −ϕafter.

Considering the simplest condition where the relationship between ϕbefore,ϕafter,ϕtrans

and αi ,β j i ,γ j i ,β’
i k ,γ’

i k , t is linear, and αi ,β j i ,γ j i ,β’
i k ,γ’

i k are all time independent (Hiete

et al., 2012), then Equation 4.8 and Equation 4.9 can be expressed as:

ϕbefore =
N∑

i=1
(Ei ,in ·αi · t )

ϕafter =
N∑

i=1
[(Ei ,in −

N∑
j=1, j ̸=i

E j i ) ·αi · t ]

ϕtrans =
N∑

i=1

N∑
j=1, j ̸=i

[L j i ·E j i · (β j i +γ j i · t )]+
N∑

i=1

M∑
k=1

[Di k ·Ci k · (β′
i k +γ′i k · t )]

(4.10)
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Under such assumptions, the payback period T
′

can be expressed as:

T ′ =

N∑
i=1

N∑
j=1, j ̸=i

(
L j i ·E j i ·β j i

)+ N∑
i=1

M∑
k=1

(
Di k ·Ci k ·β′

i k

)
N∑

i=1

(
Ei ,in ·αi

)− N∑
i=1

[
(Ei ,in −

N∑
j=1, j ̸=i

E j i ) ·αi

]
−

N∑
i=1

N∑
j=1, j ̸=i

(
L j i ·E j i ·γ j i

)− N∑
i=1

M∑
k=1

(Di k ·Ci k ·γ′i k )

(4.11)

In Equation 4.11, in the numerator,
N∑

i=1

N∑
j=1, j ̸=i

(
L j i ·E j i ·β j i

)
is the construction cost of

WHR network from source plants to sink plants,
N∑

i=1

M∑
k=1

(
Di k ·Ci k ·β′

i k

)
is the construction

cost of WHR network from source plants to neighboring communities; in the denominator,
N∑

i=1

(
Ei ,in ·αi

)
and

N∑
i=1

[
(Ei ,in −

N∑
j=1, j ̸=i

E j i ) ·αi

]
correspond to the expense caused by all

heating utilities in the EIP before and after WHR respectively;
N∑

i=1

N∑
j=1, j ̸=i

(
L j i ·E j i ·γ j i

)
and

N∑
i=1

M∑
k=1

(Di k ·Ci k ·γ′i k ) is the cost operation caused by the waste heat transportation

system between source plants and sink plant & between source plants and neighbouring

communities respectively. The constrains described in Equation 4.7 are still valid for

the economic model, because the energy balance conditions still need to be satisfied.

In addition, some other economical constrains are also needed. For example, if the

construction cost of WHR network has an upper limit, the following constraint should be

added:

N∑
i=1

N∑
j=1, j ̸=i

(
L j i ·E j i ·β j i

)+ N∑
i=1

M∑
k=1

(
Di k ·Ci k ·β′

i k

)≤Cinitial (4.12)

Cinitial is the upper limit of construction cost of WHR network. After this step, a

WHR network noted as vector V2 can be obtained by optimization of economic objective

function. The components of V2 are the energy flows for each connection in the WHR

network.
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4.2.3 Environmental modeling

For the environmental model, the CO2 emission reduction is used as objective function[23].

Similar to the economic model, the CO2 emission of heating utilities before WHR φbefore

and after WHR φafter can be expressed as:

φbe f or e =
N∑

i=1
f (Ei ,i n ,σi , t )

φa f ter =
N∑

i=1
f [(Ei ,i n −

N∑
j=1, j ̸=i

E j i ),σi , t ]
(4.13)

σi is the CO2 emission of heating utilities for plant i . Meanwhile CO2 emission due

to construction and operation of the waste heat transportation network φtrans can be

expressed as:

φtr ans =
N∑

i=1
f (L j i ,E j i ,ςi j ,τi j ,Di k ,Ci k ,ς′i k ,τ′i k , t ) (4.14)

ς j i is the CO2 emission due to construction of transportation system from plant j to

plant i , τ j i is the CO2 emission due to operation of transportation system from plant j to

plant i , ς
′
i k is the CO2 emission due to the construction of transportation network from

plant i to neighboring community k and τ
′
i k is the CO2 emission due to the operation

of transportation network from plant i to neighboring community k. Then the CO2

emissions reduction φ due to WHR can be expressed as :

φ=φtr ans +φa f ter −φbe f or e (4.15)

Again when the simplest linear relationship between φ and ς j i ,τ j i ,ς
′
i k ,τ

′
i k is assumed,

the objective function can be simplified as:

φ=
N∑

i=1

N∑
j=1, j ̸=i

[L j i ·E j i · (ς j i +τ j i · t )]+
N∑

i=1

M∑
k=1

[
Di k ·Ci k · (ς′i k +τ′i k · t )

]
+

N∑
i=1

[(Ei ,in −
N∑

j=1, j ̸=i
E j i ) ·σi · t ]−

N∑
i=1

(
Ei ,in ·σi · t

) (4.16)
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In this equation,
N∑

i=1

N∑
j=1, j ̸=i

[L j i ·E j i · (ς j i +τ j i · t )] is the CO2 emission due to waste

heat transportation from source plants to sink plants,
N∑

i=1

N∑
j=1, j ̸=i

[L j i ·E j i · (ς j i +τ j i · t )] is

the CO2 emission due to waste heat transportation from source plants to neighbouring

communities,
N∑

i=1
[(Ei ,in −

N∑
j=1, j ̸=i

E j i ) ·σi · t ] is the CO2 emission of heating utilities after

WHR.
N∑

i=1

(
Ei ,in ·σi · t

)
is the CO2 emission of heating utilities before WHR. The third WHR

network noted as vector V3 can be obtained from the optimization of environmental

model. Similar to V1 and V2, the components of V3 are the energy flows for each connec-

tion in the WHR network too.

4.2.4 Multi-objective optimization

After optimization of the techno-economic-environmental model, three WHR distribu-

tion solutions V1, V2, V3 can be obtained. However, in most cases V1, V2 and V3 are

not identical, trade-off between V1, V2 and V3 is necessary. As a result, multi-objective

optimization needs to be considered. As mentioned in Secion 1.3, multi-objective opti-

mization problem (MOOP) is an area of multiple criteria decision making that is related

to mathematical optimization problems involving more than one objective function to

be optimized simultaneously. In this thesis, objective functions include: (a) the opposite

number of total energy efficiency of whole EIP, because our goal is to maximize energy

efficiency while in MOOP we always want to minimize the objective function; (b) payback

period of the WHR network; (c) CO2 emissions reduction. The essential idea of MOOP is

to find a point that simultaneously optimizes different objective functions. However, such

a point almost never exists, then some approaches are needed to handle the trade-off

problem. Two fundamental approaches, scalarization approach and Pareto approach, are

introduced below.

In scalarization approach some parameters of scalarization are used to solve the MOOP.

