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We have carried out analytical and numerical studies of the spin-boson model in the sub-ohmic
regime with the influence of both the diagonal and the off-diagonal coupling accounted for, via the
Davydov D1 variational ansatz. While a second-order phase transition is known to be exhibited by
this model in the presence of diagonal coupling only, we demonstrate the emergence of a discon-
tinuous first order phase transition upon incorporation of the off-diagonal coupling. A plot of the
ground state energy versus magnetization highlights the discontinuous nature of the transition be-
tween the isotropic (zero magnetization) state and nematic (finite magnetization) phases. We have
also calculated the entanglement entropy and a discontinuity found at a critical coupling strength
further supports the discontinuous crossover in the spin-boson model in the presence of off-diagonal
coupling. It is further revealed via a canonical transformation approach that for the special case of
identical exponents for the spectral densities of the diagonal and the off-diagonal coupling, there ex-
ists a continuous crossover from a single localized phase to doubly degenerate localized phase with
differing magnetizations. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4825205]

I. INTRODUCTION

As an archetype of open quantum systems popularized by
Leggett,1 the spin-boson model (SBM) finds applications in
condensed matter physics and chemistry in a wide variety of
areas ranging from processes of electron transfer2 to dynam-
ics of qubit-bath entanglement.3–6 The SBM consists of a two-
level system (TLS) coupled linearly to a bath of harmonic os-
cillators which accounts for the influence of the environment.
The coupling strength between them can be specified by a
spectral function J(ω) which is proportional to ωs. Depending
on the value of the spectral exponent s, there exist three dis-
tinct cases known as sub-Ohmic (s < 1), Ohmic (s = 1), and
super-Ohmic (s > 1). Theoretical studies predominantly fo-
cus on the ground-state properties of the SBM, among which
the quantum phase transition draws significant attention. No
phase transition occurs for the super-Ohmic case, as the sys-
tem is always in a delocalized ground state. For the Ohmic
case in which the SBM can be mapped onto the anisotropic
Kondo model by using bosonization techniques, it is well un-
derstood that there exists a Kosterlitz-Thouless-type phase
transition.1, 7 However, in the most challenging case of the
sub-Ohmic regime, a successful and comprehensive descrip-
tion of the SBM has proved elusive despite it being studied by
several sophisticated numerical methods.8–14

In the sub-Ohmic regime, the slow decay of bath correla-
tions, implying a longer-lasting bath memory effect, renders
invalid the methods based on the Born-Markov approximation
with even more deteriorating validity in a deeper sub-Ohmic
regime with 0 < s < 0.5. The localization-delocalization
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phase transition for the sub-Ohmic regime has been studied
by Bulla et al.,9 wherein non-mean-field exponents were ob-
tained for the continuous phase transition in the deep sub-
Ohmic regime of 0 < s < 0.5. However, recent numerical
studies have found mean-field exponents in the deep sub-
Ohmic regime as well.13, 15 By using an extension of the
Silbey-Harris variational wave function16 which is the two-
site version of the Davydov D1 ansatz from the theory of
“Davydov soliton,” to study the ground state properties of the
sub-Ohmic SBM with 0 < s < 0.5, Chin et al.17 claimed that
such a trial wave function generates correct mean-field expo-
nents for the continuous localization-delocalization transition.
It is commonly accepted that there is a second-order phase
transition separating a non-degenerate delocalized phase from
a doubly degenerate localized phase thanks to a likely bath-
induced spontaneous magnetization on the spin.17 The sub-
Ohmic case also shows some special dynamical properties.
With an increase in the spin-bath coupling strength, coherent
oscillations in the SBM will eventually morph into classical-
like damping which is accompanied by the transition from a
delocalized state to a localized one.18 However, recent studies
show that the nonequilibrium coherent dynamics can persist
for ultrastrong coupling to a sub-Ohmic bath with s < 0.5.19, 20

The SBM7 is similar to a one-exciton, two-site version
of the Holstein molecular crystal model,21 which is among
the most popular Hamiltonians for studying optical and trans-
port properties of molecular and biological systems. In the
Holstein Hamiltonian, the diagonal coupling is defined as
a nontrivial dependence of the exciton site energies on
the lattice coordinates, and the off-diagonal coupling, as
a nontrivial dependence of the exciton transfer integral on
the lattice coordinates.22 Off-diagonal interactions between

