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Abstract

In this paper, we study various lossless compression techniques for electroencephalograph (EEG) signals. We discuss a
computationally simple pre-processing technique, where EEG signal is arranged in the form of a matrix (2-D) before
compression. We discuss a two-stage coder to compress the EEG matrix, with a lossy coding layer (SPIHT) and residual
coding layer (arithmetic coding). This coder is optimally tuned to utilize the source memory and the i.i.d. nature of the
residual. We also investigate and compare EEG compression with other schemes such as JPEG2000 image compression
standard, predictive coding based shorten, and simple entropy coding. The compression algorithms are tested with
University of Bonn database and Physiobank Motor/Mental Imagery database. 2-D based compression schemes yielded
higher lossless compression compared to the standard vector-based compression, predictive and entropy coding schemes.
The use of pre-processing technique resulted in 6% improvement, and the two-stage coder yielded a further improvement
of 3% in compression performance.

Key words: arithmetic coding, correlation coefficient, electroencephalogram (EEG), JPEG2000, relative energy
concentration, SPIHT

1. Introduction

Electroencephalogram (EEG) is a record of electrical
activity of the brain. EEG provides a large-scale and ro-
bust measure of the dynamic activity of brain; it has high
temporal resolution but poor spatial resolution. Though,
EEG is considered as a valuable source for understand-
ing neuronal functions and neurophysiological properties
of human brain. EEG is used successfully for diagnos-
ing brain disorders (e.g., Alzheimer’s disease [1]), in sleep
studies, monitoring depth of anesthesia, and in cognitive
studies [2].

Various clinical applications require acquisition, archiv-
ing, transmission and automatic processing of EEG over
an extended duration (several days, weeks, or potentially
even months). Such long-term recordings results in mas-
sive EEG data sets. For instance, accurate inverse mod-
eling demands the use of higher number of EEG channels
(e.g., 256), and higher sampling rate may be required (sev-
eral kHz in the case of cortical EEG; several hundred Hz
for scalp EEG), to capture spikes and high-frequency os-
cillations in the EEG. On the other hand, the number
of patients with neurological disorders is increasing, and
hence this put forward the need for efficient and flexible
compression techniques.

∗Corresponding author
Email address: srinivasan.sivam@gmail.com (Srinivasan K)

Signal compression is achieved by exploiting correla-
tions in the source. The compressibility of the signal is
dependant on the amplitude distribution of the signal and
the power spectrum of the signal. For instance, if a single
value dominates the amplitude distribution, or a single fre-
quency dominates the power spectrum, then the signal is
highly compressible. The amplitude distribution and spec-
tral distribution of a segment of EEG is shown in Fig. 1.

Usually, the amplitude of EEG signal is very low (few
µV ), and the acquisition systems amplify the signal more
than a million times. This leads to amplification of noise
as well. This inherent noise makes the compression diffi-
cult, and poses a hindrance in achieving good compression
performance.

There are three types of correlations in a multi-channel
EEG signal

1. Intra-channel correlation among the adjacent sam-
ples of the signal from the same channel

2. Inter-channel correlation among the samples acquired
at the same instant of time over all the channels

3. the brain rhythms (e.g., alpha-rhythm) also intro-
duce correlations in EEG, but they fluctuate with
time.

We briefly review the EEG compression literature in
the following groups: (i) predictive schemes, (ii) transform
based schemes, (iii) multichannel schemes.
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Figure 1: Compressibility of EEG. (a) EEG signal, (b) Amplitude
spectra, and (c) Power spectra of the signal shown in (a).

Predictive schemes. EEG signal is often modeled by an
auto-regressive(AR) process. AR predictor predicts the
current sample as a weighted sum of previous samples.
To achieve perfect reconstruction, the residual signal is
transmitted together with the predictor coefficients. Loss-
less predictive schemes directly code the residuals, whereas
lossy predictive schemes threshold and quantize the residu-
als to improve compression rate (at the cost of increased er-
ror). Various prediction models have been developed: this
include linear AR model [3, 4], recursive-least-squares pre-
dictor [5], adaptive neural networks [6] and models based
on chaos theory [7]. Refinements such as context-based
bias cancellation [4], and adaptive error modeling schemes [8,
9] further improve the performance.

