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Geometric discretization scheme applied to the Abelian Chern-Simons theory

Samik Sen, Siddhartha Sen, James C. Sexton, and David H. Adams
School of Mathematics, Trinity College, Dublin 2, Ireland

~Received 17 August 1999!

We give a detailed general description of a recent geometrical discretization scheme and illustrate, by
explicit numerical calculation, the scheme’s ability to capture topological features. The scheme is applied to the
Abelian Chern-Simons theory and leads, after a necessary field doubling, to an expression for the discrete
partition function in terms of untwisted Reidemeister torsion and of various triangulation-dependent factors.
The discrete partition function is evaluated computationally for various triangulations ofS3 and of lens spaces.
The results confirm that the discretization scheme is triangulation independent and coincides with the con-
tinuum partition function.

PACS number~s!: 02.70.2c, 11.15.Ha, 02.40.Sf, 11.15.Tk
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I. INTRODUCTION

A very useful way to regularize a quantum field theory
provided by the lattice formulation introduced by Wilson@1#.
~See, for example,@2# for a detailed treatment.! However,
this formulation has difficulty in capturing topological fea
tures of a field theory, for example, the topologicalu term in
QCD. It is therefore of interest to investigate alternative d
cretization schemes. In this paper we describe an alterna
scheme that is applicable to antisymmetric tensor field th
ries including Abelian gauge theories and fermion fie
theory in the Ka¨hler-Dirac framework@3#, and which is well
suited for capturing the topological features of such theor
It is based on developing analogies between the diffe
types of fields and the way they appear in a quantum fi
theory with a corresponding list of discrete variables a
operators. The method is valid for any arbitrary comp
3-manifold without boundary. We illustrate the scheme
applying it to the pure Abelian Chern-Simons gauge the
in three dimensions, and to a doubled version, the so-ca
Abelian BF gauge theory. In the latter case the topolog
features of the theory are completely reproduced by our
cretization scheme, even before taking the continuum lim
We illustrate this by explicit numerical calculations of th
discrete partition function when the space-time isS3 or is a
lens space,L(p,1).

The discretization scheme involves several ingredie
that are not used in the standard Wilson lattice formulati
These include a triangulation of the space-time~i.e., a de-
composition into hypertetrahedra rather then hypercub!
and a mathematical tool called the Whitney map@4#. These
have previously been used to discretize field theories in@5,6#
where various convergence results~e.g., convergence of th
discrete action to the continuum action! were established
Triangulations of space-time are also used in discretizat
of other quantum field theories, for example, in quant
gravity ~see@7# for a review!. The thrust of the present wor
is quite different. We set up the discretization in such a w
that the geometric structures of the continuum field the
are mirrored by analogous structures in the discrete form
tion. As we will see, this requires a certain doubling of field
With this doubling, the topological features of Abelia
Chern-Simons theory are completely captured by the form
PRE 611063-651X/2000/61~3!/3174~12!/$15.00
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lation. An alternate scheme of discretization proposed pre
ously in @6#, which does not involve the doubling of fields
fails to capture the topological features of the Abelian Che
Simons theory as we will show numerically in Sec. V.
mathematical treatment of this discretization scheme
been given in@8,11#. A short version of some of the result
has been published in@10,9#.

Our aims in this paper are, first, to make the techniq
and results of@8,11# accessible to a wider audience, an
secondly, to demonstrate a practical numerical impleme
tion of the discretization scheme. Numerical implemen
tions are developed for Abelian Chern-Simons theory
fined on the three-dimensional sphereS3 and on the lens
spacesL(p,1) for p51, 2, and 3. Our discretization schem
is the only one which numerically reproduces the exact
pological results for Abelian Chern-Simons theory@12#.

This paper is organized as follows. In Sec. II the discre
zation scheme is described together with a summary of
topological results used to set it up. In Sec. III some featu
of the Abelian Chern-Simons theory on general 3-manifo
are reviewed. In Sec. IV the discretization scheme is app
to this theory. An expression for the partition function of th
resulting discrete theory is derived in terms of the data sp
fying the triangulation of the space-time. In Sec. V the n
merical evaluations of the partition functions correspond
to these triangulations are presented. In Sec. VI we sum
rize our conclusions.

II. DISCRETIZATION SCHEME

Let us start by considering a general quantum field the
defined on an arbitrary manifoldM of dimensionD. Suppose
the theory has fieldsfp(xW ) wherexWPM , and wherefp is a
p-form ~antisymmetric tensor field of degreep defined on
M ). The Lagrangian for the system involves the fields,
Laplacian operator, and possibly~as for the Chern-Simons
theory! an antisymmetrized first-order differential operato

In differential geometric terms, the theory is construct
using the following objects, which are defined on the ma
fold M: p-forms fp, which are generalized antisymmetr
tensor fields, the exterior derivatived:fp→fp11, the Hodge
star operator* :fp→fD2p, which is required to define scala
products, and the wedge operatorfp`fq5fp1q.
3174 ©2000 The American Physical Society
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We want to construct discrete analogs of these obje
We begin by summarizing the basic properties of our ope
tors of interest@13#. On a manifoldM of dimensionD, the
operations (̀ ,*,d) on p-forms fp(p50, . . . ,D) satisfy the
following:

~1! fp`fq5(21)pqfq`fp,
~2! d(fp`fq)5dfp`fq1(21)pfp`dfq,
~3! * fp5fD2p,
~4! ** 5(21)Dp11,
~5! d250, (d* )250,
~6! d* 5(21)D(p11)11* d*, ( d* is the adjoint ofd).

The following definitions will also be required:~1! The
Laplacian onp-forms Dp5dp21dp* 1dp11* dp ; ~2! the inner
product^fp ,fp8&5*Mfp`* fp8.

A few examples might now be helpful. First, consid
QED in four dimensions. The gauge fieldA5f1 is a 1-form.
The electromagnetic field is a 2-form given byF5dA. The
action for the gauge field in QED is given by

S~A!5~F,F !5^dA,dA&5E
M

dA`* dA. ~1!

ThusS involves the operators* , d, and the wedge produc
Similarly, for Abelian Chern-Simons theory the gauge fie
A and electromagnetic fieldF5dA are 1-forms and 2-forms
respectively, as for QED. The action for the theory is giv
by

S~A!5E
M

A`dA5^A,* dA&, ~2!

where the space-timeM is three-dimensional. Note that i
both cases we can think of the actionS(A) as a quadratic
functional of the gauge fieldA.