The optimal solution to this MOOP will be the Pareto optimal solution, which means that

it will not be possible to increase the energy efficiency of the EIP any further without

increasing either the payback period or the CO2 emissions; in a similar fashion, it will
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also be not possible to decrease the payback period without either increasing the CO2

emissions or decreasing the energy efficiency. The scalarization process can be expressed

as in Equation 4.17:

JMO = λ1

s f1
J1 + λ2

s f2
J2 + λ3

s f3
J3 (4.17)

JMO is the complex objective function we formulate, λ is the weight factor of each

single objective function, s f is the scale factor, which are the optimal value of J1, J2, J3

obtained in from SOOP.

Fig. 4.7 Algorithm of pareto optimization approach

Compared to the scalarization approach, the Pareto approach is more complicated,

yet due to its universality and practicability, it is still widely used in MOOP. In Pareto

approach, vectors in criterion space J is defined as dominance, the points in decision

space x is defined as efficiency. The algorithm of this approach consists of several steps as

shown in Figure 4.7. The first step is efficiency design, in this step some representative

points are picked up from the decision space, mainly using Design of Experiment (DOE)

methods; it is assumed that these representative points obtained through efficiency design

can cover the whole design space with high resolution. The second step is dominance
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design; in this step the values of different objective functions J will be calculated based

on the points picked up from decision space. The third step is the extraction of non-

dominated solutions; in this step, pairwise comparisons of objective function vector J

will be conducted, when all the elements in a vector is smaller than the corresponding

elements in its counterpart, it is defined that this vector dominates the other. If a vector in

dominance is not dominated by any member of the dominance set, this vector is defined

as non-dominated solution. There are many procedures for finding the non-dominated

solutions, a fundamental one – Bubble Sort is used in this thesis. After this step we can

find an approximated Pareto Front, which is a set of non-dominated solutions found by

aforementioned method. It needs to be noted that compared to scalarization approach,

the outcome of Pareto approach is a set of points in decision space instead of a single

point.

4.3 Illustrative example

In this section, we will demonstrate the capability of the described methodology through

a case study of an industrial park based on Jurong Island Singapore. Jurong Island is a 32

km2 artificial island located to the southwest of Singapore, also is home to more than 100

chemical and power plants. To raise its competitiveness, the Singapore government plans

to optimize its resources and energy utilization through collaborative solutions. Hence

Jurong Island can be treated as an ideal test bed for applying the proposed methodology.

Due to the significant amount of companies on Jurong Island, only few represen-

tative ones were selected as shown in Figure 4.8. In order to implement the proposed

methodology of Figure 4.1 to this case study, data acquisition is the preliminary step to

be considered. The necessary data for this case study includes: the process flow sheet of

different plants to identify the hot streams and cold streams; the process state (especially

temperature and enthalpy) to quantify the quantity and quality of waste heat and heating

demand; the heating and cooling demand of communities; the geographical location

of plants and communities to quantify the distance with one another; the economic
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and environmental parameters used in Equations 4.11 and 4.16 including utility price,

transportation pipeline cost, transportation CO2 emission. The input data for this chapter

mainly comes from two sources: computer simulation software and literature references.

More specifically, Aspen Plus was used to simulate the chemical processes for the plants

and to obtain the waste heat and heating demand for plants and communities (refer to

Table B.1); the geographical information for plants and communities comes from ArcGIS

software (refer to Table B.2); as per the input data gathered by the literature, the economic

and environmental parameters (refer to Table B.3) were considered. The temperature drop

during waste heat transportation is given in Table B.4, whereas the corresponding energy

loss is calculated based on the temperature drop and steam thermodynamic property

tables (steam pipe network is treated as the preferred way to transport waste heat in this

case).

Fig. 4.8 Plants and communities layout on Jurong Island Singapore

Furthermore, we would like to argue that since most parameters used in the model

depend on the specific application cases, so in the condition that more accurate data

are available (e.g. onsite measurement of waste heat temperature is available), the data

currently used in the chapter can be replaced with moderate effort without undermining
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the effectiveness of the proposed methodology. Based on the number of companies

(N = 5) and communities (M = 2) there are potentially 30 (N × (N − 1)+ N × M = 30)

maximum connections in the WHR network. Then the temperature drop for waste heat

transportation (refer to Figure 4.6) needs to be evaluated according to Equation 4.2; ∆T3

is calculated thanks to the information in Appendix B, whereas the sum of the other

temperature drops (∆T1+∆T2+∆T3+∆T4+∆T5) is assumed to be equal to 10oC ; again in

real applications these values could be replaced by more reliable data if available. Applying

Equation 4.1 to all possible connections in the WHR network one by one, 17 connections

turn out to be infeasible, thus the total connections in WHR network can be reduced from

30 to 13. The detailed analysis of all potentially possible WHR connections in EIP is shown

in Table B.5, the remaining possible energy flows after this step can be obtained from

this table as well. Next in order to identify the most favourable solution, the SOOP and

MOOP method will be assessed. The optimization process is conducted in MATLAB using

the Generalized Reduced Gradient (GRG) algorithm. All results about the energy flows in

different WHR networks are listed in Table 4.1, also the topology of these WHR networks

is shown in Figure 4.9. In Table 4.1 and Figure 4.9, SOOP 1 stands for optimization on

energy efficiency, SOOP 2 stands for optimization on payback period, SOOP 3 stands for

optimization on CO2 emission, MOOP 1 stands for multi-objective optimization using

scalarization approach, MOOP 2 stands for multi-objective optimization using Pareto

approach. It should be noted that there are four sets of results under MOOP 2, this

is decided by the nature of Pareto approach. Basically in Pareto approach, the non-

dominated points are chosen as optimal solution points. There is possibility that there

turns out to be more than one non-dominated solutions, which is the case in Table 4.1. So

the four sets of results do not correspond to energy efficiency, CO2 emission and payback

period, instead they are a complete set of non-dominated solutions in Pareto optimization

(approximated Pareto Front).

Table 4.1 shows that generally different optimization methods will deliver different

WHR networks except for the case in which energy efficiency and CO2 emissions are

used as objective functions; this is because in this chapter we treat CO2 emission as a
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derivative function whose magnitude relies on the heating utilities, which turns out to

be the objective function of SOOP 1. Furthermore, the comparison of three different

objective function outcomes under different WHR networks is shown in the radar chart

below. In Figure 4.10, the data is represented in a normalized way, which means for a

specific scenario, the maximum energy efficiency that can be achieved by WHR network

in Table 4.1 is noted as 1, while the energy efficiencies achieved by other WHR networks

in Table 4.1 are noted as the ratio between them and the maximum energy efficiency. It

can be clearly seen that for SOOP the objective function outcomes are scattered, while

for MOOP the objective function outcomes are clustered, implying an explicit trade-off

between different objective functions.
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Fig. 4.9 Topology of WHR network under continuous waste heat:
(a)SOOP 1; (b)SOOP 2; (c)SOOP 3; d) MOOP

Fig. 4.10 Objective function outcomes in different WHR network

In last paragraph, it was assumed that constant waste heat was released from each

plant throughout the day. However, this might not be the case in reality, since based on

different production processes, waste heat might not be available during certain time. In
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the long run, several factors such as closing of plant, change of production can influence

the availability of waste heat as well. In order to describe the discontinuity of waste heat,

in this chapter four time slices are assumed (Figure 4.11), in time slice 1 all plants and

communities are running strictly under the condition described in last section; in time

slice 2 plant A is not running so the heating demanding and waste heat of plant A will

become zero while all other plants and communities are operating normally; similarly

in time slice 3 waste heat from plant C becomes zero; in time slice 4 heating demand for

community G becomes zero.