0021-9606/2013/139(16)/164103/10/$30.00 © 2013 AIP Publishing LLC139, 164103-1
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electronic and lattice degrees of freedom have been empha-
sized by Mahan as modulations of electron-electron inter-
actions by ion vibrations.23 Similarly, the off-diagonal cou-
pling in the SBM represents bath-induced modulation of the
spin tunneling. Accounting for both the diagonal and off-
diagonal coupling is important, e.g., in characterizing solid-
state excimers, where a variety of experimental and theoreti-
cal considerations point to a strong dependence of electronic
tunneling upon certain coordinated distortions of neighbor-
ing molecules on the formation of bound excited states.24, 25

Mishchenko and Nagaosa have shown that the off-diagonal
coupling allows coexistence of free and self-trapped states
even in the quasi-one-dimensional compound A-PMDA con-
sisting of alternating donor and acceptor molecules.26 It is
well known that there exists no phase transition for the Hol-
stein model if one considers only the diagonal coupling.27

However, novel discontinuities have been found in the si-
multaneous presence of the diagonal and the off-diagonal
coupling.28, 29 It has also been proposed30 that the off-diagonal
coupling modulates the hopping integral of the Zhang-Rice
singlet and the superexchange interaction in the low-doping
regime of high-temperature superconductivity. Due to chal-
lenges in obtaining reliable solutions,23 Hamiltonians con-
taining off-diagonal coupling appear rarely in the polaron
literature, and exciton-phonon interactions in the Holstein
model, or the coupling between the system and the bath in the
SBM, are usually considered to be of diagonal form. In this
work, by employing the Davydov D1 ansatz, we seek to help
fill the void in the theoretical study of SBM phase transitions
in the deep sub-Ohmic regime 0 < s < 0.5 in the simultaneous
presence of diagonal and off-diagonal coupling.

The Davydov ansatz and its variants31 have been suc-
cessfully employed as trial wave functions for the one-
dimensional Holstein system32 and the Rabi model.33 The
time evolution of a Holstein polaron can be obtained by solv-
ing the equations of motion obtained from the Dirac-Frenkel
time-dependent variation technique34, 35 for the variational pa-
rameters of the Davydov ansatz. The Davydov D1 ansatz has
in particular been used as a simple and reliable method to
study both the dynamic and static properties of the SBM
in deep sub-Ohmic regime 0 < s < 0.5 with only diago-
nal coupling.17, 20 Furthermore, the finding that the Davydov
D1 ansatz is especially accurate in the strong exciton-phonon
coupling regime32 from our earlier study, provides support to
our contention that the same ansatz may also be reliably em-
ployed for SBM in deep sub-Ohmic regime.20

The rest of the paper is organized as follows. In Sec. II,
the SBM with simultaneous diagonal and off-diagonal cou-
pling is presented. The Davydov D1 ansatz as well as the vari-
ational method is also elaborated. In Sec. III, the numerical
results on characterizing the ground state properties are pre-
sented and discussed in detail. Finally, conclusions are drawn
in Sec. IV.

II. METHODOLOGY

The SBM Hamiltonian with simultaneous diagonal and
off-diagonal coupling can be written as

Ĥ = ε

2
σz − �

2
σx +

∑
l

ωlb
†
l bl

+ σz

2

∑
l

λl(b
†
l + bl) + σx

2

∑
l

φl(b
†
l + bl), (1)

where ¯ is set to unity, σ i (i = x, y, z) are the Pauli matrices of
the TLS, bl (b†l ) is the bosonic annihilation (creation) operator,
ε is the bias to describe the influence of the external magnetic
field, � is the tunneling amplitude of the TLS, and ωl is the
phonon frequency while λl and φl are the corresponding diag-
onal and off-diagonal coupling strengths, respectively. The di-
agonal and off-diagonal coupling strengths can be determined
by the corresponding bath spectral densities Jz(ω) and Jx(ω),
respectively,

Jz(ω) =
∑

l

λ2
l δ(ω − ωl) = 2αω1−s

c ωs
(ωc − ω), (2)