We would like to discretize the fields offp, the inner
product^•,•&, and the operators (̀,*,d) such that discrete
analogs of their continuum interrelationships hold. To do t
it is necessary to introduce first a few basic ideas of discr
zation. We start by discretizing the manifoldM. This in-
volves replacingM by a collection of discrete objects, know
as simplices, glued together. We need a few definitions@14#.

First, for p>0, ap-simplexs (p)5@v0 , . . . ,vp# is defined
to be the convex hull in some Euclidean spaceRD of a set of
p11 points v0 ,v1 , . . . ,vpPRm. Here the verticesv i are
required to span ap-dimensional space. This requireme
will hold so long as the equations( i 50

p l iv i50 and( i 50
p l i

50 admit only the trivial solutionl i50 for i 50, . . . ,p for
l i real.

A few examples might clarify the geometry. Consid
s (0)5@v0#. This is a point or 0-simplex. Nexts (1)

5@v0 ,v1# is a line segment or 1-simplex. An orientation c
be assigned by the ordering of the vertices, in which c
2s (1)5@v1 ,v0#, for example. The faces of a 1-simplex a
its vertices @v0# and @v1#, which are 0-simplices.s (2)

5@v0 ,v1 ,v2# is a triangle or 2-simplex. We note that a
even permutation of the vertices has the same orientatio
s (2) while an odd permutation reverses it and will be writt
as 2s (2). The faces of a 2-simplex are its edges@v0 ,v1#,
@v1 ,v2#, and@v2 ,v0#. Finally, s (3)5@v0 ,v1 ,v2 ,v3# is a tet-
s.
-

s
i-

e

as

rahedron or 3-simplex~see Fig. 1!. Its faces are the four
triangles @v0 ,v1 ,v2#, @v0 ,v2 ,v3#, @v0 ,v1 ,v3#, and
@v1 ,v2 ,v3# that bound it.

An important feature of our discretization scheme is th
the original simplices are subdivided by using simplex ba
centers. Geometrically thebarycenterof a p-simplexs (p) is
the point that represents its ‘‘center of mass.’’ We denote
barycenter ofs (p)5@v0 , . . . ,vp# as the point

ŝ (p)5
1

p11 (
i 50

p

v i . ~3!

As an example, the barycenter ofs (1)5@v0 ,v1# is the mid-
point of the line segment that joins the verticesv0 andv1.

We can now describe a particular way that a given ma
fold M can be discretized. LetS be a collection of simplices
$s i

(n)%, n50,1, . . . ,D, with the property that the faces of th
simplices that belong toS also belong to it. The elements o
S glued together in the following way are known as a si
plicial complex@14,15#; ~1! s i

(n)ùs j
(k)50 if s i

(n),s j
(k) have

no common face;~2! s i
(n)ùs j

(k)Þ0 if s i
(n) ,s j

(k) have pre-
cisely one face in common, along which they are glued
gether. In many cases of interest~including all 3-manifolds
and all differentiable manifolds@15#!, M can be replaced by
a complexK that it is topologically equivalent to.K is then
said to be a triangulation ofM ~note that this triangulation is
not unique!. In this way of discretizingM, the building
blocks are 0-,1-,. . . , D-dimensional objects, all of which
are simplices, e.g., generalized oriented tetrahedra.

We now observe that the same manifold can be d
cretized in many different ways. In the discretization d
scribed, we used simplices. We could just as well have u
generalized oriented cubes.

There is another method of discretizing a manifold whi
is the dual of the simplicial discretization just described.
associates with a simplicial complexK a dual complexK̂.
We proceed to describe this construction. We will see t
the basic objects of the dual complexK̂ are again
0-,1-,2-, . . . ,D-dimensional objects, but this time they a
no longer simplices. We illustrate the method by consider
a manifoldM that is a disk. This is a manifold with a bound
ary. We triangulate this by the simplicial complexK shown
in Fig. 2.

Now consider the barycenters of the building blocks
the simplicial complexK. We have the list shown in Table I
Pictorially the simplicial complexK with its barycenters is
shown in Fig. 3.

We can now construct the dual description of a triangu
tion K. Geometrically this utilizes a discrete analog of t

FIG. 1. A 3-simplex.
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3176 PRE 61SEN, SEN, SEXTON, AND ADAMS
Hodge* operator. Recall that the* operator maps ap-form
to a (D2p)-form, whereD is the dimension of the manifold
M on which thep-form is defined. In the dual geometrica
decomposition of the manifold, we want to set up a cor
spondence between ap-dimensional object and a
(D2p)-dimensional object.

This is done as follows. We first constru
(D2p)-dimensional objects whose vertices are barycen
of a sequence of successively higher dimensional simpli
where each simplex is a face of the following one, in oth
words, (D2p)-dimensional objects of the form

$ŝp ,ŝp11 , . . . ,ŝD%, wheresn is a face ofsn11. The orien-
tations of these are set so as to be compatible with the m
fold. Joining these objects together gives us the dual ofsp .

Thus, for instance, the map* acts on@v0# as follows:

* K :@v0#→e01@ v̂0 ,ŝ1 ,ŝ#ø@ v̂0 ,ŝ3 ,ŝ#e03,

where the orientation of each of the small triangles has to
coherent with the orientation of the original triangle. This
shown in Fig. 3 and leads to mapping@v0# to the shaded two
dimensional region. The orientations of the simplices
specified by arrows in the figure. Coherence of orientat
means, for example, that the arrow of an edge agrees
the arrow of the triangle to which it belongs. Next we co
sider @v0 ,v1#. This is a 1-simplex and is to be mapped to
@(221)51#-dimensional object. The map is defined as

* K :@v0 ,v1#→@ŝ1 ,ŝ#.

Again the orientation of@ŝ1 ,ŝ# has to be coherent with th
orientation of the triangles already introduced when the m
for @v0# was considered. Similarly,

* K :@v1 ,v2#→@ŝ2 ,ŝ#,

TABLE I. Elements of the simplicial complexK and their bary-
centers.