Fig. 4.11 Time slices for discontinuous waste heat

For each time slice, the optimization procedure in last section is repeated, thus that

we can expect four different WHR networks for each objective function. The results about

the energy flows in WHR networks under discontinuous waste heat condition are listed

in Table 4.2, also the WHR network topology in four different time slices while using

energy efficiency as objective function is shown in Figure 4.12. From Figure 4.12, it is

clearly shown that discontinuous waste heat will change the topology of the optimal WHR

network. In other words, the WHR network obtained under one specific time slice will

not be the preferred configuration for other time slices in the case of discontinuous waste
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heat. However, this could be anticipated even before doing this analysis, what we are

more interested in is to what extent the discontinuity in waste heat will influence the

outcomes of objective function. For instance, if we apply the WHR network obtained from

time slice 1 in time slice 2, 3 and 4, there will be some discrepancy between the energy

efficiency resulting from this WHR network (noted as real energy efficiency in Figure 4.13)

and the potential maximum energy efficiency resulting from the WHR networks shown

in Figure 4.13 (noted as maximum energy efficiency in Figure 4.13). In the same way, the

differences between the shortest and real payback period, between the lowest and real

CO2 emission are shown in Figure 4.13 as well. In Figure 4.13, the data is represented in a

normalized way, which means for a specific time slice, the maximum energy efficiency

that can be achieved is noted as 1, while the real energy efficiency is transformed into

the ratio of it to the potential maximum energy efficiency. In Figure 4.13 since the WHR

network is obtained by optimization in time slice 1, real energy efficiency for this time

slice is equal to the maximum energy efficiency; while for time slice 2, 3 and 4, the real

energy efficiency will decrease by around 45%. Hence it can be concluded discontinuity

in waste heat can significantly influence the optimization outcomes of WHR network.

4.4 Summary and remark

In this section, we discussed the influence of objective functions on the optimal design

and operation of energy system. We used an eco-industrial park heat integration network

as an example to show that different objective function in optimization would result

in different network topology and configuration, thus offering the opportunity to seek

trade-off between different targets to be achieved. The capability of this methodology is

demonstrated by a case study which consists of five plants and two neighboring commu-

nities. In the case study, after the first two steps, the number of potential connections can

be reduced from 30 to 13; after single objective optimization, three different network can

be obtained, which can be used as different baselines when different goals are pursued.

Two different multi-objective optimization approaches, scalarization approach and Pareto
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Fig. 4.12 Topology of WHR network in different time slices under discontinuous waste
heat

Fig. 4.13 Objective function outcomes in different time slices with same WHR network
topology



4.4 Summary and remark 107

approach, do not deliver identical results (network with the same configuration in both

topology and energy flow magnitude); yet there is no difference in the network topology,

the difference only lies in the magnitude of the energy flows in network. Optimization

under discontinuous waste heat profile shows that discontinuity in waste heat can signifi-

cantly influence the optimization outcomes of network, yet how to properly embody this

discontinuity into the optimization of network is still a non-trivial problem that remains

open now.





Chapter 5

Intelligent system development

In this chapter, parts of sentences, full sentences or whole paragraphs are based on the

manuscript of

Chuan Zhang, Alessandro Romagnoli and Markus Kraft. Knowledge management of eco-

industrial park for efficient energy utilization through ontology-based approach. Applied

Energy, 2017(204):1412-1421.

Chuan Zhang, Alessandro Romagnoli, Iftekhar A. Karimi and Markus Kraft. An ontol-

ogy framework towards decentralized information management for eco-industrial parks.

Computers & Chemical Engineering, in press.

5.1 Method overview

It was shown in Chapter 1 how AI, especially KBS, could increase the re-usability of energy

system design and optimization framework. A typical KBS development flow sheet is

proposed in Figure 5.1. Four necessary steps should be included in such a procedure:

defining goals; defining facts to support the goals; obtain data the corresponds to the

facts and is specific to a given solution or subject; evaluating the data via rules and

inferences (Gennari et al., 2003). The first step in designing such a system is to define a set
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of goals. The problems we want to solve must be clearly defined and the problem should

be described in concrete terms before we can go about creating a program to solve it.

Then in order to reach these goals, all up-to-date expert information for the given domain,

namely energy system modeling and optimization in this thesis, should be provided to

the KBS as “knowledge base”. All the knowledge in the KBS should be created by the

expert in this domain, who turn out to be us in our case. Finally, some inference rules

should be defined so that the KBS actually work. Obviously, the construction of knowledge

base, expressed in the form of domain ontology in this thesis, is the most related task for

us as energy researchers instead of computer science guys. This will be detailed in the

Section 5.2.

Fig. 5.1 A typical procedure of KBS development

In this Chapter, energy management of the EIP is still used as the illustrative exam-

ple where we are mainly concerned with a formal representation of different concepts

that capture the typical features of an EIP. A skeletal ontology is built by adapting and

extending OntoCAPE, an ontology for the chemical engineering domain (Marquardt et al.,

2009). The term “skeletal" implies that the proposed ontology should be intended as
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a preliminary trial for ontological innovations in EIP information management instead

of an omnipotent and complete version of EIP information modeling. At the current

stage, the ontology development mainly focuses on the modeling of chemical engineering

activities, such as transportation and electrical engineering. It is constructed based on a

conceptualization framework including five operational levels (unit operations, processes,

plants, industrial networks, and eco-industrial parks). The ontology is made up of several

parts including eco_industrial_park, resource_network, transportation_network, chemi-

cal_process _system and plant, as well as a few other modules adapted from OntoCAPE’s

modules, namely, chemical_process_system and unit_operation. The potential application

of such ontological representation in EIP information management is also discussed in

this thesis.

5.2 Hierarchical framework for information modeling

This section introduces a conceptual framework to guide the EIP information modeling.

A conceptual framework is yet another level of abstraction of ontology. It describes the

perspective based on which the ontology is constructed and its content, as well as the

links between the ontology modules. The conceptual framework is shown in Figure 5.2. It

provides a way to organize the entities in the EIP (Pan et al., 2016; Zhang et al., 2017).

At the topmost layer is the representation of the overall industrial park. It gives a

general description for the EIP as a whole, for instance, its geographic location, overall

resource (water, energy, and material) consumption, waste (water, energy, and material)

as well as pollutant emission, mathematical models that reflect system behavior. Potential

applications of such information might be for the EIP governors to query the general

operation state of the EIP. The detailed ontological modeling of the park layer is given in

next section.

The second layer from the top represents the core engineering sub-systems in an EIP. It

mainly includes resource networks (water network, energy network and material network),

and their supporting engineering systems, e.g. electrical power system and transportation
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Fig. 5.2 A hierarchical framework for EIP information modeling and management

system. The network participants and their roles in the network (whether it’s a source,

a sink or both) are specified. Such information is used as input for the corresponding

optimization models for system designing and scheduling. Knowledge contained in this

layer is useful for industrial resource network formulation and optimization.

