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Geometric discretization scheme applied to the Abelian Chern-Simons theory

Samik Sen, Siddhartha Sen, James C. Sexton, and David H. Adams
School of Mathematics, Trinity College, Dublin 2, Ireland
(Received 17 August 1999

We give a detailed general description of a recent geometrical discretization scheme and illustrate, by
explicit numerical calculation, the scheme’s ability to capture topological features. The scheme is applied to the
Abelian Chern-Simons theory and leads, after a necessary field doubling, to an expression for the discrete
partition function in terms of untwisted Reidemeister torsion and of various triangulation-dependent factors.
The discrete partition function is evaluated computationally for various triangulatic®sasfd of lens spaces.

The results confirm that the discretization scheme is triangulation independent and coincides with the con-
tinuum partition function.

PACS numbgs): 02.70—c, 11.15.Ha, 02.40.Sf, 11.15.Tk

I. INTRODUCTION lation. An alternate scheme of discretization proposed previ-
ously in[6], which does not involve the doubling of fields,
A very useful way to regularize a quantum field theory isfails to capture the topological features of the Abelian Chern-
provided by the lattice formulation introduced by Wilsdd. ~ Simons theory as we will show numerically in Sec. V. A
(See, for example[2] for a detailed treatmentHowever, ~Mathematical treatment of this discretization scheme has
this formulation has difficulty in capturing topological fea- been given ir(8,11]. A short version of some of the results
tures of a field theory, for example, the topologiéaerm in ~ has been published i10,9].
QCD. It is therefore of interest to investigate alternative dis- Our aims in this paper are, first, to make the techniques
cretization schemes. In this paper we describe an alternativ&d results of8,11] accessible to a wider audience, and,
scheme that is applicable to antisymmetric tensor field theosecondly, to demonstrate a practical numerical implementa-
ries including Abelian gauge theories and fermion fieldtion of the discretization scheme. Numerical implementa-
theory in the Kaler-Dirac frameworK3], and which is well  tions are developed for Abelian Chern-Simons theory de-
suited for capturing the topological features of such theoriesfined on the three-dimensional spheg2 and on the lens
It is based on developing analogies between the differengpaces (p,1) forp=1, 2, and 3. Our discretization scheme
types of fields and the way they appear in a quantum fields the only one which numerically reproduces the exact to-
theory with a corresponding list of discrete variables andpological results for Abelian Chern-Simons thety].
operators. The method is valid for any arbitrary compact This paper is organized as follows. In Sec. Il the discreti-
3-manifold without boundary. We illustrate the scheme byzation scheme is described together with a summary of the
applying it to the pure Abelian Chern-Simons gauge theorytopological results used to set it up. In Sec. Il some features
in three dimensions, and to a doubled version, the so-callegf the Abelian Chern-Simons theory on general 3-manifolds
Abelian BF gauge theory. In the latter case the topologicafire reviewed. In Sec. IV the discretization scheme is applied
features of the theory are completely reproduced by our disto this theory. An expression for the partition function of the
cretization scheme, even before taking the continuum limitresulting discrete theory is derived in terms of the data speci-
We illustrate this by explicit numerical calculations of the fying the triangulation of the space-time. In Sec. V the nu-
discrete partition function when the space-timesisor is a ~ merical evaluations of the partition functions corresponding
lens spacel.(p,1). t(_) these triangul_ations are presented. In Sec. VI we summa-
The discretization scheme involves several ingredient&ize our conclusions.
that are not used in the standard Wilson lattice formulation.
These include a triangulation of the space-tithe., a de- Il. DISCRETIZATION SCHEME
composition into hypertetrahedra rather then hypercubes o )
and a mathematical tool called the Whitney njdp These Let us start by considering a general quantum field theory
have previously been used to discretize field theorigs;g| ~ defined on an arbitrary manifold of dimensionD. Suppose
where various convergence resukésg., convergence of the the theory has fieldgP(x) wherexe M, and whereg® is a
discrete action to the continuum actjowere established. p-form (antisymmetric tensor field of degrgedefined on
Triangulations of space-time are also used in discretization®). The Lagrangian for the system involves the fields, the
of other quantum field theories, for example, in quantumLaplacian operator, and possibfgs for the Chern-Simons
gravity (see[7] for a review. The thrust of the present work theory an antisymmetrized first-order differential operator.
is quite different. We set up the discretization in such a way In differential geometric terms, the theory is constructed
that the geometric structures of the continuum field theoryusing the following objects, which are defined on the mani-
are mirrored by analogous structures in the discrete formulgfold M: p-forms ¢P, which are generalized antisymmetric
tion. As we will see, this requires a certain doubling of fields.tensor fields, the exterior derivatide ¢°— ¢!, the Hodge
With this doubling, the topological features of Abelian star operator : P— ¢° P, which is required to define scalar
Chern-Simons theory are completely captured by the formuproducts, and the wedge operath/\ %= ¢P* 9.
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We want to construct discrete analogs of these objects. Vs
We begin by summarizing the basic properties of our opera-
tors of interes{13]. On a manifoldM of dimensionD, the
operations (\,*,d) on p-forms ¢P(p=0,... D) satisfy the
following:

(1) @\ ¢=(~ 1)\ ",

(2) d($PAG) =dgPA G+ (~ 1) 6P d s,
(3) * =g ",

(4) = =(~1)PP'1,

(5) d2=0, (d*)?=0

(6) d* :(_1)D(p+l)+1* d*, (d* is the adjoint Ofd) FIG. 1. A 3-simplex.

The following definitions will also be requiredl) The rahedron or 3-simpleXsee Fig. 1 lts faces are the four
Laplacian onp-forms A,=d,_,dg +dg, ,d,; (2) the inner  triangles [vo.v1.v2], [vo.v2.03]s [Vo.v1.v3], and
product( ¢y, ¢p" )= mPp/\* ¢y [vq,v5,05] that bound it.