Geometrical object inK Dimension Corresponding barycenter

s1
(0)5@v0# 0 ŝ1

(0)5v0

s2
(0)5@v1# 0 ŝ2

(0)5v0

s3
(0)5@v2# 0 ŝ3

(0)5v0

s1
(1)5@v0 ,v1# 1 ŝ1

(1)5
1
2 (v01v1)5v3

s2
(1)5@v1 ,v2# 1 ŝ1

(1)5
1
2 (v11v2)5v4

s3
(1)5@v2 ,v0# 1 ŝ1

(1)5
1
2 (v21v0)5v5

s1
(2)5@v0 ,v1 ,v2# 2 ŝ1

(2)5
1
3 (v01v11v2)5v6

FIG. 2. TriangulationK of a disk.
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* K :@v2 ,v0#→@ŝ3 ,ŝ#,

and finally

* K :@v0 ,v1 ,v2#→@ŝ#.

We then have the alternate discretizationK̂ for M shown in
Fig. 4.

Note that when two edges are glued together they m
have opposite orientations. We can now give the general
for mapping an n-simplex sn5@v0 , . . . ,vn# to a
(D2n)-dimensional object@(D2n) cell# as follows. We
think of sn as an element of a simplicial complexK. We
have

* K :@v0 , . . . ,vn#→ø@ŝn ,ŝn11 , . . . ,ŝD#,

whereŝn11 is the barycenter of an (n11)-simplex that has
sn as a face,ŝn12 is the barycenter of an (n12)-simplex
that hassn11 as a face, and so on. These objects have to
coherently oriented with respect to@v0 , . . . ,vn#. The set of
these cells constitutes the dual spaceK̂ of K.

By this procedure, we claim, a discrete version of t
Hodge star operation* has been constructed. Let us expla
The Hodge* operator involves forms. It mapsp-forms in D
dimensions to a (D2p)-form. The * K map involves not
forms but geometrical objects. There is a simple corresp
dence relation between these two cases. Given ap-form fp
and ap-dimensional geometrical spaceSp , the p-form can
be integrated overSp to give a number. ThusSp andfp are
objects that can be paired. We can write this as a pairing

~fp ,Sp!5E
Sp

fp .

In order to proceed, we need to introduce some more st
ture. We start by associating with a simplicial complexK

FIG. 3. Barycenters ofK.

FIG. 4. Dual complexK̂.
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PRE 61 3177GEOMETRIC DISCRETIZATION SCHEME APPLIED TO . . .
containing$sp
i % ( i 51, . . . ,Kp ;p50, . . . ,D) a vector space

consisting of finite linear combinations over the reals of
p-simplices it contains. This vector space is known as
space of p-chains, Cp(K). For two elementssp

i ,sp
j

PCp(K), a scalar product (sp
i ,sp

j )5d j
i can be introduced

An orientedp-simplex changes sign under a change of o
entation, i.e., ifsp5@v0 , . . . ,vp# andt is a permutation of
the indices @0, . . . ,p#, then @vt(0) , . . . ,vt(p)#5
(21)t@v0 , . . . ,vp#, with t denoting the number of transpo
sitions needed to bring@vt(0) , . . . ,vt(p)# to the order
@v0 , . . . ,vp#.

Given the vector spaceCp(K), the boundary operator]K

can be defined as

]K:Cp~K !→Cp21~K !.

It is the linear operator that maps an orientedp-simplexs (p)

to the sum of its (p21) faces with orientation induced b
the orientation ofsp. If sp5@v0 , . . . ,vp#, then

]sp5(
i 50

p

~21! i@v0 , . . . ,v̂ i , . . . vp#,

where @v0 , . . . ,v̂ i , . . . ,vp# means that the vertexv i has
been omitted fromsp to produce the face ‘‘opposite’’ to it.

Given thatCp(K) is a vector space, it is possible to defin
a dual vector spaceCp(K), consisting of dual objects know
as cochains; that is, we can take an element ofCp(K) and an
element ofCp(K) to form a real number. Since the spa
Cp(K) has a scalar product, namely, ifsp

i ,sp
j PCp(K), then

(sp
i ,sp

j )5d i j . We can use the scalar product to ident
Cp(K)[Cp(K), so that we can consider oriente
p-simplices as elements ofCp(K) as well asCp(K). We can
write our boundary operation as

~@v0 , . . . ,v̂ i , . . . ,vp#,]K@v0 , . . . ,vp# !5~21! i .

This suggests introducing the adjoint operationdK defined as

~dK@v0 , . . . ,v̂ i , . . . ,vp#,@v0 , . . . ,vp# !

5~@v0 , . . . ,v̂ i , . . . ,vp#,]K@v0 , . . . ,vp# !.

This is the coboundary operator that mapsCp(K)
→Cp11(K).

Indeed, we have

dK@v0 , . . . ,vp#5(
v

@v,v0 , . . . ,vp#,

where the sum is over all verticesv such that@v,v0 , . . . ,vp#
is a (p11) simplex.

The boundary operators]K and the coboundary operato
dK have the property]K]K5dKdK50. Furthermore,

dK :Cp→Cp11 ,

]K :Cp→Cp21 .

These operators are the discrete analogues of the operad
and (21)D(p11)11* d* 5d* which act on forms.
e
e

-

rs

These operators could be defined only when a scalar p
uct ~‘‘metric’’ ! was introduced in the vector spaceCp’s. At
this stage we have a discrete geometrical analogue ofd, d* ,
and* . We have also commented on the fact that the ope
tion * maps simplices into dual cells, i.e., not simplices.
the original simplicial system is described in terms of t
union of the vector spaces of allp-chains, then the space int
which elements of the vector space are mapped by* is not
contained within this space, unlike the situation for t
Hodge star operation on forms. We will see that this diffe
ence leads inevitably to a doubling of the fields when d
cretization, preserving topological structures, is attempte

We now need a way to relate ap-chain to ap-form. This
together with a construction that linearly mapsp-forms to
p-simplices will allow us to translate expressions in co
tinuum QFT to corresponding discrete geometrical obje
We start with the construction of the linear maps fro
p-chains top-forms due to Whitney@4#.

In order to define this map, we need to introduce baryc
tric coordinates associated with a givenp-simplex sp. Re-
gardingsp as an element of someRN, we introduce a set of
real numbers (m0 , . . . ,mp) with the property

m i>0,

(
i

m i51.

A point xPsp can be written in terms of the vertices ofsp

and these real numbers as

x5(
i 50

p

m iv i .