Connectivity among the network participants is described on the third layer, which is

a collection of the plants residing in the EIP. A plant is represented as a group of manufac-

turing processes. Plant level information, such as plant ownership, location, raw material

requirement, product/by-product specification and waste emissions are specified. Such

information might benefit the digitalization of chemical plants towards smart plant.

The fourth layer holds descriptions about the manufacturing processes, covering

mathematical models that capture the parametric behavior of the process and its eco-

nomical and environmental performance, which might facilitate the production process

automation.

The fifth layer reflects knowledge of the unit operations, including the machinery

design parameters, operational conditions, mathematical models that describe the para-
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metric behavior, economical and environmental performance of the unit, as well as their

physical connections which reflects the material/energy interdependence. It is noted that

though we did not specify mathematical models for each layer here, the other layers may

also contain mathematical models, depending on the system evaluation needs.

Finally, it has to be underlined that there is no single correct manner for the ontological

representation of a system. The described above systems could be approached from

various perspectives at various levels of detail. In other words, which properties we

describe and how we describe them highly depend on the application requirement. In the

next section, we present an ontological representation for EIP that can fulfill the need of

our current application requirement, i.e. to support the establishment of a decentralized

information management system for EIP. Although we strived to construct the ontology to

be as comprehensive and versatile as possible, it is certain that the ontology will need to

be extended, with moderate efforts, when it comes to new application requirements.

5.3 Domain ontology construction

5.3.1 The overall ontology structure

Based on the hierarchical structure proposed in the last section, this section will introduce

the detailed ontological representation of each level. The ontologies were developed in

Protégé, which is a standard ontology editor for ontology-based intelligent systems (Uni-

versity, 2016). The overall structure of OntoEIP is shown in Figure 5.3. It can be seen

that the overall ontology is modularized into several modules representing different do-

main of expertise, namely chemical industry, electrical power system, and transportation

network. The modularization is based on the central concepts defined in the module

eco-industrial_park, including Eco-industrialPark, IndustrialSymbiosis, ChemicalPlant,

ElectricPowerSystem and TransportationNetwork, which is shown in Figure 5.4. The de-

scriptions of the relevant concepts are listed in Table 5.1.

Furthermore, by following the design principle of OntoCAPE, the proposed ontology

describes EIP as a whole from four perspectives, namely system realization, system perfor-
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Fig. 5.4 Representation of an eco-industrial park and corresponding class
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Table 5.1 The relevant eco-industrial park concepts

Classes Definition
IndustrialSymbiosis Industrial symbiosis engages traditionally separate in-

dustries in a collective approach to competitive advan-
tage involving physical exchange of materials, energy,
water, and/or by-products (Chertow, 2000).

Eco-industrialPark An Eco-industrialPark is a concrete realization of the
industrial symbiosis concept. It is composed of several
subsystems, where the park occupants collaborate to
minimize material and energy waste through reuse net-
works that reduce environmental impact while increas-
ing or maintaining profitability (Kastner et al., 2015).

WaterNetwork A WaterNetwork is also known as water distribution sys-
tem. It represents a type of industrial symbiosis realiza-
tion where industry entities collaborate with each other
via the exchange of water streams (Boix et al., 2015).

EnergyNetwork An EnergyNetwork is an industrial symbiosis realization
via the exchange of energy streams (Boix et al., 2015).

MaterialNetwork A MaterialNetwork refers to any type of material ex-
change among the possible entities (can be operation
units, chemical producing processes, and manufactory
plants that are of the same or different types) repre-
sented in an EIP (Boix et al., 2015).

ElectricPowerSystem An ElectricPowerSystem is a network of electrical com-
ponents, including power generation, power transmis-
sion, transforming and power consumption, deployed
to supply, transfer, and utilise electric power.

TransportationNetwork A TransportationNetwork is a realization of a spatial
network, describing a structure which permits either
vehicular movement or flow of some commodity.

ChemicalPlant A ChemicalPlant is an industrial plant that uses spe-
cialized equipment, units, and technology to transform
feedstock chemicals into chemical products (usually on
a large scale).
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Fig. 5.5 The concepts describing the common feature of a system

mance, system function, and system behavior. Each as a partial module groups a subset

of components (classes, relationships, and constraints) that reflect a particular aspect

of the modeled system (Figure 5.5). System realization represents the realization aspect

of a system, reflecting the physical constitution of a technical system. Generally, it has

mostly constant properties that give a static description of a system, such as geograph-

ical location, mechanical properties, and geometry. System performance is employed

for the evaluation and benchmarking of a technical system. The concept represents a

performance measure for the evaluation. Evaluation from the perspective of economics

and environment are considered at current stage. System function introduces concepts

that reflect the desired behavior of a technical system, while system behavior describes

how a system behaves under certain conditions. The project intends to develop an expert

system called J-Park Simulator (JPS), which is a quantitative simulation environment

built upon a virtual, hierarchical representation of an EIP. The representation involves not

only data, but importantly also physical or surrogate models, which encode knowledge

about the behavioural characteristics of the represented entities to be used in simulations,
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optimisations, inference and reasoning. It is noted that the notion MathematicalModel

is defined for the description of the behavioural aspect of a System, which implies that a

system of any level that is modelled in the current work may have its mathematical model

representation.

Table 5.2 Concepts that reflect the generic system features

Classes Definition

Organization An Organization is a group of people, companies, or

countries, which is set up for a particular purpose.

DesignCapacity Capacity denotes the maximum amount of product

that a factory, company, machine etc. is designed to

produce or deal with.

AddressArea An AddressArea represents the geographic location on

the Earth’s surface where a system resides, it provides

the connection to the road network.

GeographicCoordinateSystem A GeographicCoordinateSystem is a coordinate sys-

tem used in geography that enables every location

on Earth to be specified by a set of numbers, letters or

symbols. A common choice of coordinates is latitude,

longitude and elevation.

ProjectedCoordinateSystem A ProjectedCoordinateSystem is defined on a flat, two-

dimensional surface. It has constant lengths, angles,

and areas across the two dimensions.

Cost Cost describes all kinds of costs that may arise with

respect to producing a product.

CapitalCost CapitalCost are fixed, one-time expenses incurred on

the purchase of land, buildings, construction, and

equipment used in the production of goods or in the

rendering of services.
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OperatingCost OperatingCost are the expenses which are related to

the operation of a business, or to the operation of a

device, component, piece of equipment or facility.

LaborCost LaborCost denotes the expenses which are related to

manpower for the operation of a business or a system.

Earnings Earnings denotes the net benefits of a corporation’s

operation.

Price Price denotes the currency per unit weight of a prod-

uct.

PollutantEmission PollutantEmission represents the pollutant (liquid or

gaseous) discharged from a possible entity (can be

an operation unit, a chemical plant, a building or an

industrial park) to the environment.

Resource Resource denotes natural, or commercial resources

that could be used to produce certain type of products.

Product Product denotes for an economic goods or service.

SurrogateModel A SurrogateModel, also known as metamodel, reduced

order model or response surface model, is an approxi-

mation model that mimic the behavior of the simula-

tion process as closely as possible while being compu-

tationally cheaper to evaluate.

We would like to stress out that, at the current stage, the mathematical models are first

encoded into an executable format, i.e. MATLAB files, MoDS projects and GAMS codes.