A few examples might now be helpful. First, consider An important feature of our discretization scheme is that
QED in four dimensions. The gauge fiedd= ¢* is a 1-form.  the original simplices are subdivided by using simplex bary-
The electromagnetic field is a 2-form given By=dA. The  centers. Geometrically thearycenterof a p-simplexo(® is

action for the gauge field in QED is given by the point that represents its “center of mass.” We denote the
barycenter 0P =[vy, ... v,] as the point
A)=(F,F)=(dAdA)= | dAA*dA. 1 - 1 2
S(A)=(F,F)=(dA,dA) fMd d M o) o @
p+1i=o

ThusSinvolves the operators, d, and the wedge product. As an example, the barycenter @f"=[v,,v,] is the mid-
Similarly, for Abelian Chern-Simons theory the gauge fieldpoint of the line segment that joins the vertiegsanduv .

A and electromagnetic field=dA are 1-forms and 2-forms, We can now describe a particular way that a given mani-
respectively, as for QED. The action for the theory is givenfold M can be discretized. Le&d be a collection of simplices
by {o{}, n=0,1, ... D, with the property that the faces of the

simplices that belong t& also belong to it. The elements of
S glued together in the following way are known as a sim-
plicial complex[14,15}; (1) 0" No{¥=0 if o{”, (¥ have
no common face(2) o{"NaM#0 if o ,0t have pre-
where the space-timbl is three-dimensional. Note that in cisely one face in common, along which they are glued to-
both cases we can think of the acti®A) as a quadratic gether. In many cases of interggtcluding all 3-manifolds
functional of the gauge field. and all differentiable manifoldgl5]), M can be replaced by
We would like to discretize the fields apP, the inner a complexK that it is topologically equivalent t& is then
product(-,-), and the operators/(,*,d) such that discrete said to be a triangulation dfl (note that this triangulation is
analogs of their continuum interrelationships hold. To do thishot uniqug. In this way of discretizingM, the building
it is necessary to introduce first a few basic ideas of discretiblocks are 0-,1-, .., D-dimensional objects, all of which
zation. We start by discretizing the manifod. This in-  are simplices, e.g., generalized oriented tetrahedra.
volves replacindv by a collection of discrete objects, known ~ We now observe that the same manifold can be dis-
as simplices, glued together. We need a few definitjddgs  cretized in many different ways. In the discretization de-

S(A)= JMA/\dA=<A,*dA>, 2)

First, forp=0, ap—simpIeXU(p)=[uo, ... vp] isdefined scribed, we used simplices. We could just as well have used
to be the convex hull in some Euclidean sp&®eof a set of ~ generalized oriented cubes.
p+1 pointsvg,vy, ... vpe R™. Here the vertices; are There is another method of discretizing a manifold which

required to span g-dimensional space. This requirement is the dual of the simplicial discretization just described. It
will hold so long as the equatiorsf_ \jv;=0 and=P_y\; associates with a simplicial complég a dual complexK.

=0 admit only the trivial solution\;=0 fori=0, ... p for = We proceed to describe this construction. We will see that
A real. . ' ~ the basic objects of the dual complek are again
A few examples might clarify the geometry. ConsiderQ- 1-,2-, ... D-dimensional objects, but this time they are

d®@=[v,]. This is a point or O-simplex. Nexts(*) no longer simplices. We illustrate the method by considering
=[vg,v4] is aline segment or 1-simplex. An orientation can a manifoldM that is a disk. This is a manifold with a bound-
be assigned by the ordering of the vertices, in which casary. We triangulate this by the simplicial compl&xshown
—oWM=[v,,v0], for example. The faces of a 1-simplex are in Fig. 2.

its vertices[vy] and [v4], which are O-simpliceSU(z) Now consider the barycenters of the building blocks of
=[vg,v1,v,] is a triangle or 2-simplex. We note that an the simplicial complexX. We have the list shown in Table I.
even permutation of the vertices has the same orientation @ctorially the simplicial compleX with its barycenters is
o? while an odd permutation reverses it and will be written shown in Fig. 3.

as —o(®. The faces of a 2-simplex are its eddes,,v;], We can now construct the dual description of a triangula-
[v1,05], and[v,,v0]. Finally, o®=[vg,v,,0,,v5] isatet- tion K. Geometrically this utilizes a discrete analog of the
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FIG. 2. TriangulatiorK of a disk. FIG. 3. Barycenters oK.

Hodge* operator. Recall that the operator maps p-form
to a (D —p)-form, whereD is the dimension of the manifold
M on which thep-form is defined. In the dual geometrical and finally
decomposition of the manifold, we want to set up a corre- R
spondence between gp-dimensional object and a *[vg,vy,va]—[a].
(D —p)-dimensional object. .
This is done as follows. We first construct We then have the alternate discretizatkrfor M shown in
(D—p)-dimensional objects whose vertices are barycenterkig. 4.
of a sequence of successively higher dimensional simplices, Note that when two edges are glued together they must
where each simplex is a face of the following one, in otherhave opposite orientations. We can now give the general rule
words, (O —p)-dimensional objects of the form for mapping an n-simplex o,=[vo,...v,] t0 a
{(}p 1(}p+11 o ,(}D}, wherea,, is a face ofo,, ;. The orien- (D—n)-dimensional objec((D—n) ce_ll]- as follows. We
tations of these are set so as to be compatible with the manffink of o, as an element of a simplicial complék We
fold. Joining these objects together gives us the duatof have
Thus, for instance, the mapacts on[v,] as follows:

*K 3[U2:Uo]—>[f}3y<}],

*:[vo, . wal—=U[0n:0ns1s - 0D],

%y :[vol— €0 v0,01,0]U[0g,03,0 ] €gs, A :
k:Lvol = €ulvo,01,0]ULv0, 05,0l €03 whereo, 1 is the barycenter of am(+ 1)-simplex that has

where the orientation of each of the small triangles has to bg-, as a faceg, ., is the barycenter of ann(+ 2)-simplex
coherent with the orientation of the original triangle. This isthat haso,,. ; as a face, and so on. These objects have to be
shown in Fig. 3 and leads to mappifg] to the shaded two coherently oriented with respect fo,, . . . v,]. The set of
dimensional region. The orientations of the simplices argnase cells constitutes the dual spécef K.
specified by arrows in the figure. Coherence of orientatiqn By this procedure, we claim, a discrete version of the
means, for example, that the arrow of an edge agrees Witfyoqge star operation has been constructed. Let us explain.
the arrow of the triangle to which it belongs. Next we CoON-The Hodge+ operator involves forms. It magsforms in D
sider[vg,vq]- This i§ a 1-simp|ex and is tolbe mapped t0 a4imensions to a D —p)-form. The *, map involves not
[(2—1)=1]-dimensional object. The map is defined as  ¢5mg byt geometrical objects. There is a simple correspon-
) -~ dence relation between these two cases. Givprfam ¢,
*k:lvowal—loy,a]. and ap-dimensional geometrical spads,, the p-form can
be integrated oveX , to give a number. Thuk, and ¢, are

Agam the onentaﬂo_n ofoy,0] has FO be coherent with the objects that can be paired. We can write this as a pairing
orientation of the triangles already introduced when the map

for [vg] was considered. Similarly,
(¢p12p): fz ¢p-
P

*Kk :[Ul,l}g]—>[(}2,(}],

In order to proceed, we need to introduce some more struc-

TABLE I. Elements of the simplicial compleix and their bary- e . . -
ture. We start by associating with a simplicial compléx

centers.
Geometrical object ilkK Dimension Corresponding barycenter V2
oi=[vo] 0 o0=v, ~ N
o=[v4] 0 0=y, G, ~ \G,
o§=[v,] 0 0=v,
Ug.l):[UOIl)l] 1 (Ar(ll):%(v(ﬁ-vl):vg
oP=[v1,0,] 1 H0=3(v1+v)=vs
~ ~~
O-gl):[UZIUO] 1 (r(ll)=%(v2+v0)=v5 VO Gl Vl
o?'=[vo,v1,02] 2 oP=3(votvitvy)=ve

FIG. 4. Dual complex.
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containing{oip} (i=1,... Ky;p=0,...D) avector space These operators could be defined only when a scalar prod-
consisting of finite linear combinations over the reals of theuct (“metric” ) was introduced in the vector spaCg’s. At
p-simplices it contains. This vector space is known as théhis stage we have a discrete geometrical analoguk @,
space of p-chains, C,(K). For two elements a'ip ,aJ'p e_md*. We haye al_so cqmmented on the fact tha_lt tht_e opera-
e Cy(K), a scalar product(f'p,glp)zgi can be introduced. tion * maps §|mp!|qes into dua] cells, ie., n_ot simplices. If
An orientedp-simplex changes sign under a change of ori-the original simplicial system is described in terms of the

entation, i.e., ife,=[vo, ... vp] andr is a permutation of uni_on of the vector spaces of @ichains, then the space into
the indices [O,...p], then [v,q), U r(p)] = Whlch_ elemepts_ of the vector space are ma_ppe«_i Iy not
(=1)Tvo, . - . vpl, With 7 denoting the number of transpo- contained within 'FhIS space, unlike fche S|tuat|on_ for. the
sitions needed to brindv ), ... v, p] t0 the order Hodge star pper.at|on on forms. We will see.that this dlffgr—
[Vo, ... Wpl- ence Ie_ads mewtably to a dom_Jbllng of the flellds when dis-
Given the vector spacg,(K), the boundary operata€ cretization, preserving topological structures, is attempted.
can be defined as We now need a way to relatepachain to ap-form. This
together with a construction that linearly mapdorms to
aK:cp(K)HCp,l(K). p-simplices will allow us to translate expressions in con-

tinuum QFT to corresponding discrete geometrical objects.
It is the linear operator that maps an orienpesimplex o (P We start with the construction of the linear maps from
to the sum of its p—1) faces with orientation induced by p-chains top-forms due to Whitney4].
the orientation ofo®. If oP=[vg, ... vp], then In order to define this map, we need to introduce barycen-
tric coordinates associated with a givprsimplex oP. Re-

o P i - gardingo® as an element of somig", we introduce a set of
do :Zfo (=DTvo, - wiy - vpl, real numbers g, . . . ,up) With the property
~ IU’IZOy
where [vg, ... vi, ... v,] means that the vertey; has
been omitted fromoP to produce the face “opposite” to it.
Given thatC,(K) is a vector space, it is possible to define 2 mi=1.

a dual vector spacgP(K), consisting of dual objects known
as cochains; that is, we can take an elemei@K) andan A point xe o can be written in terms of the vertices aP
element ofCP(K) to form a real number. Since the space 5ng these real numbers as
Cp(K) has a scalar product, namely dif, ,o}, € C(K), then
(0,0p)=46;;. We can use the scalar product to identify P
Cp(K)=CP(K), so that we can consider oriented XziZO HiUi -
p-simplices as elements GP(K) as well asC,(K). We can
write our boundary operation as Note that if any set oft;=0 then the vectok lies on a face
. _ of oP. One can think ofx as the position of the center of
([vos -+ iy - wplid Vg, .. wp))=(—1)". mass of a collection of massea, . . . ,u,) located on the
) . . . . . vertices o, ... vp), respectively. Settingu;=0, for in-
This suggests introducing the adjoint operaiiindefined @s  gtance, means that the center of mass will be in the face
opposite the vertex;. The Whitney map can now be de-

(d¥[vo, - D1y - wplvos - 0p)) fined. We have
=([vg,s .- Dis ... ,vp],&K[vo, coovpl). WK:CP(K)— ®P(K),
This is the coboundary operator that maps,(K) where®P(K) is ap-form. If P e CP(K) then
_)Cp+l(K)-
Indeed, we have P

WLoP]=p! 2, (= 1)'wi dpao/\- - dpi/\- - -dpap,

d¥[vg, ...,vp]zz [v,vg, - Wpl, R
v wheredu; means this term is missing, ang{, - - -,up) are

the barycentric coordinate functions of.
We next construct the linear map fromp-forms to
p-chains. This is known as the de Rham map. We have

where the sum is over all verticessuch thafv,vg, . .. vp]
isa (p+1) simplex.