Note that if any set ofm i50 then the vectorx lies on a face
of sp. One can think ofx as the position of the center o
mass of a collection of masses (m0 , . . . ,mp) located on the
vertices (v0 , . . . ,vp), respectively. Settingm i50, for in-
stance, means that the center of mass will be in the f
opposite the vertexv i . The Whitney map can now be de
fined. We have

WK:Cp~K !→Fp~K !,

whereFp(K) is a p-form. If spPCp(K) then

W@sp#5p!(
i 50

p

~21! im i dm0`•••d̂m i`•••dmp ,

whered̂m i means this term is missing, and (m0 ,•••,mp) are
the barycentric coordinate functions ofsp.

We next construct the linear map fromp-forms to
p-chains. This is known as the de Rham map. We have

AK:Fp~K !→Cp~K !,

defined by

^AK~Fp!,sp&5E
sp

Fp,

for each orientedp-simplexPK.
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3178 PRE 61SEN, SEN, SEXTON, AND ADAMS
A discrete version of the wedge product can also be
fined using the Whitney and de Rham maps such
`K:Cp(K)3Cq(K)→Cp1q(K) as follows:

x`Ky5AK
„WK~x!`WK~y!….

It has many of the properties of the continuous wedge pr
uct in that it is skew-symmetric and obeys the Leibniz ru
but it is nonassociative.

At this stage we have introduced all the building bloc
necessary to discretize a system preserving geomet
structures. We summarize the properties of the maps in
duced in the form of a theorem@4#:

~1! AKWK5 Identity.
~2! dWK5WKdK, whered:fp→fp11.
~3! * ubuW

K(a)5^a,b&, a,bPK.
~4! dKAK5AKd.

This theorem shows howdK can be considered as th
discrete analog ofd. We now show how* K can be consid-
ered as a discrete analog of* . For this we need barycentri
subdivision.

We recall that given a simplicial complex$s i
p%, i

51, . . . ,Kp ;p50, . . . ,D. A set of points~vertices! could
be assigned to each simplex, namely,ŝ i

p . These are the bary
centers. These vertices, regarded as vertices of a sim
subdivide the original simplices to give a finer triangulati
of the original manifold. This is a barycentric subdivisio
mapBK. Clearly the procedure can be repeated to give fi
and finer subdivisions in which the simplices becom
‘‘smaller.’’ The procedure is illustrated for a triangle i
Fig. 5.

Note that all the barycenters are present as vertices o
barycentric subdivision and that* K acting on simplices be
longing to the simplicial complexK associated with
@v0 ,v1 ,v2# leads to objects which are not, in general, si
plices of@v0 ,v1 ,v2# but belong to a different spaceK̂. How-
ever, bothK andK̂ are contained in the barycentric subdiv
sion B@v0 ,v1 ,v2#. This is a crucial observation. In order t
construct the star map, two geometrically distinct spa
were introduced, the original simplicial decompositionK
with its associated set ofp-chainsCp(K) and the dual cell
decompositionK̂ with its associated set ofp-chainsCp(K̂).
These spaces are distinct. However, both belong to the
barycentric subdivision ofK. This allows the use of the* K

operation if we think ofK and K̂ as elements ofBK.
We proceed as follows. LetBK and K̂ denote the bary-

centric subdivision and dual triangulation, and

K
:Cp~K !→Cn2p~K̂ !.

However,Cp(K) andCp(K̂) are both contained inCp(BK)
as we have seen. Let

FIG. 5. Barycentric subdivision ofK.
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WBK:Cp~BK!→fp~M !

denote the Whitney map. Then we have forxPCp(K), y

PCn2p21(K̂) @11#:

~1! ^* Kx,y&5
~n11!!

p! ~n2p!! EM
WBK~Bx!`WBK~By!,

^* K̂y,x&5
~n11!!

p! ~n2p!! EM
WBK~By!`WBK~Bx!;

~2! ]K5~21!np11* K̂dK̂K on Cp~K !,

] K̂5~21!nq11* KdK* K̂ on Cq~K̂ !.

These are the discrete analogues of the interrelationships
tweend, d* , * , and^•,•& in the continuum.

Note KÞK̂ and that properties of]K ,dK analogous to
those for differential forms only hold ifK,K̂ are both re-
garded as elements ofBK. This feature of the discretization
method is, as we shall see, crucial if we want to prese
topological properties of the original system. If a discretiz
tion method is introduced without the* operation in it then
as we shall see in Sec. V the topological properties of
partition function for the Abelian Chern-Simons gau
theory do not hold.

We proceed to apply these ideas to the Abelian Che
Simons gauge theory on a compact 3-manifoldM. First we
summarize properties of the continuum field theory.

III. SCHWARZ’S TOPOLOGICAL FIELD THEORY
AND THE RAY-SINGER TORSION

We begin our treatment of continuum field theory by d
scribing Schwarz’s method for evaluating the partition fun
tion of the Chern-Simons gauge theory on a 3-manifoldM
@16#. We assume that the first real homology group~to be
defined shortly! of the manifold vanishes; this is done for th
sake of simplicity. Schwarz’s method is applicable for ar
trary compact 3-manifolds without boundary. Such ma
folds are called ‘‘homology 3-spheres.’’ The main examp
we have in mind are the 3-sphereS3 and the lens space
L(p,1), p51,2, . . . ~for a definition and the basic propertie
of lens spaces see@17,18#!. The fields of the theory are th
1-forms onM, i.e., vPV1(M ). @In terms of a local coordi-
nate system (Xm) on M we havev(x)5vm(x)dxm.# The
action is

S~v!5E
M

v`d1v5E
M

dx1 dx2 dx3 emnrvm ]nvr . ~4!

Here and in the followingVq(M ) denotes the space o
q-forms onM ~i.e., the antisymmetric tensor fields of degr
q) anddq :Vq(M )→Vq11(M ), i.e., the exterior derivative
It has the propertydqdq2150 so Im(dq21),Ker(dq), where
Im(dq21) is the image of the operatordq21 while Ker(dq) is
the null space of the operatordq and the cohomology space
Hq(M ) are defined by

Hq~M !5Ker~dq!/Im~dq21!.
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The Hq(M ) are Abelian groups that contain topological i
formation about the manifold. The vanishing ofH1(M ), for
instance, holds if the manifold is simply connected, that
any loop inM can be smoothly deformed to any other loop
M @14#. Note thatV0(M ) is the space of functions onM and
since d0 is the derivative Ker(d0) consists of the constan
functions, i.e.,

H0~M !5Ker~d0!/05Ker~d0!5R.