While building the ontological knowledge bases (OKBs), information about the executable

files/projects, such as the location of the executable and other required auxiliary docu-

ments, is then included in the OKBs, so that it can be readily solved by the corresponding

commercial software package. However, this is not the only and final solution for the

mathematical model description. We also represent the mathematical models in GAMS
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syntax, which is then included in the OKBs and can later on be utilized to formulate

GAMS project and solved. For the future development of the project, it is very likely that

detailed information about the mathematical models, such as its parameters, variables,

boundaries etc., will be further reflected in the ontology, thus to facilitate more flexible

and efficient ways of problem solving as well as application requirement. Table 5.2 gives

the notions defined for the description of such system features.

5.3.2 Ontological representation of energy network

Process and unit level ontologies are already well established in OntoCAPE, thus this study

mainly focuses on ontologies at resource network level, plant level and industrial park

level. The term industrial symbiosis defined by Chertow (2000) is used to represent the

resource sharing networks. It was defined as “engaging separate industries in a collective

approach to competitive advantage involving physical exchange of materials, energy, and

water". Based on the exchanged resources, industrial symbiosis can be classified into

water network, energy network and material network (Boix et al., 2015).Other important

concepts are the the electric power system and the transportation network. The former

represents the grid that provides power to the industrial park, while the latter refers to the

road network.

Industrial symbiosis is the key feature of an EIP. It allows multiple independently

operating plants to share common resources and utilities. A symbiotic network refers

to the resource exchanging network among a number of industrial plants which are

geographically closely located. Through the network, the waste and by-products and/or

products (in material or energy form) produced from one plant could be utilized in

another as feed stock. Generally, three types of industrial symbiotic system have been

largely investigated, namely, water network, energy network and material network. For

a description of a symbiotic system, two concepts are important, Source and Sink. The

former represents the plant from which a certain type of resource is available, whereas the

latter represents the plant that consumes the resource. The representation of a resource

exchange network is given in Figure 5.6-(a). The main components are the participating
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(b) Exemplary representation of material sources

Fig. 5.6 Representation of a resource network and the corresponding source set
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Table 5.3 Relevant terminology for resource network representation.

Classes Description
Source A Source represents a place, organization, or process

from which a particular resource can be obtained.
Sink A Sink denotes a place, organization, or process that

consumes a certain type of resource.
UtilityHub A UtilityHub is a centralized infrastructure that serves

as storage tank to help the management of utility distri-
bution.

NetworkInfrastructure A NetworkInfrastructure signifies the infrastructure sys-
tem that realises the allocation of resource network. It
is composed of connections (pipelines) and devices
(pumps, utility hub, waste treatment unit etc.).

companies, which can be sources, or sinks, or even both. Figure 5.6-(b) gives an exemplary

representation of a set of chemical plant that serve as material sources. It should be

noted that the widely studied water network, as one type of industrial symbiosis system,

is regarded as one type of material network in this work. The design and operation of the

resource exchange network is determined by information of its participating plants, such

as their geographic location, specifications for the desired resources, and characteristics

of the available resources. Such information is described in plant ontology, as stated in the

previous section, which is illustrated in Figure 5.7-(a). In particular, the physical location

(noted as AddressArea) is rather important, as it determines the physical distance between

two plants, which further affects the transportation cost when resource sharing occurs.

The detailed description of the plants’ physical location is held by another module, namely

transportation ontology. Such cross-referencing would not influence the integrity of the

overall ontology. On the contrary, it can enhance a structuralized knowledge management

which will be discussed in detail later. The key concepts defined in the industrial_symbiosis

module are listed in Table 5.3.

5.3.3 Ontological representation of electrical power system

Electrical power systems are of great importance to the normal and efficient operation of

industrial manufacture systems. An electrical power system is an interconnected network
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Fig. 5.7 Representation of a chemical plant in the transportation system
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Fig. 5.8 Taxonomy of the concepts considered in electrical power system ontology
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of several major subsystems, including generation subsystem, transmission subsystem,

distribution subsystem and utilization subsystem (El-Hawary, 2008). A generation subsys-

tem includes two main components, namely generator and transformer. The generator is

responsible for generating electric power in accordance with the predicted load require-

ments. Normally, electricity generation from the generator is at a relatively low voltage,

typically 20 kV. For the purpose of efficient power transmission, transformers are used for

stepping up the generated voltage to high voltage, extra-high voltage, or even ultra-high

voltage. After voltage regulation, the electricity generated from a generation system is

transferred to the distribution system via transmission lines. High voltage (HV) transmis-

sion lines are used for long distance electric power transmissions (from the generation

subsystem to distribution subsystem), while low voltage (LV) transmission lines are used

for short distance transmissions (from the distribution subsystem to the utilization subsys-

tem). For the modeling of transmission lines, four concepts are important, namely series

resistance, series inductance, shunt capacitance, and shunt conductance (El-Hawary,

2008). Utilization subsystems (loads) are categorized into industrial, commercial, and

residential. Industrial loads refer to manufacturing plants and electric-consuming equip-

ment, such as pumps, while residential and commercial loads are the lighting, heating and

cooling system in buildings. These concepts are organized into aspect modules, namely

function, behavior and realization, as is shown in Figure 5.8.

5.4 Knowledge based system development

In this section, we present a framework for decentralized information management for

EIP based on the developed ontology. The idea of constructing such a framework is based

on the following two reasons. Firstly, the usefulness of an ontological knowledge model for

facilitating collaboration is greatly reduced if the model is placed into a central repository

that is separate from the original model developer and maintainer (Kraines et al., 2006).

Secondly, it is impractical and inapplicable to handle the EIP information in a centralized

manner, as the information of each individual industry organization is usually owned
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Fig. 5.9 Representing a pump, both as a plant item of a chemical plant and as a power load
in the corresponding power grid

and managed individually, and the key technical details are usually kept confidential to

outsiders.
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Fig. 5.10 Schematic of the decentralized knowledge management system

Figure 5.10 is a schematic representation of the proposed decentralized information

management system. It shows how the proposed ontological framework can be utilized
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to facilitate the establishment of a hierarchical information representation and sharing

system for the participants in EIP. By applying the proposed ontology, a set of Ontological

Knowledge Bases (OKBs) can be generated for the technical components of different

operational levels. These OKBs (represented as nodes) are connected through predefined

relations indicating the inter-dependencies among the represented entities.

...
...

IRI of the chemical plant, referring to 
the ontological knowledge base

...

Ontological knowledge base for Jurong Island

Subsystems

Subject Predicate Object
...