Transform based schemes. Consider a sequence of N sig-
nal samples X, as a N -dimensional vector. A compact

representation Y in the transform domain is obtained by
orthogonal transformation, Y = TX, where T denotes
the transformation matrix. In lossy compression, M most
significant components are selected such that M � N ,
whereas the residual signal (signal corresponding to re-
maining N − M transform domain coefficients) is also
coded for lossless compression. The key idea is to exploit
the properties of the transform domain elements (Y ) such
as sparsity, regularity to form a compact code. Trans-
forms applied include discrete cosine transform [3], sub-
band transformation [10], wavelet-packet transform [11],
and integer lifting wavelet transform [12, 13].

Multichannel compression schemes. Predictive and trans-
form based compression schemes operate naively on EEG
signals without using any domain-specific knowledge. EEG
signals recorded from spatially adjacent channels possess
a high degree of correlation, which can be used to design
efficient compression techniques. Techniques proposed to
compress multi-channel EEG include graph-theoretic based
approach [14], Karhunen-Loeve transform [15], exogenous
input model [16] and vector quantization [3].

Apart from the above-mentioned EEG compression schemes,
some ad-hoc methods also have been designed for EEG
compression: genetic algorithm based fractal EEG cod-
ing [17], EEG approximation by extracting patterns (clas-
sified signature and envelope set) [18]. The emerging field
of compressed sensing opens the way to acquire signals
with very few random measurements (compression while
sensing), well below the Nyquist rate. For acquiring sig-
nals with compressed sensing, the signals need to be sparse
in some domain (e.g., time-frequency domain). Some stud-
ies used compressed sensing and finite rate of innovation
techniques to compress EEG [19, 20].

Lossless compression techniques compress the signal by
removing redundancies, while allowing perfect reconstruc-
tion of the original signal waveform. In lossless predictive
coding, the residuals are also coded along with the pre-
dictive coefficients. In lossless transform coding, integer
transforms are selected to ensure perfect reconstruction.
Antoniol et al., [3] presented an excellent survey of loss-
less EEG compression techniques such as predictive cod-
ing, transform coding and vector quantization schemes.
Lossless compression schemes often registers low compres-
sion performance compared to lossy compression, because
of the inherent noise in the signal. This noise have no
or very less correlation that could be exploited by the
compression algorithms; in lossy compression this noise
is removed to improve performance, but lossless compres-
sion schemes attempts to model this residual noise. Many
schemes attempt to improve the lossless compression per-
formance by modeling the residuals; this includes context-
based bias cancellation [4] and detailed prediction residual
modeling [8].

Here, we propose to utilize any inherent correlations
in EEG to improve the lossless compression performance,
by arranging the EEG in matrix form. In our previous
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Figure 2: Pre-processing technique: Arranging the 1-D EEG signal
in the form of matrix (N × N). The first segment x(1) to x(N) is
filled in the first row, and the second segment x(N + 1) to x(2N) is
arranged in the reverse fashion, as indicated by the direction of the
arrow.

work [21], we studied the Rate-Distortion (R-D) perfor-
mance of two variants of an EEG compression algorithm;
first one operates on the EEG arranged in the standard
vector form (1-D), whereas the second variant arranges
EEG in matrix form (2-D) before compression. The 2-
D based compression algorithm gave substantial reduction
in the distortion at low bit rates compared to the 1-D
scheme. In addition, 2-D based scheme also improved the
lossless compression as well. In this paper, we systemat-
ically explore the following: how to arrange EEG signal
in matrix, the amount of smoothness of this matrix in
time domain and transform domain (wavelet transform),
and compression of this matrix with a two-stage compres-
sion scheme. We also compress EEG using JPEG2000,
well-known image compression standard, lossless predic-
tive coding (shorten) and entropy coding. We will show
that the 2-D based schemes achieve higher performance
compared to the other above-mentioned schemes.