Our requirement onM that H1(M )50 implies that

Im~d0!5Ker~d1!.

A choice of metric onM determines an inner product in th
spacesVq(M ) and allows the action~4! to be written as

S~v!5l^v,~* d1!v&, ~5!

where* is the Hodge star operator.~See@13# for background
on this and other differential-geometric construction!
Evaluation of the partition function of this action b
Schwarz’s method requires the introduction of the resolv
for S(v). The partition function is defined as

Z~l!5NE dv eiS(v).

The main problem in evaluatingZ(l) is to properly deal
with the zeros ofS(v). These zero modes contain topolog
cal information regarding the manifold, as the space of z
modes is given by Ker(d1), and hence should not be dis
garded. Schwarz introduced an algebraic method~the resol-
vent method! for dealing with this problem. Although it is
valid only for S(v)’s that are quadratic inv, it can be used
to analyzeS(v)’s constructed on arbitrary compact man
folds without boundary. For systems of this type Schwar
method is an algebraic analogue of the problem of ga
fixing. The advantage of the resolvent method is that it c
be easily extended to deal with the process of discretizat
as we will show.

The resolvent is defined to be the following chain
maps:

0→R→f0V0~M !→d0 Im~d0!5Ker~d1!→Ker~S!→0.
~6!

This chain of maps forms an exact sequence, that is,
image of a map is the kernel of the map that follows. W
the help of the resolvent, Schwarz was able to show that
partition function for the theory was given by@16#

Z~l!5e2( ip/4)iS l

p D 2z/2

det8„~* d1!2
…

21/4 det8~d0* d0!1/2

3det~f0* f0!21/2, ~7!

where i is a nontopological geometry dependent functi
andz as shown in@11# is given by

z5dimH0~M !2dimH1~M !.

i is part of a phase factor and thus the absolute value of
partition functionZ(l) is a topological quantity. This will be
our main concern@10#.
,
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For completeness we give a quick proof of this resu
ignoring phase factors and constants.

Introducing a metric in the space ofv ’s allows us to write

Z~l!5NE
Ker d1% (Ker d1)'

dv eiS(v),

5Vol~Kerd1!•~detd1* d1!21/4N.

We proceed to rewrite Vol(Kerd1) using the exact sequenc
associated with Kerd1 and the manifoldM. This procedure
gives an expression for the partition functionZ containing
information about the spaces Kerd1 and (Kerd1)'. Simply
dropping Vol(Kerd1) leads to a loss of information. We
have Vol(KerS)5Vol(Ker d1)5Vol(Im d0) by assumption
~if H1(M ) is nontrivial, this equation has to be modified@8#!.
Also,

d0u(Ker d0)':~Kerd0!'

→~ Im d0!⇒Vol~ Im d0!

5udet8d0uVol~Kerd0!'.

Note that

V05Kerd0% ~Kerd0!'

and

f0 :H0→H0

Vol~H0!5udetf0uVol~H0!,

whereH0 represents the space of harmonic 0-forms. N
that harmonicp-forms are solutions of (d* d1dd* )fp50.
In this space the Hodge star operator is present and hen
scalar product and volume can be defined. The mapf0 in-
troduced relates the space of harmonic 0-forms to the sp
of de Rham cohomologyH0. By a theorem of Hodge this
space of harmonicp-forms is isomorphic to the space ofHp
@13#. The space of de Rham cohomology does not hav
metric and hence we define the volume in this space with
help of the mapf0. Therefore,

Vol~Kerd0!'5Vol~V0!@Vol~Kerd0!#21

5Vol~V0!@Vol~H0!#21

5@Vol~V0!#~detf0!21@Vol~H0!#21,

so that finally we get

Vol~KerS!5udet8 d0uudetf0u21 Vol~V0!~Vol H
8
!21.

Choosing

N Vol~V0!~Vol H
8
!2151,

we get

Z5Vol~KerS!~det d1* d1!21/4

5udet8 d0uudet d1d* u21/4udetf0u21.
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A more careful calculation gives the determinant in Eq.~7!.
The quantities i and z in Eq. ~7! also need to be
z-regularized—this was done in@11#, where it was shown
that the regularizedz is given by

z5dimH0~M !2dimH1~M !.

So in the present case, whereH0(M )[R andH1(M )50, we
have

z512051. ~8!

Using the formulasd1* 5* d1* and** 51 ~modulo a possible
sign!, we get d15* d1* * and therefore ( atd1)

25*d1*d1

5d1*d1, which gives

det8„~* d1!2
…5det8~d1* d1!. ~9!

Substituting Eqs.~8! and ~9! in Eq. ~6! we get

Z~l!5e2( ip/4)iS l

p D 2z/2

det8~d1* d1!21/4det8~d0* d0!1/2

3det~f0* f0!21/2. ~10!

We now rewrite the product of determinants in Eq.~10! in
terms of the Ray-Singer torsion@20# of M. Since the Hodge
star operator* is unitary with** 51 andd0* 5* d2* ~modulo
a possible sign! we have

det8~d0* d0!5det8~* d2* d0!5det8„* ~* d2* d0!* …

5det8~d2* d0* !5det8~d2d2* !

5det8~d2* d2!.

It follows that

det8~d0* d0!1/2 det8~d1* d1!21/4

5„det8~d0* d0!1/2det~d1* d1!21/2 det8~d2* d2!1/2
…

1/2.

~11!

It is possible to rewrite det(f0* f0) using a standard result o
manifold theory in a different form~see@21#!. We start by
noting that the integration map

E
M

:H3~M !→R

is an isomorphism, i.e., for eachr PR there is a unique clas
@a#PH3(M ) such that*a5r . @Note that the integration
map is well defined onH3(M ) since*Ma1db5*Ma, i.e.,
*M db50 by Stokes theorem.! Also from the definition

H3~M !5V3~M !/Im~d2!

5@ Im~d2! % Im~d2!'#/Im~d2!

5Im~d2!',

it follows that the map given by

Im~d2!'→R ~12!

is also an isomorphism. Now define the map
f3 :R→Im~d2!'

to be the inverse of Eq.~12!. Then using the properties of th
Hodge star operator it can be shown that

det~f3* f3!5det~f0* f0!21.

It follows that

det~f0* f0!21/25„det~f0* f0!21/2det~f3* f3!1/2
…

1/2.
~13!