Fig. 5.11 Ontological representation of Jurong Island, showing the subsystem, including
chemical plants, electrical power system, transportation system, water network system
and so on

The proposed method is applied to Jurong Island, a 32 km2 artificial island located to

the southwest of Singapore. It is home to more than 100 chemical and power plants. To

raise its competitiveness, the Singapore government plans to optimize its resource and

energy utilization through collaborative solutions. One important prerequisite to achieve

such collaborative benefits is a reliable and efficient information management system. Fig-

ure 5.11 shows a snapshot of the ontological representation of Jurong Island. As is shown,

Jurong Island is an Eco-industrial Park, and consists of a set of subsystems, including chem-

ical plants, electrical power system, transportation system, water network system and so

on. Each subsystem is identified by an IRI, through which the corresponding OKB can

be accessed. Figure 5.12 gives the ontological representation for a bio-fuel plant. It takes
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Fig. 5.12 Ontological representation of the Ibris Bio-fuel Plant, showing its physical address,
raw material, product, and pollutant emission.
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methanol and tripalmitin as raw materials, producing biodiesel as the main product and

glycerol as by-product. It discharges waste steam and CO2 to the environment. The plant

consists of three biodiesel producing processes, whose detailed information is stored in

different knowledge bases. One of the knowledge bases is illustrated in Figure 5.13, which

shows that the process is composed of 25 process units, including heat exchangers, pumps,

reactors and so on. Detailed information about these process units is again stored in ded-

icated knowledge bases. These dedicated knowledge bases for processes and process

units may only be accessible for certain groups of people with authorizations. Figure 5.14

illustrates a description for one of the reactors, covering its connectivity with other process

components and its properties as a power consuming units. The OKB system developed

for Jurong Island is available at http://www.theworldavatar.com:82/visualizeJurong. A

snapshot of the information management system is shown in Figure 5.15. The yellow

node sitting in the middle represents Jurong Island, while the pink nodes connected to

it represent the subsystems (chemical plants, electrical power system, transportation

system, etc.).

Given the OKB shown in Figure 5.15, the utility of ontology could be realized through

various applications and facilitating industrial symbiosis could be a good demonstration.

Intra-plant waste heat utilization is given as an example in the thesis - there are five dif-

ferent chemical plants on Jurong Island EIP and each plant has its own utility supplier. A

plant may waste some hot streams which it may not need but could be useful for other

plants as shown in Figure 5.16. One main obstacle to establish such IS connections comes

from the information interoperability, this is where our OKB could help to enhance infor-

mation integration. In the given case, different chemical plants use different terminologies

to describe the waste heat conception: plant A uses waste whereas plan B uses by-product.

In such context, the reasoner of our ontology, together with the object properties (e.g.

axiomatic constructs), is smart enough to figure out that waste and by-product are equiva-

lent as shown in Figure 5.16. Based on such inference functionality of ontology, intra-plant

waste heat utilization opportunities could be better found. This is a small case study to

demonstrate how our OKB could be used.

http://www.theworldavatar.com:82/visualizeJurong


5.4 Knowledge based system development 129

BiodieselProducingProcess

...
Subsystems

...

IRI for reactor R-301...
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Fig. 5.13 Ontological representation of a biodiesel producing process, showing the techni-
cal components (machines and equipments) that compose the process system
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Fig. 5.14 Ontological representation of the biodiesel reactor as part of the biodiesel produc-
ing process, showing information about the reactor type, physical location, connectivity
with other process component, as well as its property from electrical engineering point of
view.
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Jurong Island, Singapore

The current version of ontological knowledge base for Jurong Island is available at: http://www.theworldavatar.com:82/visualizeJurong 

OKB for Jurong Island

OKB for chemical companies

OKB for processes

Chemical Plant

Fig. 5.15 Structure representation of the ontological knowledge bases (OKBs) built for
Jurong Island. Each node refers to an OKB (an owl file) that holds information for an entity.
An edge represents the interrelationship between two entities.

Fig. 5.16 OKB enabled Industrial Symbiosis (IS) and intra-plant waste heat utilization on
Jurong Island through reasoning functionality.
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5.5 Summary and remark

This chapter presents a skeletal ontology for the information modeling and management

of eco-industrial parks (EIPs). The proposed ontology is constructed based on a conceptu-

alization framework including five operational levels (unit operations, processes, plants,

industrial networks, and eco-industrial parks). EIP level gives a general description of the

EIP as a whole. Industrial networks describes at the resource network (water network,

energy network and material network) in EIP and their supporting engineering systems,

namely the electrical power system and transportation network. Groups of manufacturing

processes are represented at the plant level. The process level holds a description of

individual manufacturing processes, while the unit level reflects knowledge of the unit

operations.

Based on such conceptualization framework, detailed serialization of ontological mod-

eling of EIP is achieved in the chapter. The ontology consists of several parts including

eco-industrial park, resource network, chemical plant, transportation network, and elec-

trical power system as well as several other modules adapted from OntoCAPE’s modules

(chemical process system and unit operation). The developed ontology describes EIP

from four perspectives, system realization, system performance, system function, and

system behavior. The core concepts associated with each aspect are also elaborated on in

the chapter. The benefit of such ontological modeling is shown through the establishment

of a decentralized information management system for large scale EIP. With the help of

the system, data from disparate databases can be integrated, and the interoperability of

information could be improved to facilitate industrial symbiosis. The proposed method-

ology is applied to Jurong Island in Singapore. A set of ontological knowledge bases is

developed for the represented entities and intra-plant waste heat utilization is used to

show the advantages of the proposed ontology for information sharing.

The potential benefit of such a system can be further unleashed through the continu-

ous iterative development of the ontology and construction of agents. Although we strive

to develop a comprehensive and versatile ontological representation for EIPs that can

support as many applications as possible, it is already clear that the ontology needs to be
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improved, with moderate efforts, for other applications. On top of the Ontological Knowl-

edge Base (OKB), agents with different capabilities are going to be developed to carry out

desired activities, such as system self-diagnosis, self-prediction, self-configuration and so

on.

In short, we deem ontology as a powerful tool for EIP knowledge management, partic-

ularly in the future scenario of Industry 4.0 and Internet of Things. The capabilities that

ontology has to reconcile data heterogeneity and promote knowledge sharing make it an

indispensable ingredient on the road map towards future smart eco-industrial park. We

believe much more potential for the EIP’s optimal operation could be unleashed given the

growing data availability and machine computational power. We hope this work would

appeal to more collaborative efforts towards the future smart EIP.





Chapter 6

Conclusions and future works

6.1 Conclusions

This thesis targets the application of data-driven methods in the modeling and optimiza-

tion of energy system at various temporal and spatial scales, from building energy use

prediction to energy network synthesis in eco-industrial park. Several new perspectives

feature the proposed method: data-driven, machine learning, multi-objective, and intel-

ligent system. Data-driven means that the numerical models used in the optimization

formulation are built through surrogate model techniques which could achieve high

accuracy and high computational speed simultaneously, the core of such data-driven

method is machine learning algorithms, which allows us to describe the nonlinear and

non-stationary dynamics of various energy conversion technologies and energy utiliza-

tion processes. Compared to current widely used first-principle models, it is proved

that such machine learning based surrogate model provides a better trade-off between

performance and cost and could be a powerful tool in energy system modeling appli-

cations, such as demand side management. Regarding optimization applications, the

thesis discussed both single-objective optimization and multi-objective optimization

framework. In single-objective optimization, the emphasis is put on the mathematical

formulation of MILP problem, which is largely used in the current energy system synthesis

research. The combination of greedy search method and MILP algorithm is a main novelty
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of this thesis, which provides a manner to handle large-scale energy system synthesis

problem with thousands of variables. In multi-objective optimization, the emphasis is the

comparison of different objective functions together with their influence on the energy

system design and operation regime. The main outcomes of this part highlight the fact

that energy system design and optimization need delicate trade-off when considering

different objectives.