The boundary operatord and the coboundary operator
dy have the propertyydx=dxdx=0. Furthermore, AK:DP(K)—CP(K),

dx:Cp—Cpi1, defined by
0"K:Cp—>Cp*1- <AK(q)p),a.P>:f p(I)P'

These operators are the discrete analogues of the opedators
and (—1)P(PT D 1 dx =d* which act on forms. for each orienteg-simplex e K.
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V2 e WEK:CP(BK)— ¢P(M)
BK. : _ Y, \ denote the Whitney map. Then we have fot CP(K), vy
e C" P Y(K) [11]:
v, \ A\ v, Vi
) o (n+1)!
FIG. 5. Barycentric subdivision df. (1) (**xy)= —f WBK(Bx)AWBK(BYy),
p!(n=p)!Jm
A discrete version of the wedge product can also be de-
fined using the Whitney and de Rham maps such that o (n+1)! BK B
AK:CP(K) X CU(K)—CP*I(K) as follows: Y0 =Sz | W (BY/AWER(BX);

Ky, — aAK K K
XAy =ARWECOAWEY)). (2) K=(—1)"PTLKdKK  on  CP(K),
It has many of the properties of the continuous wedge prod- R i
uct in that it is skew-symmetric and obeys the Leibniz rule K= (—1)"a L KgKs K gn Cq(R).
but it is nonassociative.

At this stage we have introduced all the building blocksThese are the discrete analogues of the interrelationships be-
necessary to discretize a system preserving geometricaveend, d+, *, and(-,-) in the continuum.

structures. We summarize the properties of the maps intro- Note K+#K and that properties of ,dx analogous to
duced in the form of a theore{d]: those for differential forms only hold iK,K are both re-

(1) AKWK=|dentity. garded as elements 8K. This feature of the discretization
(2) dWK=WKdX, whered: ¢P— ¢P*1. method is, as we shall see, crucial if we want to preserve
3) f\mWK(a):(a,,B), a,BekK. tppological properties of the. original system.' If a discretiza—
(4) d¥AK=AKd. tion method is introduced without the operation in it then

_ p _ as we shall see in Sec. V the topological properties of the
This theorem shows how™ can be considered as the partition function for the Abelian Chern-Simons gauge
discrete analog ofl. We now show how ¥ can be consid- theory do not hold.

ered as a discrete analog“of For this we need barycentric ~ We proceed to apply these ideas to the Abelian Chern-

subdivision. Simons gauge theory on a compact 3-manifilldFirst we
We recall that given a simplicial complexsP}, i summarize properties of the continuum field theory.

=1,... Ky;p=0,...D. A set of points(vertices could

be assigned to each simplex, naméi?,. These are the bary- [ll. SCHWARZ'S TOPOLOGICAL FIELD THEORY

centers. These vertices, regarded as vertices of a simplex, AND THE RAY-SINGER TORSION

subdivide the original simplices to give a finer triangulation We beai treat t of i field th by d
of the original manifold. This is a barycentric subdivision € begin our treatment of continuum f1e eory by de-

L ibing Schwarz’s method for evaluating the partition func-
mapBK. Clearly the procedure can be repeated to give fine Crl : .
and finer subdivisions in which the simplices become " of the Chem-Simons gauge theory on a 3-manifdd

“ " o : . [16]. We assume that the first real homology grdtp be
F?gaSIIer. The procedure is illustrated for a triangle in defined shortly of the manifold vanishes; this is done for the

Note that all the barycenters are present as vertices of th?éake of S|mpI|tC|;y. Schfw%rz’s !I;]ethf% IS aé)pllcats)le fhor arb'.'
barycentric subdivision and that® acting on simplices be- rary compact s-maniiolds without boundary. such mani-

longing to the simplicial complexK associated with folds are c_:allec_i “homology 3-spheres.” The main examples
[0o.v1,0,] leads to objects which are not, in general, sim-e have in mind are the 3-sphe® and the lens spaces

. . - L(p,1), p=1,2,... (for a definition and the basic properties
plices offvo,v;,v,] but belong to a different spae HOw- ot |eng spaces sdd7,18). The fields of the theory are the
ever, bothK andK are contained in the barycentric subdivi- 1-forms onM, i.e., w € Q(M). [In terms of a local coordi-

sionB[vg,v1,v2]. This is a crucial observation. In order to nate system X*) on M we have w(x) = ,(x)dx*.] The
construct the star map, two geometrically distinct spacegction is

were introduced, the original simplicial decompositiéh
with its associated set qf-chainsCP(K) and the dual cell
decompositiorK with its associated set gf-chainsCP(K).
These spaces are distinct. However, both belong to the first
barycentric subdivision oK. This allows the use of theX Here and in the followingQ%(M) denotes the space of
Operation if we think oK and R as elements oBK. q-forms onM (i.e., the antisymmetric tensor fields of degree

We proceed as follows. La8K and K denote the bary- ) and dq: QM) 09HM), e, the exterior derivative,
centric subdivision and dual triangulation, and It has the _prope_rt}dqdq,fo SO Im(dq,l)CKgr(dq), whe_re
Im(dq-1) is the image of the operatdy,_, while Ker(d,) is
K.cPik)—cn=P(K). the null space of the operatdg and the cohomology spaces
H9M) are defined by

S(a))ZJMw/\dlw=JMdX1dx2dx3 e"w,d,w,. (4)

However,CP(K) andCP(K) are both contained i€P(BK)
as we have seen. Let H9Y(M)=Ker(dg)/Im(dg_,).
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The H9(M) are Abelian groups that contain topological in-  For completeness we give a quick proof of this result,
formation about the manifold. The vanishingtef(M), for  ignoring phase factors and constants.