The paper is structured as follows: In Section 2, we ex-
plain the arrangement of EEG signal in matrix form, and
we analyze its smoothness in time and wavelet transform
domain. In Section 3, we explain the two-stage compres-
sion scheme and the optimal lossy layer bit rate selection;
we also present a brief outline of the other lossless compres-
sion schemes here. We discuss the experimental results in
Section 4. We offer concluding remarks and some future
directions in Section 5.

2. Pre-processing Technique

A majority of biomedical signals is quasi-periodic, and
this domain-specific knowledge can be used to improve
compression performance. For example, electrocardiogram
(ECG) signal is quasi-periodic i.e., the successive beats
have the same structural form; when these beats are ar-
ranged in the form of a 2-D array, the correlation among
the beats can be exploited effectively with a 2-D based
compression scheme. This lies at the heart of a whole line
of 2-D based ECG compression algorithms [22, 23, 24, 25,
26, 27]. On the other hand, EEG is a slowly varying sig-
nal [3]: Rhythms and periodic patterns occasionally occur
depending on the state of the brain. First, We subject
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Figure 3: Smoothness measure (r) variation with the matrix size.
F,N,O,S, and Z are labels given to recordings containing normal and
epileptic EEG data (dataset explanation in Section 4.1).

EEG to backward difference to remove the DC compo-
nent. Then, EEG signal is arranged in the matrix form,
as explained in detail below.

2.1. Proposed technique

We arrange EEG signal in the form of matrix of size
N × N as shown in Fig. 2. Since EEG signal is slowly
varying and contains rhythms [3], the matrix entries are
correlated; the higher the above said factors, higher will
be the smoothness of the matrix. The EEG signal which is
cut into segments of length N are arranged as rows to form
a matrix. Odd rows are filled directly, whereas even rows
are filled in reverse fashion, to utilize the adjacent sample
correlation. We study the smoothness of the matrix in
time domain and wavelet transform domain in Sections 2.2
and 2.3 respectively.

2.2. Smoothness measure in time domain

We quantify the “Smoothness” of the matrix by means
of the Pearson’s correlation coefficient. The amount of
smoothness is the average value of the Pearson’s correla-
tion coefficient computed for all the adjacent row pairs of
the matrix (N − 1 adjacent row pairs for a matrix with N
rows).

The normalized correlation (CCk), between two adja-
cent row vectors X and Y is defined as,

CCk(X,Y) =

∑N
i=1(xi − x̂)(yi − ŷ)√∑N

i=1(xi − x̂)2
√∑N

i=1(yi − ŷ)2

k = 1, . . . , N − 1 (1)

where CCk represents the normalized correlation be-
tween the rows k and k + 1, x̂ and ŷ represent mean of
vectors X and Y respectively.

The smoothness measure of the matrix (r) in time do-
main, is defined as the average of the normalized corre-
lation coefficient of all adjacent row pairs of the matrix,

3



Transform Lifting steps Computational complexity

Bit-shifts Additions Multiplies

5/3 [28] d[n] = d0[n]− b 1
2

(s0[n + 1] + s0[n])c 2 5 0

s[n] = s0[n] + b 1
4

(d[n] + d[n− 1]) + 1
2
c

9/7 [28] d1[n] = d0[n] + b 1
128

(203(−s0[n + 1]− s0[n])) + 1
2
c 4 12 4

s1[n] = s0[n] + b 1
4096

(217(−d1[n]− d1[n− 1])) + 1
2
c

d[n] = d1[n] + b 1
128

(113(s1[n + 1]− s1[n])) + 1
2
c

s[n] = s1[n] + b 1
4096

(1817(d1[n] + d1[n− 1])) + 1
2
c

Table 1: Bi-orthogonal 5/3 and 9/7 integer transforms. The input signal, lowpass subband signal, and highpass subband signal are denoted
by x[n], s[n], and d[n], respectively; we consider s0[n] = x[2n] and d0[n] = x[2n + 1]. Lifting steps of forward transforms are listed here.
Inverse transform is obtained by reversing the steps and flipping signs.

given by the following equation,

r =
1

N − 1

N−1∑
k=1

CCk (2)

2.2.1. Experimental observations

The smoothness measure (r) is computed for various
matrix sizes and the results are given in Fig. 3. The
smoothness measure decays with increasing size of matrix;
the smoothness is higher for smaller matrix sizes, and de-
cays down to zero for matrices of larger size. This shows
that the EEG signal is having a short-term memory, and
this memory reflects the inherent hidden correlations in
EEG; this can be utilized to improve the compression per-
formance.