Along the thesis there are several key insights that are worth to be mentioned again

here:

• Feature engineering and machine learning as an effective tool for energy system

modeling. In Chapter 2, we introduced the principles and methods for machine

learning based energy system modeling. In particular, the importance of feature

engineering is underlined in the thesis because it is largely omitted in most existing

research. In the illustrative example of building energy forecast, the analysis in the

thesis shows that by deploying feature engineering, the accuracy of machine learning

models could increase by an order of magnitude whereas the computational cost

could be reduced as well. In addition, in both cases with and without feature

engineering, ensemble learning (e.g. combination of linear regression, SVM and

ANN) provides the best performance, ANN is the second accurate model and SVM

is the third, they both provide prediction accuracy which is an order of magnitude

higher than linear regression model. In particular, with feature engineering, the

RMSE of ensemble learning, ANN, SVM, and linear regression are 0.021, 0.0524,

0.0874, and 0.3494 respectively; without feature engineering, the RMSE would be

0.0222, 0.0798, 0.0905 and 0.4751 respectively. Similarly, the MAE of ensemble

learning, ANN, SVM, and linear regression are 0.0165, 0.0412, 0.0686, and 0.3494

respectively with feature engineering and 0.01814, 0.0611, 0.0902, and 0.335 without

feature engineering. It is also found that there are still open questions about using

machine learning as a general method for energy system modeling, such as lack of

data, curse of dimension etc.
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• Reducing the computation cost of optimization formulation. In Chapter 3, we inves-

tigated a case study of using surrogate modeling in co-generation system optimiza-

tion. The major challenge of traditional optimization formulation is computational

time due to overwhelming variable numbers, we proposed a hybrid approach using

greedy search to tackle the problem which performs well in the specific setting-up.

In a two generating units example, when boiler emission is low (e.g. 300kg CO2 per

MWh), optimization based operation could reduce CO2 emission from 7921tons

to 5195 tons. Moreover, incorporation of possible constraints regarding power and

thermal networks would affect the optimization results, in the test case, by changing

the steam pipe design capacity from 50% to 100% and 150%, the CO2 emission

would be 5111tons, 6122tons, and 7610tons respectively. Such observations also

showed the necessity to appropriately size the steam pipes as the lower bound for

the heat flow are binding constraints in most cases.

• Seeking trade-off between different objective functions. In Chapter 4, we discussed

the influence of objective functions on the optimal design and operation of energy

system. We used an eco-industrial park heat integration network as an example

to show that different objective function in optimization would result in different

network topology and configuration, thus offering the opportunity to seek trade-off

between different targets to be achieved. The capability of this methodology is

demonstrated by a case study which consists of five plants and two neighboring

communities. In the case study, after the first two steps, the number of potential

connections can be reduced from 30 to 13; after single objective optimization, three

different network can be obtained, which can be used as different baselines when

different goals are pursued. Two different multi-objective optimization approaches,

scalarization approach and Pareto approach, do not deliver identical results (net-

work with the same configuration in both topology and energy flow magnitude);

yet there is no difference in the network topology, the difference only lies in the

magnitude of the energy flows in network. Optimization under discontinuous waste

heat profile shows that discontinuity in waste heat can significantly influence the
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optimization outcomes of network, yet how to properly embody this discontinuity

into the optimization of network is still a non-trivial problem that remains open

now.

• The possibility of automated optimization. In Chapter 5, we did a preliminary

experiment about how intelligent system, especially ontology, could increase the

re-usability of energy system design and optimization framework. The proposed

ontology is constructed based on a conceptualization framework including five

operational levels (unit operations, processes, plants, industrial networks, and

eco-industrial parks). EIP level gives a general description of the EIP as a whole.

Industrial networks describe the resource network (water network, energy network

and material network) in EIP and their supporting engineering systems, namely

the electrical power system and transportation network. Groups of manufacturing

processes are represented at the plant level. The process level holds a description of

individual manufacturing processes, while the unit level reflects knowledge of the

unit operations. Based on such conceptualization framework, detailed serialization

of ontological modeling of EIP is achieved in the chapter. The ontology consists of

several parts including eco-industrial park, resource network, chemical plant, trans-

portation network, and electrical power system as well as several other modules

adapted from OntoCAPE’s modules (chemical process system and unit operation).

The developed ontology describes EIP from four perspectives, system realization,

system performance, system function, and system behavior. The core concepts as-

sociated with each aspect are also elaborated on in the chapter. The benefit of such

ontological modeling is shown through the establishment of a decentralized infor-

mation management system for large-scale EIP. With the help of such ontology, data

from disparate databases can be integrated, and the interoperability of information

could be improved to facilitate industrial symbiosis. The proposed methodology

is applied to Jurong Island in Singapore. A set of ontological knowledge bases is

developed for the represented entities and intra-plant waste heat utilization is used

to show the advantages of the proposed ontology for information sharing.
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It also has to be reminded here that although different application cases (e.g. building

energy use, cogeneration system, heat integration network) are used at different parts in

the thesis, they are not separated. On the contrary, they could be all be integrated into a

greater energy system landscape which incorporates all the system as system-of-system.

6.2 Future perspectives

In Chapter 1, we summarized the challenges for energy system modeling and optimiza-

tion as uncertainty, scalability ,and reusability. All works in the thesis strive to handle

such challenges: by using machine learning based modeling approach, we hope that the

uncertainty of energy demand and supply could be better modeled; by proposing hybrid

greedy search and MILP optimization formulation, we hope that smaller optimization

formulation could easily be combined into larger optimization formulation, which corre-

sponds to the scalability challenge; by developing ontology-based intelligent system, we

hope that the optimization formulation could be easily adapted to other similar problems

easily. However, we never claim such challenges have been solved in the thesis because

firstly only limited energy system configurations are discussed in the thesis. Although

we think the proposed methods are general in nature (e.g. the procedure for building

energy use forecast is essentially the same as industrial energy use forecast), yet we also

have to admit that different energy system configuration would need different modeling

efforts. A good example would be the incorporation of renewable into the generation

portfolio, which would change the optimization framework and complexity. Similarly,

how to properly handle the impact of energy storage, electric vehicle charging on energy

system design and optimization remains as open questions to be answered.

Another important future perspective is related to optimization formulation. All opti-

mization formulations used in the thesis are deterministic optimization, which means

objective function and constraints are deterministic function of variables. The current

purpose to handle uncertainty is mainly achieved through more accurate modeling tech-

niques through machine learning, yet the utilization of stochastic programming and
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robust programming is not explored in the thesis. So we have no idea about the per-

formance comparison between using complex models in deterministic programming

and using simpler models in stochastic programming, or where is the performance and

computation cost trade-off point. Also, all mathematical programming problems are

solved by commercial software such as CPLEX, YALMIP, GAMS. Although developing new

algorithms that have better performance is not task of energy engineer, it is definitely

necessary to investigate which algorithm and/or solvers are more suitable for different

problem. That would be the next step as well.