Jx(ω) =
∑

l

φ2
l δ(ω − ωl) = 2βω1−s̄

c ωs̄
(ωc − ω), (3)

where α and β are dimensionless coupling constants,

(ωc−ω) is the Heaviside step function, and ωc is the cut-
off frequency which is set to be unity throughout this paper.
The type of interactions between the TLS and the boson bath
is characterized by the spectral exponents s and s̄ for diago-
nal and off-diagonal coupling, respectively. It should be noted
that we use a common boson bath for both the diagonal and
the off-diagonal coupling, but with different spectral densi-
ties. In the absence of off-diagonal coupling, the term εσ z/2
in the SBM describing the bias between the states |+〉 and |−〉
forbids the continuous quantum phase transition. Introduction
of the bias leads to the disruption of the symmetry of the SBM
and accordingly, the ground state would tend to be spin-up
or spin-down state. This implies the absence of a delocalized
state, and that there may exist only a localized state which
corresponds to nonzero magnetization. The off-diagonal cou-
pling denotes the influence of the boson bath on the spin tun-
neling, and its introduction is believed to trigger competition
with the bias. Therefore, it is anticipated that novel features
may emerge in the ground state properties.

The Davydov D1 ansatz is often employed to describe
the motion of an exciton accompanied by a phonon cloud
on a finite one-dimensional lattice. Known to be numeri-
cally efficient, the hierarchy of Davydov wave functions in-
cluding the Davydov D1 trial state has been widely used to
study exciton-phonon dynamics in molecular and biological
systems.32, 35, 36 Recently, Chin et al. have demonstrated that
the Davydov D1 ansatz is capable to describe the ground state
of the SBM in the sub-Ohmic regime.17 While quite accu-
rate results in the sub-Ohmic regime (s ≤ 0.5) of the SBM
with only diagonal coupling were obtained,17 results based
on the same ansatz failed to reproduce the well known phase
transition point αc = 1 in the Ohmic case.17, 37 We thus fo-
cus only on the sub-Ohmic regime when considering both the
diagonal and the off-diagonal coupling with s and s̄ ≤ 0.5.
It should further be noted that the original Davydov D1

ansatz has been projected onto momentum eigenstates to form
Bloch states for the ground-state descriptions of the Holstein
polaron.32
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Aimed at extending the application of the D1 ansatz
to off-diagonal coupling and studying the ground state
properties of the SBM, the trial wave function can be
given as

|Ds〉 = A|+〉 exp

[ ∑
l

(flb
†
l − H.c.)

]
|0〉ph,

+B|−〉 exp

[ ∑
l

(glb
†
l − H.c.)

]
|0〉ph, (4)

where H.c. stands for Hermitian conjugate, |+〉 (|−〉) is the
spin up (down) state, and |0〉ph is the vacuum state of the bo-
son bath. A and B are real variational parameters representing
occupation amplitudes in states |+〉 and |−〉, respectively, and
fl and gl (l = 1, 2, 3, . . . ) label the corresponding phonon dis-
placements with momentum ωl. Without loss of generality,
A2 + B2, which is the norm of |Ds〉, can be set to unity, and
the system energy E = 〈Ds |Ĥ |Ds〉 can then be written as

E = ε

2
M −

√
1 − M2

2
�̄ + 1 + M

2

∑
l

(
flλl + f 2

l ωl

)

− 1 − M

2

∑
l

(
glλl − g2

l ωl

)
, (5)

where �̄ = [� − ∑
l φl(fl + gl)] exp[−∑

l(fl − gl)2/2] is
the renormalized tunneling amplitude that involves the mod-
ulations of the phonon bath, and M = 〈Ds|σ z|Ds〉 = A2−B2 is
the magnetization parameter that will be used in this work to
study the critical behavior of the SBM.

The ground state of the SBM can be obtained by mini-
mizing the system energy of Eq. (5) with respect to the vari-
ational parameters M, fl, and gl. Employing the minimization
procedure with respect to phonon displacement fl and gl, one
obtains

(1 + M)

(
ωlfl + λl

2

)
=

√
1 − M2

2
(φ̄l − �̄(fl − gl)), (6)

(1 − M)

(
ωlgl − λl

2

)
=

√
1 − M2

2
(φ̄l − �̄(gl − fl)), (7)

where we have introduced an auxiliary function φ̄l

≡ φl exp[−∑
l(fl − gl)2/2]. Combining Eqs. (6) and (7), one

arrives at

fl = −λl(M�̄ + √
1 − M2ωl)

2ωl(�̄ + √
1 − M2ωl)

− φ̄l(
√

1 − M2�̄ + (1 − M)ωl)

2ωl(�̄ + √
1 − M2ωl)