Substituting Eqs.~13! and ~11! in Eq. ~10! we get

uZ~l!u5S l

p D 21/2

tRS~M !1/2, ~14!

where

tRS~M !5det~f0* f0!21/2det~f3* f3!1/2det8~d0* d0!1/2

3det8~d1* d1!21/2det8~d2* d2!. ~15!

This quantitytRS(M ) is the Ray-Singer torsion ofM @20#. It
is a topological invariant ofM, i.e., it is independent of the
metric of M. Thus the modulusuZ(l)u of the partition func-
tion, given by Eqs.~13! and ~14!, is a topological invariant.

We are now ready to construct a discrete version of
preceding topological field theory which reproduces the c
tinuum expression for the partition function where subdi
sion invariance is the discrete property corresponding to
pological invariance. We will see that in order to do this it
crucial that there is an analogue of the Hodge star operato
the discrete theory. As we will see in the next section, t
requires a field doubling. Therefore we consider a doub
version of the preceding theory, with the fieldsv1 andv2 in
V1(M ) and with the action functional~5! changed by

S~v!5l^w,~* d1!w&→S̃~v1 ,v2!

5lK S v1

v2
D ,S 0 * d1

* d1 0 D S v1

v2
D L . ~16!

The reason for this specific choice of actionS̃(v1 ,v2) for
the doubled theory will become clear in the next section.
obvious generalization of the preceding, with

T→T̃5S 0 * d1

* d1 0 D ,

shows that the partition function of the doubled theory

Z̃~l!5E
V1(M )3V1(M )

Dv1 Dv2 e2lS̃(v1 ,v2)

can be evaluated to obtain the square of~15!,

Z̃~l!5uZ~l!u25S l

p D 21

tRS~M !. ~17!

Note that there is no phase factor here. This is because
quantity i5d11d2 for the actionS̃ in Eq. ~16! vanishes
since
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PRE 61 3181GEOMETRIC DISCRETIZATION SCHEME APPLIED TO . . .
T̃5S 0 * d1

* d1 0 D
has a symmetric spectrum.

IV. DISCRETE VERSION OF THE TOPOLOGICAL FIELD
THEORY

We proceed to construct a discrete version of Abel
Chern-Simons gauge theory. The Whitney map enables
Abelian Chern-Simons theory to be discretized by replac
the gauge field~1-form! APV1(M ) by the discrete ana
logue, a 1-cochainxPC1(K).

The most immediate way to do this is to construct t
actionSK of the discrete theory by

lSK~x!5lS„WK~x!…5lE
M

dWK~x!`WK~x!.

This can be shown to coincide with the discrete action for
Abelian Chern-Simons theory introduced in@6#. This pre-
scription fails, however, in the sense that the resulting pa
tion functionZK(l) is not a topological invariant, i.e., is no
independent ofK, and does not reproduce the continuu
expression for the partition function. We demonstrate this
considering the resolvent forSK obtained in an analogou
way to the resolvent of the continuum actionS described in
the previous section. LetTK :C1(K)→C1(K) denote the
self-adjoint operator onC1(K) determined by

SK~x!5E
M

dWK~x!`WK~x!5^TKx,x&.

Then

Ker~TK!,Ker~d1
K!.

Since forxPKer(d1
K) we have

^TKx,x&5E
M

dWK~x!`WK~x! ~18!

5E
M

WK~d1
Kx!`WK~x!. ~19!

Thus the discrete analogue of the resolvent~6! is a resol-
vent for SK :

0→R→f0→V0~M !→d0
K

Ker~d1
K!#Ker~TK!5Ker~SK!→0.

The resulting partition function is the discrete analogue
the partition functionZ(l):

ZK~l!5det8„~f0
K!* f0

K
…

21/2det8„~d0
K!* d0

K
…

1/2

3det8S 2
il

p
TKD 21/2

.

In @11# the following formula forTK was obtained:

TK@v0 ,v1#5
1

6 ( @v2 ,v3#
n
he
g

e

i-

y

f

where the sum is over all 1-simplices@v2 ,v3# such that
@v0 ,v1 ,v2 ,v3# is a 3-simplex with orientation compatibl
with the orientation ofM.

It is possible to show@8# that det„(f0
K)* f0

K
…5N0

K

5dimC(K)5 the number of vertices ofK. Then the failure of
the discretization prescription can be demonstrated by sh
ing that the quantity

uZ~l!u25
1

N0
K
det8~]1

Kd0
K!det8~TK

2 !21/2

is not independent ofK.
A discrete version of the doubled topological field theo

with action ~16! has been constructed in@11# in such a way
that the expression~17! for the continuum partition function
is reproduced. We briefly describe this in the following.

The discretization prescription is

~v1 ,v2!PV1~M !3V1~M !→~x,y!PC1~K !3C1~K̂ !,
~20!

S~v!5lK S v1

v2
D ,S 0 * d1

* d1 0 D S v1

v2
D L →S̃K~x,y!

5lK S x

yD ,S 0 * KdK

* K̂dK̂ 0 D S x

yD L , ~21!

whereK is the simplicial complex triangulatingM, K̂ is its
dual, andCq(K), Cp(K̂), dK, anddK̂ are as described in th
previous section. The analogue of the Hodge star operat
the duality operator * K. This is a map * K:Cq(K)
→Cz2q(K̂) @and* K̂:Cp(K̂)→Cz2p(K)# which explains the
need for field doubling and the expression~21! for the dis-
crete actionS̃K(x,y). There is a natural choice of resolve
for S̃K(x,y), analogous to the resolvent~6! in the continuum
case. It is

0 → R → C0~K ! →d0
K

Ker ~dK! → 0,

% % % % % ,

0 → R → C0~K̂ ! →d0
K̂

Ker ~dK̂! → 0.

The partition function is

Z̃K~l!5E
C1(K)3C1(K̂)

Dx Dy e2S̃K(x.y). ~22!

Evaluating this by Schwarz’s method with the resolve
above leads to

Z̃K~l!5S l

p D 211N0
K

2N1
K

det„~f0
K!* f0

K
…

21/2det8„~d0
K!* d0

K
…

1/2

3det8„~d1
K!* d1

K
…

21/4det„~f0
K̂!* f0

K̂
…

21/2

3det8„~d0
K̂!* d0

K̂
…

1/2det8„~d1
K̂!* d1

K̂
…

21/4.