instance, holds if the manifold is simply connected, that is, Introducing a metric in the space afs allows us to write
any loop inM can be smoothly deformed to any other loop in

M [14]. Note that2°(M) is the space of functions dvl and ZO0 =N o @iS(©)
sinced, is the derivative Kerdo) consists of the constant ()= Ker dy @ (Ker d;)* @
functions, i.e., »
=Vol(Kerd,)- (detd} d;) " **N.
HO(M)=Ker(dg)/0=Ker(dg) = R. (Kerd,)-(detddy)
Our requirement oM that H*(M) =0 implies that We proceed to rewrite Vol(Kat;) using the exact sequence
associated with Keit; and the manifoldV. This procedure
Im(dy) =Ker(dy). gives an expression for the partition functi@dncontaining

information about the spaces Kay and (Kerd,)*. Simply
dropping Vol(Kerd,) leads to a loss of information. We
have Vol(KerS)=Vol(Ker d;)=Vol(Im d,) by assumption

A choice of metric orM determines an inner product in the
spaced)9(M) and allows the actioi) to be written as

S(w)=Nw,(*d;) ), (5)  (if Hy(M) is nontrivial, this equation has to be modifiggi).
Also,
where* is the Hodge star operatdSee[13] for background
on this and other differential-geometric constructipns. d0|(KerdO)L:(Kerd0)l
Evaluation of the partition function of this action by
Schwarz’s method requires the introduction of the resolvent —(Imdg)=Vol(Imdo)

for S(w). The partition function is defined as — |det do|Vol(Kerdg)*

Z()\)=Nf dw e'S(), Note that

0_ 1
The main problem in evaluating(\) is to properly deal (17=Kerdo® (Kerdo)
with the zeros ofS(w). These zero modes contain topologi- g4

cal information regarding the manifold, as the space of zero

modes is given by Ked;), and hence should not be dis- bo:Ho—Ho
garded. Schwarz introduced an algebraic metfibd resol-
vent methodl for dealing with this problem. Although it is Vol(Ho) =|dete| Vol (Ho),

valid only for S(w)’s that are quadratic i, it can be used

to analyzeS(w)’s constructed on arbitrary compact mani- \where 7, represents the space of harmonic 0-forms. Note

folds without boundary. For systems of this type Schwarz’'sihat harmonicp-forms are solutions ofd* d+dd*) ¢,=0.

method is an algebraic analogue of the problem of gaugg this space the Hodge star operator is present and hence a

fixing. The advantage of the resolvent method is that it caryqgiar product and volume can be defined. The mggn-

be easily extended to deal with the process of discretizationygqyced relates the space of harmonic 0-forms to the space

as we will show. _ . , of de Rham cohomology,. By a theorem of Hodge this
The resolvent is defined to be the following chain of space of harmonip-forms is isomorphic to the space Hf,

maps. [13]. The space of de Rham cohomology does not have a

R B0 M) @ _ -~ -~ metric and hence we define the volume in this space with the

0—R— %0 (M)—"Im(dg) =Ker(d,) —~Ker(S) OI(6) help of the mapp,. Therefore,

This chain of maps forms an exact sequence, that is, the Vol(Kerdo)* =Vol(Q)[ Vol(Kerdy)] ™

image of a map is the kernel of the map that follows. With =Vol(Qo)[Vol(Hg)]
the help of the resolvent, Schwarz was able to show that the 0 0
partition function for the theory was given (6] =[Vol(Qo)](detdo) Y Vol(Hy)] 3,

g M) that finall
Z()\):e(lﬂn'/4)b(;) det ((* d1)2)71/4 del’(d’gdo)l’z SO at fina y we get

Vol(KerS)=|det do||detpy| 1 Vol(Qg)(Vol H,) L.

x det ¢f ¢po) V2, (7
Choosing
where ¢ is a nontopological geometry dependent function
and{ as shown if11] is given by N Vol(Q)(Vol H,) '=1,
{=dimH%(M)—dimH(M). we get
¢ is part of a phase factor and thus the absolute value of the Z=VoI(KerS)(detd’1‘dl)‘1’4

partition functionZ(\) is a topological quantity. This will be
our main concerti10]. =|det dy||detd,d* |~ ¥4 detepo| .
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A more careful calculation gives the determinant in Eq.
The quantities: and ¢ in Eqg. (7) also need to be
{-regularized—this was done 1], where it was shown
that the regularized is given by

[=dimHO(M)—dimH(M).
So in the present case, whét8(M)=R andH*(M)=0, we
have
{=1-0=1. (8)

Using the formulagl} =*d} and** =1 (modulo a possible
sign), we getd,=*d}* and therefore ( ath)?=*d;*d,
=dj dy, which gives

det ((*dy)?)=det (d}d,). 9

Substituting Egs(8) and (9) in Eq. (6) we get

2

SR
Z()\)=e‘('”/4)‘(; det (dj dy)~**det (dj do)*?

X dex g5 o) V2 (10

We now rewrite the product of determinants in E#0) in
terms of the Ray-Singer torsid20] of M. Since the Hodge
star operatot is unitary with** =1 andd§ =*d,* (modulo
a possible sighwe have

det (d% do) =det (*dp*dg) =det (* (* dy* dg)*)
=det (d,* dg* ) =det (d,d%)
=det (d}d,).
It follows that
det (dgdo)¥2 det (d¥d,)
= (det (d§ do)*?dei(d* d;) " Y2 det (d% d,) )2
11

It is possible to rewrite detfy ¢) using a standard result of
manifold theory in a different fornfsee[21]). We start by
noting that the integration map

JM:H3(M)—>R

is an isomorphism, i.e., for eacte R there is a unique class
[@]eH3(M) such thatfa=r. [Note that the integration
map is well defined om3(M) since [ya+dB=[ya, i.e.,
Jm dB=0 by Stokes theoremAlso from the definition

H3(M)=0Q3(M)/Im(d,)
=[Im(d,)®Im(d,)*1/Im(d,)
=Im(d,)*,

it follows that the map given by
Im(dy)* —R (12

is also an isomorphism. Now define the map

¢3 :R*) |rn(dz)L

to be the inverse of Eq12). Then using the properties of the
Hodge star operator it can be shown that

del 3 h3) =del g do) .