, (8)

gl = −λl(M�̄ − √
1 − M2ωl)

2ωl(�̄ + √
1 − M2ωl)

− φ̄l(
√

1 − M2�̄ + (1 + M)ωl)

2ωl(�̄ + √
1 − M2ωl)

. (9)

Similarly, energy minimization with respect to the magnetiza-
tion M yields

0 = ε

2
+ �̄M

2
√

1 − M2
+ 1

2

∑
l

(
flλl + f 2

l ωl

)

+ 1

2

∑
l

(
glλl − g2

l ωl

)
. (10)

Substituting Eqs. (8) and (9) into the system energy of
Eq. (5) accompanied by the spectral densities from Eqs. (2)
and (3), the system energy as a function of the magnetization,
E(M), is obtained. Using the Taylor series expansion for E(M)
about M = 0, we can write

E = c0 + c1M + c2M
2 + c3M

3 + c4M
4 + O(M5), (11)

where ci are constant coefficients for fixed α, β, �, and ωc.
Chin et al.17 found that in the scaling limit ωc → ∞ for
small M, the energy expression takes the Landau form with-
out considering the influence of the bias and the off-diagonal
coupling. This implies c1 = 0 and c3 = 0, and thus, a second-
order phase transition exists in the SBM with only the diago-
nal coupling. Further, the scaling property of the critical cou-
pling αc ∝ (�/ωc)1−s is also in good agreement with other
numerical approaches for the SBM.9, 12, 13

To the best of our knowledge, the exploration of possi-
ble phase transitions in the SBM with the inclusion of off-
diagonal coupling has not been systematically undertaken so
far, and it thus forms the core of the current work. With the
off-diagonal coupling incorporated in the SBM, the expres-
sions of fl and gl acquire much more complex forms, present-
ing difficulties in obtaining analytical results at the phase tran-
sition point. The scaling limit in this case yields

c1 = ε

2
−

√
αβ

exp
[ − ∑

l(fl − gl)2
]
πωc

2 sin(π (s + s̄)/2)

(
�̄

ωc

)(s+s̄)/2

,

(12)

which indicates the absence of a second-order phase transi-
tion in general, as c1 and c3 would be non-zero. However, by
appropriately selecting ε, α, β, and �, it is possible to set
c1 = 0, which may give rise to the possibility of a first-order
phase transition as long as c3 
= 0. Even though obtaining an
analytical expression for c3 is indeed a difficult proposition, it
is still possible to judge whether or not c3 is equal to zero, by
using results from numerical analysis, as will be elaborated in
Sec. III.

The first requirement in our numerical calculation is to
set c1 = 0. Here we do not consider Eq. (12) in our numer-
ical analysis as it is obtained in the scaling limit. An exact
expression for c1 can be written as

c1 = dE

dM

∣∣∣∣
M=0

=
[

∂E

∂M
+

∑
l

(
∂E

∂fl

∂fl

∂M
+ ∂E

∂gl

∂gl

∂M

)]∣∣∣∣
M=0

.

(13)

Therefore, as long as Eqs. (6), (7), and (10) are satisfied in the
condition that M = 0, c1 would be 0 and from it we can ob-
tain a relation among the system parameters. Furthermore, the
relaxation iteration technique38, 39 was adopted to obtain nu-
merical solutions to the set of the self-consistency equations
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[Eqs. (6), (7), and (10)] under the condition c1 = 0. Once the
variational parameters are obtained, we can get the ground
state wave function, and other properties can be calculated
subsequently.

III. RESULTS AND DISCUSSION

A. Diagonal coupling only

We first investigate the SBM with only the diagonal cou-
pling considered. In this case, the existence of the second-
order transition was demonstrated variationally by Chin et al.,
and an analytical expression for the phase transition point was
also given.17 In this section, we present a detailed descrip-
tion of the magnetization and the ground state energy near the
phase transition point for the purely diagonal coupling case
by following the approach of Chin et al., for the sake of facil-
itating an easier distinction with the results upon inclusion of
the off-diagonal coupling described in Sec. III B.