2.3. Smoothness in transform domain

2.3.1. Lifting scheme

A wavelet transform decomposes a given signal into
different frequency bands; it allows to represent the sig-
nal in multiple resolutions (coarse to fine) [29]. Wavelets
are usually realized by a set of filters, operating in par-
allel (“filter banks”). An alternative method of realizing
wavelets is lifting scheme [30], which consists of a cascade
of simple filters; it may be viewed as the factorization of a
filter bank into elementary filters. One such simple filter
is depicted in Fig. 4(a) and Fig. 4(b). The former shows
the forward lifting transformation; the signal x is first split
into odd and even phases xo and xe respectively, contain-
ing the odd and even samples respectively of input signal
x. The odd and even phases contain adjacent samples; in
natural signals such as EEG, adjacent samples are highly
correlated. Therefore, the odd phase may be predicted
from the even phase (and vice versa). By subtracting the
prediction x̂o = p(xe) from the odd phase, we are left with
a high-frequency residue signal (HF) of the odd phase.
The latter is used in another lifting step, to predict the
even phase xe (“update” u); the resulting prediction is
subtracted from the even phase xe, which leaves the low-
frequency component (LF) of the even phase xe; this also
ensures the complete frequency separation between a LF
and HF component. The forward transform of Fig. 4(a)

↓ 2 + LP

z−1 ↓ 2 + HP

p(·) u(·)
x(n)
Input
signal

−

−

xe(n)

xo(n)

one lifting step

(a)

LP + ↑ 2 z−1

HP + ↑ 2

p(·)u(·) +
xr(n) = x(n− L)

Reconstructed signal

(b)

Figure 4: Wavelet transform realization via lifting scheme (a) For-
ward transformation, (b) Inverse transformation. The boxes labeled
by z−1 stand for delays over one sample. The boxes ↓ 2 and ↑ 2
represent downsampling and upsampling respectively by a factor of
two; in the latter a zero is inserted after every sample, whereas in the
former, every second sample is removed. The lifting scheme repeats
two primitive steps: prediction p and update u.

is easily invertible by reversing the steps and flipping the
signs (see Fig. 4(b)).

In a lifting scheme, the pair of lifting steps, i.e., predic-
tion p and update u, is repeated several times, leading to
multi-scale representation of the input signal x (“wavelet”);
the nature and number of lifting steps p and u depends on
the type of wavelets [30]. Integer wavelet transforms can
easily be realized by systematic rounding and truncation
of the intermediate results, i.e., output of p and u [28].
Integer transforms are the key to realize lossless compres-
sion, but they have the following drawbacks: (i) relative
energy concentration is poor compared to its floating-point
counterpart, due to the truncation and quantization in the
intermediate steps, (ii) reduced R-D performance of the
coder employing integer lifting transform [21].

2.3.2. Choosing Wavelet Filters

Natural images/signals often have slow variations, and
hence have a fair amount of low frequency content; in this
case, wavelet filters with a large number of taps decorre-
late well. For images with relatively greater amount of
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high-frequency content, wavelet filters with less number
of taps performs better [31]. Here, we select two widely
used wavelet filters in image compression: bi-orthogonal
9/7 and 5/3 filter. Referring Table 1, 5/3 filter has less
computational complexity compared to 9/7 filter and the
integer version of the 5/3 filter can be realized only using
additions and bit-shifts. Moreover, the 5/3 filter have less
high-pass channel growth compared to 9/7 filter, which
is an essential feature, when the image/signal is having
relatively large high-frequency content [31].