There is no phase factor in Eq.~22! sincez vanishes just as
in Eq. ~17!. We have also used the fact thatz512N0

K

1N1
K , which is shown in@11#.
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Now rewrite the determinant involvingK̂ objects in terms
of determinants ofK objects. Modulo a possible sign6 we
have the formulas@11#

~ K̂!215~* K̂!* 5* K, ~23!

~* K!215~* K!* 5* K̂, ~24!

~dq
K!* 5* K̂dK̂

n2q21*
K, ~25!

~dp
K̂!* 5* Kdn2p21

K
* K̂. ~26!

~The 6 signs are omitted because they will all cancel out
the following calculation.! Now,

det8„~d0
K̂!* d0

K̂
…5det8~* Kd2

K
* K̂d0

K̂! ~27!

5det8„* K̂~* Kd2
K
* K̂d0

K̂!* K
…

~28!

5det8~d2
K
* K̂* K! ~29!

5det8„d2
K~d2

K!* … ~30!

5det„~d2
K!* d2

K
…, ~31!

and

det8„~d1
K̂!* d1

K̂
…5det8~* Kd1

K
* K̂d1

K̂!, ~32!

5det8„* K̂~* Kd1
K
* K̂d1

K̂!* K
…

~33!

5det8~d1
K
* K̂* K!, ~34!

5det8„d1
K~d1

K!* … ~35!

5det„~d1
K!* d1

K
…. ~36!

The integration map~12! has a discrete analog

Ker ~d2
K!'→R,

a→^a,@M #&, ~37!

where@M #PC3(K), the orientation cycle ofM, i.e., the sum
of all 3-simplices ofK, oriented so that their orientations a
compatible with the orientation ofM. @Note that a
PKer(d2

K)',C3(K) can be evaluated on any elements
PC3(K) to get a real number̂a,s&PR.# Define the map

f3
K :R→Ker~d2

K!' ~38!

to be the inverse of Eq.~37!. Then using the properties of* K

and* K̂, it can be shown that

det„~f3
K!* f3

K
…5det„~f0

K̂!* f0
K̂
…

21. ~39!

Now using Eqs.~39!, ~31!, and~36! we can rewrite Eq.~22!
as
Z̃K~l!5S l

p D 211N0
K

2N1
K

tK~M !, ~40!

where

tK~M !5det„~f0
K!* f0

K
…

21/2det„~f3
K!* f3

K
…

1/2

3 )
q50

2

det8„~dq
K!* dq

K
…

21/2(21)q. ~41!

This quantitytK(M ) is theR torsion of the triangulationK of
M. It is a combinatorial invariant ofM, i.e., it is independent
of the choice of triangulationK @22–24#.

This is the untwisted torsion ofM; more generally the
torsion can be ‘‘twisted’’ by a representation ofp1(M ). The
factors involving the determinants det8„(dq

K)* dq
K
… constitute

the usual Reidemeister torsion ofM @19#. When these are pu
together with the factors involving det„(f i

K)f i
K
…, i 50,3, as

in Eq. ~41!, we get theR torsion ‘‘as a function of the coho
mology’’ introduced and shown to be triangulation indepe
dent in @20#.

The expression~41! for tK(M ) is analogous to the ex
pression~15! for the R torsion tRS(M ), and in fact it has
been shown@22,23# that these torsions are equal,

tK~M !5tRS~M !.

It follows that the partition function~40! of the discrete
theory coincides with the partition function~15! of the con-
tinuum theory, except for theK-dependent quantitiesN0

K and
N1

K appearing in Eq.~40!. These quantities can be remove
by a suitableK-dependent renormalization of the couplin
parameterl.

It is possible to show that@8#

det„~f0
K!* f0

K
…5N0

K ,

det„~f3
K!* f3

K
…5

1

N3
K

.

We will use this result in our numerical work.

V. NUMERICAL RESULTS

We are now in a position to proceed to numerically eva
ate the discrete expressions for the torsion obtained. T
allows us to check the underlying theoretical ideas by
merically verifying that the discrete expressions agree w
expected analytic results. It also allows us to check that
results obtained are subdivision invariant. The subdivis
invariance of torsion is demonstrated by showing that if a
simplex of the triangulation is subdivided, the value of t

TABLE II. Results forT.

Complex X1 New
X13X1

new
N3 N0 Z4

5-5 125 15625 1 5 5 0.04
8-6 1152 2985984 0.444 8 6 0.01
9-6 2304 15116540 0.351 9 6 0.00
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TABLE III. R torsion forS3.

Complex X1 X2 X3
X13X3

X2
N3 N0 T

s3 625 15625 625 25 5 5 1
a1s3 5184 2.9859843106 2.76483104 48 8 6 1
a2s3 7776 1.5116543107 1.049763105 54 9 6 1
a3s3 5184 2.9859843106 2.76483104 48 8 6 1
a4s3 625 15625 625 25 5 5 1
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torsion does not change. This is what is meant by topolog
invariance in the discrete setting. The expected analytic
sult for torsion for a lens spaceL(p,1) is ~see@20#!

T„L~p,1!…5
1

p
.

ThusT(S3)5T„L(1,1)…51.
We also show, numerically, that the discrete express

for the Chern-Simons partition function obtained without u
ing the* operator is not a topological invariant. This show
very clearly the importance of the doubling constructi
method used in the discretization method, for capturing
pological information.

In order to proceed, we need to efficiently triangulate
spacesS3 andL(p,q). First we triangulateS3. We do this by
considering a four-dimensional simplex@v0 ,v1 ,v2 ,v3 ,v4#
and observing that the boundary of this object is precis
the triangulationK of S3 that we require. Next we turn to
spacesL(p,q), which we need to triangulate in order to pr
ceed. An efficient triangulation of this space has been c
structed by Brehm and Swiatkowski@25#. We use this pro-
cedure for our computations@26#.

We can now summarize our numerical results. TheR tor-
sion for a simplicial complexK, with dual cell complexK̂,
for eitherS3 or L(p,1) involves evaluating

T5A 1

N0N3
det~]1d0!det~]2d1!21 det~]3d2!,

whereNi are the numbers ofi-simplices inK, ]1 ,]2 ,]3 are
boundary operators onK andd0 ,d1 ,d2 are coboundary op
erators onK. Note that, in the discrete setting, these ope
tors can be expressed as matrices. We do this by using
vertices, edges, faces, and tetrahedra of our complex
basis list. Anyp-simplex in the complex can then be e
al
e-

n
-

-

e

ly

n-

-
he

a

pressed in terms of this. Since we know to whatd maps the
various basis list elements, we can set the coefficients o
matrix representation. When we say det(]1d0), for example,
we simply mean the determinant of the matrix that resu
from multiplying the matrices corresponding to the operat
]1 andd0.