Figure 1(a) shows the magnetization corresponding to
the extreme values of the system energy as a function of the
strength of diagonal coupling α with s = 0.2 and � = 0.1
while ignoring the influence of the bias and off-diagonal cou-
pling. There exists a critical coupling strength αc = 0.02998

FIG. 1. For s = 0.2, � = 0.1, and ε = 0 and without considering the off-
diagonal coupling, (a) the magnetization M corresponding to the extreme
values of the system energy as a function of the diagonal coupling strength
α. The solid red curve corresponds to the minima (ground state) of the sys-
tem energy, while the curve marked by solid triangles corresponds to energy
maxima. (b) The system energy difference E(M)−E(M = 0) versus M for
two values α = 0.0298 (dashed, magenta) and 0.0302 (dotted, blue), which
are also depicted by the two vertical arrows in (a) as a guide to eye.

FIG. 2. (a) The positive component of the magnetization (M) (the negative
part is symmetrically related) and (b) the entanglement entropy as a function
of the diagonal coupling strength α for s = 0.2, � = 0.1, and ε = 0 and
without considering the off-diagonal coupling. The inset in each of the panels
shows the corresponding plot over a larger range of α.

which separates a non-degenerate delocalized phase (M = 0)
from a doubly degenerate localized phase (M 
= 0) and leads
to the bifurcation in the M(α) plot. The solid line in Fig. 1(a)
corresponds to the minima of the ground state energy, while
the curve marked by solid triangles for α > αc corresponds
to its maxima. For α < αc, the system energy exhibits only
one minimum at M = 0 and thus characterizes a delocalized
state. This is evident in Fig. 1(b), which shows the detailed
energy difference E(M)−E(M = 0) as a function of M for a
representative value of α = 0.0298. On the other hand, with
α > αc, two minima begin to appear in the system energy plot,
as can be observed for α = 0.0302 in Fig. 1(b). The double-
minimum indicates the transition of the system to a localized
phase. In this case, M = 0 still corresponds to an extremum of
the system energy, however not being a minimum, it does not
correspond to the ground state.

Guided by the magnetization transition, it is straight-
forward to obtain the phase transition point. As shown in
Fig. 2(a), the ground state magnetization will change from
zero to nonzero at αc = 0.02998. Earlier studies have
derived an expression for the dependence of the criti-
cal coupling strength on the bath spectral exponent as
αc ∝ (�/ωc)1−s.9, 12, 13 To further characterize the quantum
phase transition in terms of additional ground-state proper-
ties, we calculate the entanglement between the spin and
the surrounding boson bath described by the von Neumann
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entropy (S), also known as the entanglement entropy,40, 41

which is given for the spin-boson model as4, 42

S = −ω+ log2 ω+ − ω− log2 ω−, (14)

where

ω± = (1 ±
√

〈σx〉2 + 〈σy〉2 + 〈σz〉2)/2. (15)

It should be noted that 〈σ y〉 = 0, as the spin-boson model is
invariant under the transformation σ y → −σ y.4 The calcu-
lated entanglement entropy is plotted as a function of α in
Fig. 2(b). With an increase in α, S increases gradually until
it reaches its maximum at the phase transition point and ac-
cordingly the formation of a cusp can be observed clearly in
the inset of Fig. 2(b). We note that in the localized phase, the
spin rapidly becomes frozen in one classical state while rapid
disentanglement takes place.4, 17

B. Simultaneous diagonal and off-diagonal coupling

The inclusion of the off-diagonal coupling in the Hol-
stein model is known to result in many interesting properties,
which leads us to believe that similar implications will also be
encountered upon its incorporation in the present work on the
SBM. Furthermore, due to the similarity between the SBM
and the Holstein model, we expect that our current approach
of applying the Davydov D1 ansatz to the SBM can yield
reliable results even upon the inclusion of the off-diagonal
coupling.

As discussed earlier, in order to set c1 = 0, a relation has
to be established between the diagonal and the off-diagonal
coupling strengths. Figure 3 depicts α as a function of β

which satisfies the required condition for different values of
bias when s = s̄ = 0.2 and � = 0.1. For a given α, the
off-diagonal coupling strength β can be clearly observed to
increase with an increase in the bias intensity. The role of ap-
plied bias in localization competes with that of the spin tun-
neling in delocalization. The modulation of the spin tunneling
due to the off-diagonal coupling should thus increase with an
increase in the bias. Furthermore, when α tends to zero, β

FIG. 3. The inter-dependence of the diagonal coupling strength α and the
off-diagonal coupling strength β required in order to satisfy c1 = 0. Behavior
for different values of ε = 0.01, 0.02, 0.03, 0.04, and 0.05 when s = s̄ = 0.2
and � = 0.1 is shown. The arrow marks the direction of increasing ε.