2.3.3. Energy compaction efficiency (ECE)

As discussed in the Section 2.3.2, the amount energy
concentrated in the low frequency bands is a measure of
signal’s smoothness; here, we consider the relative energy
concentration (compared to total energy) as an indica-
tor of smoothness. One level of wavelet decomposition
of the matrix produces an approximate subband (low fre-
quency (LF) band) and three high frequency (HF) sub-
bands namely horizontal, vertical, and diagonal (H,D &
V) bands (Fig. 6). These H,D and V bands carry HF
information along the horizontal, vertical and diagonal di-
rection of the matrix. When more energy is concentrated
in the LF band compared to HF bands, then the matrix
is considered smooth, with the amount of smoothness pro-
portional to the energy concentration in LF band. We
call the relative energy concentration in each subband as
energy compaction efficiency of the particular subband.

For J-level wavelet decomposition, ECE is computed
as follows,

ECEDi =
Eh

i + Ev
i + Ed

i

Total Energy
× 100, 1 ≤ i ≤ J (3)

ECEA =
EA

Total Energy
× 100 (4)

where,

Eh
i ,Ev

i ,Ed
i is the energy of the horizontal, vertical, and

diagonal subbands at decomposition level i
respectively,

EA is the energy of the approximate subband,
ECEDi is energy compaction efficiency of the HF

subbands (H,V & D) at decomposition level
i,

ECEA is energy compaction efficiency of the LF
subband (A) at decomposition level J ,

J is maximum number of wavelet decomposi-
tion levels

For efficient compression with wavelet based compres-
sion schemes (e.g.: SPIHT), the wavelet subbands must
satisfy the following property, known as monotone spec-
tral ordering [32]:

ECEDi+1
> ECEDi

∀ i = 1, . . . , J − 1 (5)

ECEA > ECEDi
∀ i ≤ J (6)
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Figure 5: Selection of wavelet filter based on energy compaction effi-
ciency. (a) Energy compaction efficiency(%) for a three level decom-
position. (b) Variation of energy concentration in the low-frequency
band (ECEA) with the matrix size.

The above equations state that the energy in the low
frequency band must be higher compared to the high fre-
quency bands. If this condition is satisfied, then the wavelet
coefficients at low frequencies have high magnitude and
this magnitude decays with increasing frequency. Hence,
tree-based sets (Fig. 6) originating at low-frequencies and
branching towards high frequencies can be used to effi-
ciently represent the data; at a particular threshold, if the
root node is significant and all its child and grand children
are insignificant, then such tree is called as a zero-tree.
A large number of zero-trees give high compression effi-
ciency. It is very difficult to satisfy the monotone spectral
ordering conditions for every matrix formed from EEG,
however, this criteria is important for selecting wavelet fil-
ter.

2.3.4. Experimental observations

We summarize the energy compaction efficiency for a
EEG matrix in Fig. 5. We use a three-level wavelet decom-
position on a EEG matrix of size 64 × 64; the results for
both 5/3 and 9/7 integer wavelet filters are given. Fig. 5(a)
gives the relative energy concentration (ECE) in subbands
at each level of decomposition. Fig. 5(b) gives the vari-
ation of the energy concentration in LF approximation
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Figure 7: General schematic of 2-D based EEG signal compression
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Figure 8: Two-stage coder for EEG compression: First lossy-stage is SPIHT encoder until an optimal rate (Ro), followed by arithmetic coding
for residuals

Band Relative energy concentration (%)

9/7 filter 5/3 filter

Approximate 4.40 10.10

Horizontal 54.68 53.57

Diagonal 20.68 15.97

Vertical 20.23 20.36

Table 2: Relative energy concentration along different orientations.
Distribution of energy in the approximate (LF), horizontal, vertical
and diagonal HF subbands.

band (ECEA)) with increasing matrix size. We observe
the following:

1. The relative performance of the 5/3 filter is better
compared to the 9/7 filter, though both of them does
not satisfy the monotone spectral ordering condi-
tions (5) and (6).

2. There is no much improvement in the energy com-
paction in LF band (ECEA) with increase in matrix
size. Hence, we can expect small or no improvement
in compression performance for larger matrix sizes.