It follows that

del @5 do) 2= (de dg do) M2 det b3 ) V)2

(13
Substituting Eqs(13) and(11) in Eqg. (10) we get
—-1/2
IZ(A)I=(;> R M)*2, (14)
where
TR M) =del ¢f ¢o) ~ Y2 del % p3) Y2 det (df dg) M2
x det (d¥d,;)~Y2det (d5d,). (15)

This quantityrr M) is the Ray-Singer torsion dfl [20]. It
is a topological invariant oM, i.e., it is independent of the
metric of M. Thus the modulugZ(\)| of the partition func-
tion, given by Eqs(13) and(14), is a topological invariant.
We are now ready to construct a discrete version of the
preceding topological field theory which reproduces the con-
tinuum expression for the partition function where subdivi-
sion invariance is the discrete property corresponding to to-
pological invariance. We will see that in order to do this it is
crucial that there is an analogue of the Hodge star operator in
the discrete theory. As we will see in the next section, this
requires a field doubling. Therefore we consider a doubled
version of the preceding theory, with the fields and w, in
Q(M) and with the action functiondb) changed by

S(@) =NW, (*d)W) —S(wy,w))

A Sl e

The reason for this specific choice of actiéml,wz) for
the doubled theory will become clear in the next section. An
obvious generalization of the preceding, with

0 *dl>

THT:(*dl 0

shows that the partition function of the doubled theory
Zo\):f Daw, D, e 01:02)
alm)xalm)
can be evaluated to obtain the squard 1),
~ At
Z(x)ZIZ(x)Izz(;) TRIM). (a7

Note that there is no phase factor here. This is because the

quantity c=d, +d_ for the action$ in Eqg. (16) vanishes
since
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5 0 xd, where the sum is over all 1-simplicés,,v3] such that
=l g 0 [vg,v1,09,v3] IS @ 3-simplex with orientation compatible
! with the orientation oM.
has a symmetric spectrum. It is possible to show[8] that def(¢g)* #p)=Ng
=dim C(®)= the number of vertices d€. Then the failure of
IV. DISCRETE VERSION OF THE TOPOLOGICAL EIELD f[he discretization prescription can be demonstrated by show-
THEORY ing that the quantity
We proceed to construct a discrete version of Abelian , 1 KK 2 1
Chern-Simons gauge theory. The Whitney map enables the |Z(V)| :Wdet’(‘?ldo)det’(TK)
Abelian Chern-Simons theory to be discretized by replacing 0
the gauge field(l_—form)1 Ae QM) by the discrete ana- is not independent oK.
logue, a 1-cochain e C(K). . A discrete version of the doubled topological field theory
The most immediate way to do this is to construct theyjth action (16) has been constructed a1] in such a way
action S of the discrete theory by that the expressiofl7) for the continuum partition function
is reproduced. We briefly describe this in the following.
)\SK(X)z)\S(WK(X))z)\J dWK(x) AWK (x). The discretization prescription is
M

,w7) € QYM)X QY M) —(x,y) e CL(K) X CY(K),
This can be shown to coincide with the discrete action for the (@1, 02) £ RM) AR ( )(20)

Abelian Chern-Simons theory introduced [i]. This pre-
scription fails, however, in the sense that the resulting parti- o 0 *d;\[w;
tion functionZk(\) is not a topological invariant, i.e., is not Sw)= <( )’(*d 0 )(

independent ofK, and does not reproduce the continuum !

) > _’ASK(XJ/)

w2 w2

expression for the partition function. We demonstrate this by X 0 *KdX\/x
considering the resolvent fd8¢ obtained in an analogous =\ ( ) KR ( ) , (21
way to the resolvent of the continuum actiSrdescribed in y/\+"d 0 Jly

the previous section. LeTy :C'(K)—C*(K) denote the : . _ P
self-adjoint operator o€1(K) determined by whereK is the simplicial complex triangulatintyl, K is its
dual, andC9(K), CP(K), d¥, andd are as described in the
previous section. The analogue of the Hodge star operator is
the duality operator*X. This is a map *":C%K)

—CZ9(K) [and**:CP(K)— CZP(K)] which explains the

SK(x)=fMdV\/K(x)/\WK(x)z(TKx,x).

Then need for field doubling and the expressi@l) for the dis-
Ker(TK)CKer(df). creie actionS¢(x,y). There is a natural choice of resolvent
for S¢(x,y), analogous to the resolve(®) in the continuum
Since forx e Ker(d}) we have case. ltis
0 - R — CYK) _—d Ker(d) — o0
<TKx,x>=f AWK () AWK (x) (18) (K) =% Ker(d®
M ® ® ® ® @,
0 - R — C%R) _—d Ker(d®) — O
:f WK (dE%) AWK (x). (19) (K) =% (@)
M

The partition function is

Thus the discrete analogue of the resolv@tis a resol-

vent for Sy : Z(\)= f Dx Dy e KO). (22
. clk)x cl(K)

é 0 d K - i _ .

0—R— 70— OQ%(M)— % Ker(d;) CKer(Ty) = Ker(S¢) —0. Evaluating this by Schwarz’'s method with the resolvent

The resulting partition function is the discrete analogue Oiabove leads to

the partition functionZ(\):

det(( pk)* )~ V2det ((d)* dfy)H?