FIG. 4. The coefficients c1 (squares, black), c2 (circles, red), c3 (up-triangles,
green), and c4 (down-triangles, blue) in the Taylor series expansion of the
system energy, plotted against the diagonal coupling strength α for s = s̄

= 0.2, ε = 0.01, and � = 0.1.

shows a tendency to diverge. This behavior emerges since the
applied bias will be expected to destroy the possible transi-
tion if there is only off-diagonal coupling, as c1 = 0 cannot be
satisfied under such a condition [cf. Eq. (12)].

The coefficients ci (i = 1, 2, 3, and 4) in the Taylor series
expansion as a function of α, obtained from the numerical cal-
culations for s = s̄ = 0.2, ε = 0.01, and � = 0.1, are shown
in Fig. 4. The off-diagonal coupling strength β changes ac-
cordingly to guarantee that c1 = 0 will always be satisfied. It
is important to note here that c3 is generally non-zero, which
implies that the second-order phase transition does not ex-
ist under these conditions. A first-order phase transition may
however still occur, when the condition of c2 = 0 is satisfied
at the critical coupling strength αc.

The magnetization M corresponding to the extreme value
of the system energy as a function of the diagonal coupling
strength α for s = s̄ = 0.2, ε = 0.01, and � = 0.1 is shown
in Fig. 5(a). While both the solid curves correspond to the
minima of the system energy, the red curve represents the
ground state of SBM. The local maxima in the system energy
are denoted by solid triangles. The differences in the mag-
netization behavior upon inclusion of the off-diagonal cou-
pling as compared to that with only the diagonal coupling can
be clearly observed. With the off-diagonal coupling consid-
ered, the symmetry about M = 0 is lost. For ε = 0.01 and
when α is small, there exists a unique energy minimum at M
= 0. However, when α is large enough, two minima corre-
sponding to different values of M appear. It should be noted
that there are two branches, one of which corresponds to M
> 0 showing a continuous change and the other corresponds
to M < 0 showing a discontinuous change. Generally, the
M < 0 branch corresponds to the lowest energy and thus to
the ground state, which is likely due to the positive bias em-
ployed. The ground state of the SBM thus exhibits a discon-
tinuous change in the magnetization from zero to nonzero val-
ues, at the critical point, which is found to be αc = 0.02967 for
the set of parameters chosen here. In effect, we are witnessing
the likely existence of a discontinuous first order transition be-
tween a zero-magnetization phase and a finite-magnetization
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FIG. 5. (a) The magnetization M corresponding to the extreme values of
the system energy as a function of the diagonal coupling strength α for
s = s̄ = 0.2, � = 0.1, and ε = 0.01. While both the solid curves corre-
spond to local minima of the system energy, only the red curve belongs to
the ground state. The curve marked by solid triangles corresponds to the en-
ergy maxima. (b) The system energy difference E(M)−E(M = 0) versus M
for α = 0.0296 (dashed, magenta), 0.02967 (solid, orange), 0.0297 (dash-
double-dotted, green), and 0.0299 (dash-dotted, blue). As a guide to the eye,
the four values of α are marked by vertical arrows in (a).

phase of the sub-Ohmic SBM in the presence of off-diagonal
coupling. It should be noted, however, that for the special case
of s = s̄, the SBM Hamiltonian can be subjected to a 90◦ ro-
tation so that the transformed Hamiltonian assumes a form of
the diagonal-coupling-only SBM with modified bias and tun-
neling amplitude. This leads to an ambiguity that compounds
the difficulty of a purely variational approach in proving the
existence of a first order phase transition in the SBM. This
warrants a further careful analysis for adopting the notion of
a first-order phase transition at least in the aforementioned
special case of s = s̄, which is to be presented in Sec. III C.
The detailed energy difference E(M)−E(M = 0) as a func-
tion of M is shown in Fig. 5(b) for four representative values
of α including αc. At a less than critical coupling strength
α = 0.0296, a single minimum appears at M = 0, similar
to that of the diagonal case but without any symmetry about
M = 0. With an increase in α, another minimum appears at
M < 0 and gradually attains the lowest energy, signifying the
ground state.