On the other hand, we also study the amount of en-
ergy concentration along different orientations (H,V, & D).
Interestingly, Table 2 shows that nearly 50% of the total
energy is concentrated in horizontal HF bands. Relatively,
5/3 filter performed better compared to 9/7 filter, with the
better performance of comes due to the short-term mem-
ory of EEG.

3. Compression algorithm

A diagram of the proposed lossless EEG compression
scheme is depicted in Fig. 7. The EEG signal is arranged in
matrix form before applying the 2-D compression scheme;
in principle, any image compression scheme can be cho-
sen. As our primary coder, we choose a two-stage cod-
ing scheme (Fig. 8), with SPIHT in the first stage (lossy-
coding stage) until an optimal rate, and arithmetic cod-
ing for encoding the residuals. For comparison, we choose
JPEG2000, a widely used compression algorithm for image

Root node (Low frequency)

H1

V1

D1

H2

V2

D2

H3

V3

D3

Figure 6: Subband structure and tree-based sets. Subband structure
for a three level wavelet decomposition is shown here. A,H,V and D
represents the approximate (LF), horizontal, vertical and diagonal
subbands and subscripts indicate the level of decomposition. The
tree-based set is also shown, which originates at the root node (black)
and branches successively towards the high-frequency bands (H,V &
D).

compression, a lossless linear prediction scheme (shorten),
and a single-context arithmetic coding. We discuss these
algorithms in the following sections.

3.1. Set partitioning based two-stage coder (SPIHT+AC)

Set partitioning in hierarchical trees (SPIHT) is a widely
used algorithm for image coding, which works by form-
ing, partitioning of sets guided by a series of threshold
tests [33]. This algorithm works on transform domain (e.g.,
wavelet transform), as magnitude of the transform domain
coefficients tend to have close values compared to raw data.
In SPIHT, tree-based non overlapping sets are formed from
the wavelet transform coefficients, rooted at low-frequency
band and branch successively to high-frequency bands at
the same spatial location (Fig. 6).

Fig. 8 shows the schematic of the two-stage coder. SPIHT
is used in the first stage as a lossy-coding layer, which en-
codes the wavelet coefficients until a bit rate, and then
wavelet domain residuals are encoded by single context
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arithmetic coding. This produces a bit-stream Senc from
the SPIHT coding stage, and Renc from the residual cod-
ing.

From the well-known principles of R-D theory, when
the bit rate for the lossy reconstruction of the source be-
comes larger than “critical-rate” (Ro), then the encoding
residual of a source becomes identically and independently
distributed (i.i.d.) Gaussian under mean-squared error
distortion measure [34]. Hence, when the SPIHT encoding
is done until Ro, the encoding source lose its memory and
behave i.i.d. that a good lossy-coder can take advantage
of, so the coding efficiency of such coder tends to worse
than that of entropy coding. The selection of optimal bit
rate Ro is very important to achieve a good compression
performance, as complete advantage can be taken over the
memory of the source and the i.i.d. residual as well.

We analyze the total bit rate and residual bit rate vari-
ation with the lossy-layer bit rate; this give an idea about
the optimal rate for the source (EEG matrix) used here.
We summarize the results in Fig. 9. Fig. 9(a) shows that
the residual bit rate is monotonously decreasing, whereas
the total bit rate decreases until a bit-rate and then starts
increasing. As we discussed in the previous paragraph,
this bit rate is called as optimal bit rate (Ro), where the
encoding source turns i.i.d. The magnified graphs of the
total bit rate curves in Fig. 9(b) shows the existence of
the optimal rate; the slope of the total bit rate curve is
very small, which indicates the short-term memory of the
EEG matrix. Fig. 9 shows that all the matrix sizes be-
have similarly, and there is no much variation in the slope
or the optimal rate. The increase in total bit rate after
Ro shows the inefficiency of SPIHT, and hence we use a
single-context arithmetic coder for encoding residuals.