Looking back into the whole thesis, I strongly feel that I should further explain the

rationales behind the thesis in a nutshell. As you can see, throughout the thesis, I strive

to keep a high level of abstract, I seldom say “by doing A, we could change B by C%

. . . ”, because I think such case-dependent analysis helps few when it comes to general

energy system optimization application. In other words, we focus on method rather

than application in the thesis. There are tens of thousands of energy systems at various

temporal and spatial scales on the earth, yet there should be only limited optimization

methods; ideally, once the method is designed, all problems of the same kind could be

easily solved. That is the ultimate ambition of the author, although we have to admit it

would never be achieved in the short term.
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Appendix A

Building energy use modeling

The dataset used in this study comes from the Pecan Street Project (Street, 2010). Pecan

Street Project is an Energy Internet demonstration project located in Austin, Texas, ini-

tialized by U.S. Department of Energy; it monitors the home energy consumption of

1,000 residences of the community in a real-time manner. It also records information

about weather data and occupant behavior. It is treated as one of the most compre-

hensive databases as the testbed for building energy data mining. All the gathered data

can be retrieved from a cloud storage named DATAPORT that can be freely accessed by

academia. In this study, information from the following four tables in the database are

used: electricity-egauge-hours, survey-2013-all-participants, audits-2013-main, weather.

Electricity-egauge-hours table stores the electricity consumption information of different

buildings collected by Pecan Street’s smart meters; survey-2013-all-participants table and

audits-2013-main table store information gathered from the survey and audits conducted

in 2013 respectively; weather table stores the meteorological parameters. Specifically,

variables from survey-2013-all-participants, audits-2013-main and weather are used as

input features (shown in Table A.1), variables from electricity-egauge-hours are used as

model output.

Table A.1 Building energy related features investigated in the theis

Table Data type Feature
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Audits-

2013-

main

Numerical

(48 in total)

Bedroom number, construction year, conditioned area, house

volume, central heat pump number, central AC system

number, window AC number, central gas heating number,

wall furnace number,gas space heater number, heat recovery

system number, electric space heater number, hydroponic

heater number, manual thermostats number, digital

thermostats number, north window area, northwest window

area, west window area, southwest window area, south

window area, southeast window area, east window area,

northeast window area,north solar screen film area,

northwest solar screen film area, west solar screen film area,

southwest solar screen film area, south solar screen film area,

southeast solar screen film area, east solar screen film area,

northeast solar screen film area, skylight number, exterior

door number, weatherstripped exterior door number, sealed

plumbing penetration number, fireplace number, fireplace

vented to outside number, fireplace with damper number,

fireplace with external combustion number, hourly air

change, attic floor square footage, attic R value, attic average

insulation depth, radiant barrier, window number, window

shading, distance from neighbors.

Categorical

Nominal

(3 in total)

Front door orientation, foundation type, home type



153

Survey-

2013-

all

Numerical

(33 in total)

Number of rooms, total square feet, male sex number, female

sex number, vehicle number, ceiling fans number,

compressor number, summer temperature weekday hours,

summer temperature weekend hours, summer temperature

sleep hours, winter temperature weekday hours, winter

temperature weekend hours, winter temperature sleep hours,

thermostat number, indoor thermal comfort, dishwasher

number, refrigerator number, cloth-washer number, cloth

dryer number, water heater number, oven range number,

micro-oven number, toaster-oven number, TV number,

ceiling fans number, power tool number, EV number,

sprinkler number, swimming pool number, electric cable box

number, electric dryer number, electric router number

Categorical

Nominal

(19 in total)

Weekly schedule, ethnicity group, education level, total

annual income, smart phone own, tablet own, pv own,

building retrofits, appliance own, irrigation system, care

about energy cost, willing to reduce energy cost, HVAC type,

heating type, pets own, programmable thermostat, cooling

and heating even, AC filter change frequency, light bulbs type

Categorical

Ordinal

(7 in total)

Resident age, weekday cooking timetable, weekend cooking

timetable, summer blind usage, winter blind usage,

thermostat setting, TV hours

Weather Numerical

(14 in total)

latitude, longitude, ozone, temperature, dew point, humidity,

visibility, apparent temperature, pressure, wind speed, cloud

cover, wind bearing, precipitation intensity, precipitation

probability.





Appendix B

Jurong island waste heat recovery

network optimization

The appendix data includes: the process state (especially temperature and enthalpy) to

quantify the quantity and quality of waste heat and heating demand; the heating and

cooling demand of communities; the geographical location of plants and communities

to quantify the distance with one another; the economic and environmental parameters

including utility price, transportation pipeline cost, transportation CO2 emission. The

input data for this thesis mainly comes from two sources: computer simulation software

and literature references. More specifically, Aspen Plus was used to simulate the chemical

processes for the plants and to obtain the waste heat and heating demand for plants and

communities (Table B.1); the geographical information for plants and communities comes

from ArcGIS software (Table B.2); as per the input data gathered by the literature, the

economic and environmental parameters (Table B.3) were considered. The temperature

drop during waste heat transportation is given in Table B.4, whereas the corresponding

energy loss is calculated based on the temperature drop and steam thermodynamic

property tables (steam pipe network is treated as the preferred way to transport waste

heat in this case).
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Table B.3 Parameters for economic and environmental model optimization

Parameter Unit Value Remarks

Utility price $/MWh 4.25 Hot utilities below 180oC

6.3 Hot utilities between 180oC and
200oC

8.5 Hot utilities above 200oC

2.12 Cold utilities at 14oC

12.75 Cold utilities at 4.5oC

Pipelines initial cost $/km 85320

Pipelines operation cost $/ton.km 0.0017

Fuel CO2 emission kg/kWh 0.544

Pipelines CO2 emission g/ton.km 10

Table B.4 Temperature drop of waste heat transportation system

Temperature
Range/oC

300-450 200-300 below 200

Temperature
Drop/oC .m−1 0.03 0.025 0.015
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Table B.5 Analysis of infeasible energy flows through temperature differences

Energy flow Source
temperature

/oC

Transportation
temperature

drop /oC

Available
source

temperature/oC

Sink
temperature

/oC

Possibility
of connection

A-B 120 30 90 80 Yes

A-C 120 25 95 125 No

A-D 120 35 85 240 No

A-E 120 23.5 97.5 130 No

A-F 120 20.5 99.5 90 Yes

A-G 120 22 98 90 Yes

B-A 60 20 40 140 No

B-C 60 16 44 125 No

B-D 60 18 42 240 No

B-E 60 24.5 35.5 130 No

B-F 60 37.5 23.5 90 No

B-G 60 35 25 90 No

C-A 100 30 70 140 No

C-B 100 16 84 80 Yes

C-D 100 25.5 74.5 240 No

C-E 100 12.5 87.5 130 No

C-F 100 17.5 82.5 90 No

C-G 100 16 84 90 No

D-A 185 33.5 151.5 140 Yes

D-B 185 25 160 80 Yes

D-C 185 18 157 125 Yes

D-E 185 18 167 130 Yes

D-F 185 24 161 90 Yes

D-G 185 35 150 90 Yes

E-A 115 18 97 140 No

E-B 115 25 90 80 Yes

E-C 115 10 105 125 No

E-D 115 25 95 240 No

E-F 115 17.5 97.5 90 Yes

E-G 115 19.5 95.5 90 Yes
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