The ground state magnetization M as a function of
the diagonal coupling strength for different s̄ is shown in
Fig. 6(a) for s = 0.2, � = 0.1, and ε = 0.01. An abrupt jump

FIG. 6. (a) Magnetization M and (b) entanglement entropy as a function
of diagonal coupling strength α for s̄ = 0.1 (squares, black), 0.2 (circles,
red), 0.3 (up-triangles, green), 0.4 (down-triangles, blue), and 0.5 (diamonds,
orange) when s = 0.2, � = 0.1 and ε = 0.01.

in M at the critical coupling can be clearly noted. With an in-
crease in s̄, the critical diagonal coupling strength decreases
slightly. The dependence of the critical point on s̄ may be
explained by considering the relaxation energy in the SBM
given as

∫ ∞
0 dωJ (ω)/ω = 2παωc�(s),43 where �(s) is the

gamma function of s which decreases with an increase in s
in the sub-Ohmic regime. If s̄ increases, the relaxation energy
will decrease, implying that the influence of the off-diagonal
coupling will also decrease. Accordingly, we may expect that
a smaller value of diagonal coupling strength is needed to
balance the off-diagonal coupling. Furthermore, the entangle-
ment entropy can also be employed to characterize the dis-
continuous behavior. As shown in Fig. 6(b), the calculated
entanglement entropy as a function of α exhibits a disconti-
nuity at the critical coupling. With an α higher than the critical
value, the SBM corresponds to the localized state for which
rapid disentanglement, similar to that of the purely diagonal
case, occurs. The discontinuous behavior of the magnetiza-
tion and the entanglement entropy may seem reminiscent of
similar discontinuous behavior in the results obtained with the
Silbey-Harris method when applied to the biased SBM. Draw-
ing attention to the limitations of the Silbey-Harris ansatz
based variational approach, Nazir et al. proposed the discon-
tinuous behavior to be regarded as artifacts arising from its
excessive simplicity.37 The Davydov D1 ansatz employed in
this work, on the other hand, is much more sophisticated and
contains more flexible variational parameters as compared to
the Silbey-Harris ansatz, which itself is a special case of the
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Davydov D1 ansatz obtained by setting A = B and fl = −gl

and is poorly equipped to deal with the asymmetry induced
by the bias.

C. Continuous crossover for s = s̄

In this section, we carefully analyze the special case
when the spectral densities for the diagonal and off-diagonal
couplings are characterized by the same exponent. For this
condition of s = s̄, it is possible to transform the interac-
tion to a purely diagonal form by employing a unitary ma-
trix P̂ ≡ ( a

b

b

−a
), where a =√

1+λl /gl
2 and b =√

1−λl /gl
2 . The trans-

formed Hamiltonian can be rewritten as

Hrot = ε̃

2
σz + �̃

2
σx +

∑
l

ωlb
†
l bl + σz

2

∑
l

gl(b
†
l + bl), (16)

where

ε̃ =
√

αε − √
β�√

α + β
,

�̃ =
√

α� + √
βε√

α + β
.

The interaction is characterized by the spectral density func-
tion J(ω),

J (ω) =
∑

l

g2
l δ(ω − ωl) = 2(α + β)ω1−s

c ωs
(ωc − ω).

With this transformation, we have mapped the Hamilto-
nian (1) to that of the standard SBM with modified bias and
tunneling amplitude via rotation. Therefore, the ground state
of the Hamiltonian (1) is mapped to that of the regular SBM
with modified control parameters, i.e., |G(s, α, β,�, ε)〉 =
P̂ |GSBM(s, γ, �̃, ε̃)〉, where γ = α + β.

To obtain the ground state of this model, we adopt an
analytical treatment previously developed,16, 44 and subject
Hrot to a unitary transformation in order to take into ac-
count the correlation between the spin and bosons, yielding
H′ = exp (S)Hrotexp (−S) with

S =
∑

k

gk

2ωk

(b†k − bk)[ξkσz + (1 − ξk)σ0I]. (17)

Here, σ 0 is a constant, I is the identity matrix, and ξ k is
a k-dependent function, the form of which can be found in
Ref. 44. Following the transformation, one can write

H ′ = H ′
0 + H ′

1 + H ′
2,

H ′
0 = �r

2
σx + ε′

2
σz +

∑
k

ωkb
†
kbk

−
∑

k

g2
k

4ωk

ξk(2 − ξk) +
∑

k

g2
k

4ωk

σ 2
0 (1 − ξk)2,

(18)