3.2. JPEG2000 in Lossless Mode (JPEG2000LS)

JPEG2000 is a widely used wavelet-based still-image
compression standard. The image to be coded is split into
non-overlapping rectangular tiles; each tile is subjected to
wavelet transform followed by a quantizer and bit plane
coder. For lossless compression, integer wavelet transform
is chosen and quantizer step size is set to one. Adap-
tive arithmetic coder and the bit-stream organizer com-
prise the bit-plane coder. JPEG2000 produces an embed-
ded bit-stream, which can be terminated at any instant
to reconstruct signal with minimum mean-squared error.
The bitstream generated by JPEG2000 has many desirable
properties such as resolution scalability and signal-to-noise
ratio scalability. Explanation of JPEG2000 is beyond the
scope of this article, and we refer to [35] for more details.

3.3. Shorten

The lossless predictive coding algorithm used here is
called shorten, which use a linear predictor to remove tem-
poral correlation and Huffman coding for encoding resid-
uals [36]. Residuals are assumed to follow Laplacian dis-
tribution and Huffman code is assigned based on a effi-
cient and simple method. We used a sixth-order linear
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Figure 9: Optimal bit rate determination for the EEG matrix. (a) Bit
rates (total and residual bit rate variations). (b) Total bit rate vari-
ation (magnified graph of (a)). Optimal bit rate for EEG matrix of
different sizes are indicated using a red line.

predictor, as it is widely used in previous EEG compres-
sion study [4].

3.4. Arithmetic coding (AC)

Arithmetic coding is a widely used entropy coding scheme,
which gives optimal compression for i.i.d. sources. Con-
sider a source emitting one of the N symbols with prob-
abilities {pi}Ni=1. Consider a symbol sequence of length
M , S = {si}M−1

i=0 to be encoded; the arithmetic coding
process creates a nested sequence of intervals according
to the probability of the symbols in the symbol sequence
S. This process results in a small interval at the end of
the last symbol; this interval represents the whole sym-
bol sequence S, and the code is formed by choosing a real
number from this interval and converting it into binary
form. The output code is optimal in the sense that the
probability distributions of the code values are uniformly
distributed in the interval [0, 1). We refer to [37] for more
detailed discussions.
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2-D based algorithms 1-D based algorithms

Dataset SPIHT+AC JPEG2000 2-D SPIHT [21] SHORTEN AC 1-D SPIHT [21]

F 2.19 2.13 2.18 1.34 1.51 2.02

N 2.23 2.15 2.15 1.27 1.55 1.99

O 1.84 1.87 1.86 1.24 1.46 1.77

S 1.44 1.48 1.44 1.27 1.15 1.42

Z 2.01 1.90 1.99 1.18 1.61 1.85

S001-ec 1.78 1.69 1.73 1.13 1.54 1.64

S001-eo 1.82 1.72 1.74 1.17 1.52 1.65

S005-ec 1.49 1.68 1.41 1.13 1.64 1.30

S005-eo 1.50 1.68 1.41 1.20 1.63 1.30

S026-ec 1.83 1.73 1.72 1.11 1.67 1.61

S026-eo 1.81 1.71 1.70 1.15 1.66 1.59

Average 1.81 1.79 1.75 1.20 1.54 1.65

Table 3: Compression ratios of 2-D based compression (SPIHT+AC, JPEG2000 & 2-D SPIHT), 1-D based compression (1-D SPIHT),
predictive coding (SHORTEN) and entropy coding scheme (AC) for the University of Bonn and EEG-MMI physiobank EEG databases

4. Experimental results

4.1. Datasets

We consider two EEG databases here: University of
Bonn database, and Physiobank Motor/Mental Imagery
(MMI) database. University of Bonn database [38] con-
sists of five datasets, labeled F, N, O, Z, and S. Each
recording have 100 single-channel EEG recordings of 23.6s
duration, sampled at 173.21Hz, and digitized at 12-bit
resolution [38]. The datasets F& N contains EEG from
epileptic patients measured during seizure free intervals,
O& Z contains normal EEG with eyes open and closed,
and S contains purely epileptic EEG.