If our complex consisted of just one triangle@0,1,2#, the
basis list would be

0 @0#,

1 @1#,

2 @2#,

3 @0,1#,

4 @0,2#,

5 @1,2#,

6 @0,1,2#.

We know thatd@0#5@1,0#1@2,0#. This can be expresse
in terms of our basis list asd acting on basis element 0 goin
to 2324. So the matrixd for this complex is

S 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

21 1 0 0 0 0 0

21 0 1 0 0 0 0

0 21 1 0 0 0 0

0 0 0 1 21 1 0

D .

Note that the last column is zero sinced has nothing to
map a 2-simplex to and that the first three rows are z
TABLE IV. R torsion forS3.

Complex X1 X2 X3
X13X3

X2
N3 N0 T

s3 625 1.5623104 625 25 5 5 1
1s3 5184 2.9859843106 2.76483104 48 8 6 1
2s3 3.94483104 5.21663108 1.0183253106 77 11 7 1
3s3 2.799363105 8.41802431010 3.367983107 112 14 8 1
4s3 1.8768333106 1.26670931013 1.0326263109 153 17 9 1
5s3 1.2703253107 2.03739831015 3.20765331010 200 20 10 1
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TABLE V. R torsion for lens spaces.

Complex X1 X2 X3
X13X3

X2
N3 N0 T

L(2,1) 1.06293731010 3.61866231029 3.7448431021 110 40 11 1/2
L(3,1) 9.10831012 1.14358931043 1.0881731032 86.666 60 13 1/3
L(4,1) 1.102731016 4.046831058 2.8931044 78.7487 84 15 1/4
L(5,1) 1.79061731019 1.76143231076 7.4918731058 76.16 112 17 1/5
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since nothing is mapped to 0-simplices. If we act on 0 w
this matrix we get2324, as expected, andd250.

If we do not useK̂ then from Sec. IV,

T̂5uZ~1!u25
1

N0
K

~det8]1
Kd0

K!~detTK
2 !21/2.

We evaluated the quantityT̂ numerically for various tri-
angulationsK of S3 and found the results shown in Table
for the change ofT̂ under subdivision wherem2n corre-
sponds to a triangulation ofS3 with n vertices andm tetra-
hedra and whereXi5det] idi 21.

It is clear thatT̂ for S3 is not subdivision invariant. We
next evaluateT for S3 and for L(p,1) and check that it is
indeed subdivision invariant and agrees with the analytic
culations forL(p,1), with p52, 3, 4, and 5. These resul
are shown in Tables III–V.

As a check on the numerical method we also count
number of zero modes of the Laplacian operator on the
ferentp-chain spaces. These numbers give the dimensio
the homology groups and are shown in Table VI.

A. S3

As a further check, a systematic way of carrying out su
division known as the Alexander moves@27# was used to
study the subdivision invariance of the torsion. There
four such moves in three dimensions. They are best
plained by example. We have

~1! @0,1,2,3,4#→@x,1,2,3,4#1@0,x,2,3,4#,

~2! @0,1,2,3,4#→@x,1,2,3,4#1@0,x,2,3,4#1@0,1,x,3,4#,

~3! @0,1,2,3,4#→@x,1,2,3,4#1@0,x,2,3,4#1@0,1,x,3,4#

1@0,1,2,x,4#,

~4! @0,1,2,3,4#→@x,1,2,3,4#1@0,x,2,3,4#1@0,1,x,3,4#

1@0,1,2,x,4#1@0,1,2,3,x#.

These are all natural operations in that the first (nth! move
corresponds to adding a vertex splitting the 1-simp
(n-simplex! @0,1# (@0,1, . . . ,n#) and connecting it to all the
vertices, resulting in two (n11) tetrahedra.

The torsionT, in terms of its component determinant
and the way they change under the Alexander moves is
hibited in Table III, whereXi5det] idi 21 and a2s3 means
the complex that resulted after the type 2 Alexander mo
were performed on theS3. Its clear from this that
l-

e
f-
of

-

e
x-

x

x-

s

T5
1

N3N0
det~]1d0!~det]2d1!21 det~]3d2!

is subdivision invariant and thus a topological invariant
the manifold.

As a final check we tried several other subdivisions. W
took a given triangulation and barycentric subdivided one
more ~n! of its faces to get 1s3,2s3, . . . ,(ns3). The results
are in Table IV.

B. Lens spaces

We conclude with the results for the lens spaces. T
results are shown in Table V. As can be seen, these a
extremely well with the known analytic resultT„L(p,1)…
51/p.

VI. CONCLUSIONS

The method of discretization introduced works extrem
well. The main point of the method is to construct discre
analogs for the set (Vp,d,`,* ). Previous work in this direc-
tion has neglected the Hodge star operator *@5,29#. We have
thus demonstrated that the Hodge star operator plays a
role in the construction of topological invariant objects fro
field theory. We were able to construct an expression for
partition function that is correct even as far as overall n
malization is concerned. Mathematically, the equivalence
tween the Ray-Singer torsion and the combinatorial tors
of Reidemeister was proved independently in 1976 by Ch
ger@22# and Müller @23#. It is nice to see the result emerge
a direct manner by a formal process of discretization. On
way we also had to double the original system so thatK, the
triangulation, andK̂, its dual, are both present. If this dou
bling and the reason for it are overlooked, then the topolo
cal information present in the discretization is lost, as o
numerical results demonstrated.

It is clear that the geometry motivated discretizati
method introduced is very general and that it can be use
analyze a wide variety of physical systems. In the appro
outlined we have captured topological features. In appli

TABLE VI. Zero modes forS3.

p No. of zero modes ofDp Dim Hp

0 1 1
1 0 0
2 0 0
3 1 1
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tions, it is also very important to capture geometrical featu
of a problem. We are currently investigating this aspect
our approach.

A limitation of the method is that there is no simple ge
eralization to deal with non-Abelian theories. The discr
analogies ofd,d† were linear: there is no natural discre
analog ofdAªd1A, with A a Lie algebra valued 1-form.
xt
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.

ts
s
f

e
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