B N | ~1+Ng-N§
Zy(N)=

m

Zy(N)=det ((¢5)* b5)~H2det ((dg)* dg)*

H —-1/2 _ K Ky —
xdet’( - I—TK> | xdet ((df)* df) U det( 6 * )22

a ~ ~ ~ ~

x det ((dg)* dg)*?det ((dy)*dy) ¥

In [11] the following formula forTy was obtained:

There is no phase factor in E@2) since{ vanishes just as

in Eq. (17). We have also used the fact thét l—Ng

1
Tklvov1]=5 2 [v2,05] +N¥, which is shown if11].
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Now rewrite the determinant involvinfg objects in terms A ~1+Ng—N§
) T«(M), (40)

of determinants oK objects. Modulo a possible sigh we Ze(N)= (;
have the formula§l1]

(K= (rRyr =k, 0y "
) (M) =del(¢g)* ¢5)~Hdel(¢5)* ¢5)"?
(«) = (=) * =K, (24) 2
o X [1 det ((dX)*dK)- v, (41)
(dﬁ)* :*Kdanqfl*K’ (29 q=0 a a
(dk)* — xKgK LK (26) This quantityr (M) is theRtorsion of the triangulatioK of
P n-p-1- - M. It is a combinatorial invariant df/, i.e., it is independent
(The + signs are omitted because they will all cancel out in®f the choice of triangulatioi [22-24.
the following calculation). Now This is the untwisted torsion dfl; more generally the
' torsion can be “twisted” by a representation #f(M). The
det ((dﬁ)*d§)=del’(*Kd§* kdﬁ) (27)  factors involving the determinants dedy)* dy) constitute
the usual Reidemeister torsiondf[19]. When these are put
_ det (+ R (x s Ky a ) together with the factors involving dgip!) ¢), i=0,3, as

(29) in Eq. (41), we get theR torsion “as a function of the coho-
mology” introduced and shown to be triangulation indepen-

_ Ko KoK dent in[20].
=det (dz*"+7) (29 The expression4l) for r«(M) is analogous to the ex-
_ K, 1Ky pression(15) for the R torsion g M), and in fact it has
det (d3(d2)") (30 been showrj22,23 that these torsions are equal,
=det((d5)*df), (3D (M) =T M).
and It follows that the partition function(40) of the discrete
. . theory coincides with the partition functiqd5) of the con-
det ((d¥)*dX)=det (xKdf+Kd¥), (32  tinuum theory, except for th&-dependent quantitiesfy and
i o NT appearing in Eq(40). These quantities can be removed
=det (+X(* de* de)* ) by a suitableK-dependent renormalization of the coupling

(33)  parameten.
It is possible to show thdB]

=det (1", (39 det(45)* &)=,
=det (df(df)*) (39 1
~dex(d)* df). (36 D=
The integration mag12) has a discrete analog We will use this result in our numerical work.
Ker (d5)* —R, V. NUMERICAL RESULTS
a—(a,[M]), 37) We are now in a position to proceed to numerically evalu-

ate the discrete expressions for the torsion obtained. This
allows us to check the underlying theoretical ideas by nu-
merically verifying that the discrete expressions agree with
expected analytic results. It also allows us to check that the
results obtained are subdivision invariant. The subdivision
invariance of torsion is demonstrated by showing that if any
simplex of the triangulation is subdivided, the value of the

where[ M ] e C;(K), the orientation cycle of/, i.e., the sum
of all 3-simplices ofK, oriented so that their orientations are
compatible with the orientation ofM. [Note that a
eKer(dg)iCC3(K) can be evaluated on any elememnt
e C5(K) to get a real numbefa, o) € R.] Define the map

¢5:R—Ker(df)* (38) TABLE II. Results forT.
to be the inverse of Eq37). Then using the properties of N
K i Complex X New M N N z*
and=*", it can be shown that p 1 oW 3 0
det(65)* ¢5)=det((¢K)* ¢%) L. (39) 5-5 125 15625 1 5 5 0.04
_ ' 8-6 1152 2985984 0444 8 6  0.0123
Now using Egs(39), (31), and(36) we can rewrite Eq(22) 9-6 2304 15116540 0351 9 6  0.00975

as
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TABLE Ill. R torsion forS®.

X1 X Xg
Complex X1 X5 X3 % N3 No T
s3 625 15625 625 25 5 5 1
als3 5184 2.98598% 10° 2.7648< 10 48 8 6 1
a2s3 7776 1.51165% 10’ 1.04976< 10° 54 9 6 1
a3s3 5184 2.985984% 10° 2.7648< 10* 48 8 6 1
a4s3 625 15625 625 25 5 5 1

torsion does not change. This is what is meant by topologicgbressed in terms of this. Since we know to whahaps the
invariance in the discrete setting. The expected analytic revarious basis list elements, we can set the coefficients of its
sult for torsion for a lens spade(p,1) is (see[20]) matrix representation. When we say dgt{,), for example,
we simply mean the determinant of the matrix that results
from multiplying the matrices corresponding to the operators
d, anddy.

If our complex consisted of just one triandle,1,2], the
ThusT(S®)=T(L(1,1)=1. basis list would be

We also show, numerically, that the discrete expression

1
T(L(p,l))zE.

for the Chern-Simons partition function obtained without us- 0 [O],
ing the* operator is not a topological invariant. This shows 1 [1]
very clearly the importance of the doubling construction '
method used in the discretization method, for capturing to- 2 [2],
pological information. 3 [0,1],
In order to proceed, we need to efficiently triangulate the

spacesS® andL (p,q). First we triangulaté&®. We do this by 4 [0.2],
considering a four-dimensional simpléx,v1,v5,03,04] 5 [1,2],
and observing that the boundary of this object is precisely 6 [01,2]

the triangulationK of S® that we require. Next we turn to

spaced (p,q), which we need to triangulate in order to pro- .
ceed. An efficient triangulation of this space has been con- e know thad[0]=[1,0]+[2,0]. This can be expressed

structed by Brehm and Swiatkowsk25]. We use this pro- N terms of our basis list adacting on basis element 0 going
cedure for our Computatior[QG]_ to —3—4. So the matrixd for this Complex is