The second dataset, MMI database are EEGs recorded
from subjects performing different motor/mental imagery
tasks [39, 40]. These recordings contains 64-channel EEGs,
sampled at 80Hz, and digitized at 12-bit resolution. EEGs
are recorded in the eyes open and closed conditions, which
are the baseline recordings (normal EEG) from three datasets
(S001, S005 and S026).

4.2. Performance Measure

We compare the performance of the different algorithms
using compression ratio, the factor of reduction in file size,
given by:

CR =
Lorig

Lcomp
(7)

where Lorig and Lcomp refer to bitstream length of the
original and compressed sources respectively.

4.3. Implementation Details

We use a EEG sample size of 4096 for all the com-
pression algorithms; in 2-D based compression algorithms,
we arrange these samples as a matrix of size 64× 64. Bi-
orthogonal 5/3 filter is used for all the wavelet based com-
pression algorithms (SPIHT+AC, JPEG2000, 2-D SPIHT,

& 1-D SPIHT). In SPIHT+AC, we set the empirically de-
termined optimal bit rate of 0.6 bit/sample for the lossy
coding layer. For shorten, we use linear predictor of order
six.

4.4. Discussion

We present the relative performance of the 2-D and 1-D
based compression algorithms in Table 3; we also include
the results from our previous work on 2-D based lossless
EEG compression [21]. SPIHT+AC, JPEG2000 and 2-
D SPIHT are applied to EEG signal after pre processing,
and hence their results are listed under the category of 2-D
based compression schemes; we group all the other schemes
under 1-D based compression schemes. The values given
in Table 3 are average values within the particular dataset;
the average CR over all the datasets is given in the last
row.

Table 3 shows that 2-D based compression algorithms
performed well compared to the 1-D based compression
schemes. SPIHT+AC registered the best average perfor-
mance compared to all other schemes; it is followed by
JPEG2000, 2-D SPIHT, 1-D SPIHT, AC and shorten. In-
terestingly, the performance of shorten is low compared to
simple entropy coding (AC). Generally, transform based
coding schemes (SPIHT+AC, JPEG2000, 2-D SPIHT &
1-D SPIHT) performed better compared to the predictive
based shorten and arithmetic coding.

The average CR of the 2-D SPIHT is 6% higher than
1-D SPIHT; the primary difference between the above two
compression algorithm is that the former is applied to
EEG arranged in matrix form, whereas the latter is ap-
plied to EEG in vector form (1-D). Hence, the amount of
improvement is due to the arrangement of EEG in ma-
trix form. Next, SPIHT+AC register 3.2% improvement
over 2-D SPIHT; this improvement is due to optimal use
of source memory using SPIHT, and the i.i.d. residual us-
ing entropy coding scheme. Thus, arranging the EEG in
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the form of matrix and use of two-stage coding scheme
led to improvement of lossless compression performance
by nearly 9%.

4.4.1. Limitations

We observe a marginal improvement in compression
performance with the pre-processing technique; this is mainly
due to the following limitations. First, EEG is a non-
stationary signal, and this affects the smoothness of the
matrix and cause the average compression performance to
reduce. Second, the 2-D based compression algorithms
used for compression of EEG matrix are designed for nat-
ural images, which is smoother compared to EEG matrix.
The first limitation is due to the inherent nature of sig-
nal, whereas the second limitation is handled by modifying
the compression algorithm to suit the source characteris-
tics (EEG matrix).

5. Conclusion

In this paper, we discussed a novel and simple pre-
processing scheme of arranging EEG in matrix form before
compression. This opens the way to realize EEG compres-
sion with image compression techniques. We proposed a
two-stage coding scheme consisting of a lossy coding layer
and a residual coding layer. We compared the result of
this two-stage coding with JPEG2000, shorten and arith-
metic coding. A marginal improvement could be obtained
with the use of two-stage coder, which is owed to the use of
pre-processing technique and the optimal use of memory
in the EEG matrix.

The 2-D compression schemes employed here are par-
ticularly designed for compression of the natural images,
whose statistics are entirely different from that of EEG
matrix. Hence, as a future expansion, custom compression
schemes need to be devised for improved lossless compres-
sion performance.
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