We can now summarize our numerical results. Rier-

sion for a simplicial complex, with dual cell complex<, 0 0 00 0 O
for eitherS® or L(p,1) involves evaluating 0 0 00 O 00O
1 0 0O 00 O 0O
T= \/mdet d1do)detd,d;) "t detdqd,), -1 1 00 0O 0O
-1 0 1 0 O 0O
whereN; are the numbers atsimplices inK, d,d,,d3 are 0 -110 0 00

boundary operators o andd,,d;,d, are coboundary op-

erators orK. Note that, in the discrete setting, these opera- 6 0 01 -110

tors can be expressed as matrices. We do this by using the
vertices, edges, faces, and tetrahedra of our complex as a Note that the last column is zero sindéhas nothing to
basis list. Anyp-simplex in the complex can then be ex- map a 2-simplex to and that the first three rows are zero

TABLE IV. R torsion forS®.
X1 X X3
Complex X1 X, X3 X N3 No T
2
s3 625 1.56x 10 625 25 5 5 1
1s3 5184 2.98598% 10° 2.7648< 10" 48 8 6 1
2s3 3.9448<10* 5.2166x 1P 1.018325¢ 10° 77 11 7 1
3s3 2.79936< 10° 8.418024 10t° 3.36798< 10/ 112 14 8 1
4s3 1.87683% 10° 1.26670% 103 1.032626< 10° 153 17 9 1
5s3 1.270325 10’ 2.03739& 10'° 3.207653 10'° 200 20 10 1
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TABLE V. R torsion for lens spaces.

X1 X X3

Complex X1 X5 X3 % N3 No T
L(2,1) 1.06293% 10'°  3.61866X107°  3.74484 107! 110 40 11 1/2
L(3,1) 9.108< 10" 1.14358% 10"  1.08817 10%? 86.666 60 13 1/3
L(4,1) 1.102% 10'6 4.0468x 10°® 2.89x 10" 78.7487 84 15 1/4
L(5,1) 1.79061% 10'°  1.76143X% 10  7.4918% 10°® 76.16 112 17 1/5

PRE 61

since nothing is mapped to 0-simplices. If we act on 0 with
this matrix we get-3—4, as expected, andf=0.

If we do not useK then from Sec. IV,

1
T= _de( ﬁldo) ( detazd 1) -1 de( ggdz)
NaN,

is subdivision invariant and thus a topological invariant of
the manifold.

As a final check we tried several other subdivisions. We
took a given triangulation and barycentric subdivided one or

We evaluated the quantiff numerically for various tri- more(n) of its faces to get 43,23, ..., (ns3). The results
angulations< of S® and found the results shown in Table I are in Table IV.

for the change ofl under subdivision wheren—n corre-
sponds to a triangulation &® with n vertices andn tetra-

hedra and wher&; =detdd; ;. We conclude with the results for the lens spaces. The
It is clear thatT for S% is not subdivision invariant. We results are shown in Table V. As can be seen, these agree
next evaluateT for S® and forL(p,1) and check that it is extremely well with the known analytic resuf(L(p,1))
indeed subdivision invariant and agrees with the analytic cal= 1/p.
culations forL(p,1), with p=2, 3, 4, and 5. These results
are shown in Tables IlI-V.
As a check on the numerical method we also count the ) o
number of zero modes of the Laplacian operator on the dif- 1he method of discretization introduced works extremely
ferentp-chain spaces. These numbers give the dimension grell. The main point of the method is to construct discrete

the homology groups and are shown in Table VI. analogs for the set(}”,d,/\,*). Previous work in this direc-
tion has neglected the Hodge star operatf®,29]. We have

thus demonstrated that the Hodge star operator plays a vital
role in the construction of topological invariant objects from
As a further check, a systematic way of carrying out sub-ie|d theory. We were able to construct an expression for the
division known as the Alexander movgg7] was used t0 partition function that is correct even as far as overall nor-
study the subdivision invariance of the torsion. There aremalization is concerned. Mathematically, the equivalence be-
four such moves in three dimensions. They are best eXween the Ray-Singer torsion and the combinatorial torsion
plained by example. We have of Reidemeister was proved independently in 1976 by Chee-
ger[22] and Muler [23]. It is nice to see the result emerge in
a direct manner by a formal process of discretization. On the
way we also had to double the original system so Kahe

triangulation, andK, its dual, are both present. If this dou-
bling and the reason for it are overlooked, then the topologi-
cal information present in the discretization is lost, as our
numerical results demonstrated.

It is clear that the geometry motivated discretization
method introduced is very general and that it can be used to
analyze a wide variety of physical systems. In the approach
outlined we have captured topological features. In applica-

. 1
'r:|z<1n2:FJz(detaﬁdg)(deﬂﬁ)*ﬂ%
0

B. Lens spaces

VI. CONCLUSIONS

A. S8

(1) 1[0,1,2,3,4—[x,1,2,3,4+[0x,2,3,4,

(2) [0,1,2,3,4—[x,1,2,3,4+[0x,2,3,4+[0,1x,3,4],
(3) [0,1,2,3,4—[x,1,2,3,4+[0x,2,3,4+[0,1%,3,4]
+[0,1,2x,4],

(4) [0,1,2,3,4—[x,1,2,3,4+[0x,2,3,4+[0,1%,3,4]

+[0,1,2x,4]+[0,1,2,3x].

These are all natural operations in that the firgth{ move
corresponds to adding a vertex splitting the 1-simplex
(n-simpleX [0,1] ([0,1, ... n]) and connecting it to all the

TABLE VI. Zero modes forS®.

vertices, resulting in twor(+ 1) tetrahedra. No. of zero modes of, Dim HP
The torsionT, in terms of its component determinants, 0 1 1
and the way they change under the Alexander moves is ex- 1 0 0
hibited in Table Ill, whereX;=detd;d; _, anda2s3 means 2 0 0
the complex that resulted after the type 2 Alexander moves 3 1 1

were performed on th&°. Its clear from this that
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tions, it is also very important to capture geometrical features ACKNOWLEDGMENTS
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