H ′
1 = 1

2

∑
k

gk(1 − ξk)(b†k + bk)(σz − σ0) + i
�r

2
σyB,

H ′
2 = �

2
σx(cosh{B} − η) + i

�

2
σy(sinh{B} − ηB),

where B = ∑
k

gk

ωk
ξk(b†k − bk) and �r = η�̃. The renormal-

ized tunneling amplitude is determined as η = 〈cosh {B}〉
(thermodynamically averaged with respect to the Bose-
Einstein distribution), thereby yielding

η = exp

[
−

∑
k

g2
k

2ω2
k

ξ 2
k coth

( ωk

2T

)]
, 0 ≤ η ≤ 1. (19)

Furthermore, the shifted bias is renormalized as

ε′ = ε̃ − τσ0, τ =
∑

k

g2
k

ωk

(1 − ξk)2. (20)

It becomes immediately clear that H ′
0 can be solved exactly

because the spin and the bosons in it are decoupled, and it
is easy to obtain the ground state |G〉 with energy Eg. H ′

0 is
diagonalized by U = uσz + vσx where u = √

(1 − ε′/W )/2,
v = √

(1 + ε′/W )/2, and W = √
ε′2 + �2

r . After diagonal-
ization, H̃0 ≡ U †H ′

0U can be written as

H̃0 =
∑

k

ωkb
†
kbk+

∑
k

g2
k

4ωk

[
σ 2

0 (1−ξk)2−ξk(2−ξk)
]− W

2
σz.

Furthermore, as H̃1 + H̃2 ≡ U †(H ′
1 + H ′

2)U is treated as a
perturbation, the transformation parameters σ 0 and ξ k are
chosen in order to minimize H̃1 + H̃2. Note that in the unitary
transformation approach, H̃1|G〉 = 0. Thus, one can write
H̃0 + H̃1|GSBM〉 = Eg|GSBM〉, where

Eg =
∑

k

g2
k

4ωk

[
(1 − ξk)2

(
1 + σ 2

0

) − 1
] − W

2
. (21)

The above ground state energy, Eg, agrees well with that ob-
tained by the numerical renormalization group (NRG) method
for both the cases of zero and finite bias.44 The original
Hamiltonian is exactly solvable in two limits, viz., the weak
coupling limit of α → 0 and β → 0 with Eg(α → 0,

β → 0) = − 1
2

√
�2 + ε2, and the zero tunneling limit of �

→ 0 with Eg(� → 0) = −|ε|/2 − ∑
k g2

k/4ωk . It is easy to
check that Eg yields the correct values of the ground state en-
ergy in these two limits.

It is well known that there occurs a continuous phase
transition for the unbiased SBM with only the diagonal cou-
pling. With the introduction of a finite bias (ε 
= 0), and
simultaneous diagonal and off-diagonal couplings, the Hamil-
tonian (1) has no Z2 symmetry,45 and thus 〈σ z〉G is gener-
ally nonzero. However, there still exists an instability in the
ground state if the modified bias ε̃ is zero. The calculated en-
ergy difference [E(M)−E(M0)] as a function of M (M0 cor-
responds to energy extremum) is shown in Fig. 7 for three
values of α when s = s̄ = 0.3 and � = 0.1. At α = 0.028, the
system energy exhibits only a single minimum at M = M0

= −0.086, and the system is in a localized state. For
α = 0.029 and 0.03, it is obvious to see that the system
energy exhibits double minima, indicating the instability of
the ground state. Moreover, with an increase in the diago-
nal coupling strength that is accompanied by a decrease in
the off-diagonal coupling strength, there appears a continu-
ous crossover of the SBM from a non-degenerate localized
phase to double degenerate localized phase. We note that the
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FIG. 7. The system energy difference E(M)−E(M0) versus M for α = 0.028
(solid, black), 0.029 (dashed, red), and 0.03 (dash-dotted, blue) for s = s̄

= 0.3, � = 0.1, and ε = 0.01.

necessary condition of the continuous crossover of the ground
state is ε̃ = 0.

In the framework of the transformed SBM with only di-
agonal coupling, the combined coupling strength γ , the mod-
ified bias ε̃ and the tunneling amplitude �̃ all depend on the
diagonal and off-diagonal coupling strengths of Hamiltonian
(1). As the coupling strengths α and β change, ε̃, �̃, and γ

adopt new values. In the parameter space satisfying the con-
dition c1 = 0, the modified bias ε̃ is always nonzero, while it
is known that only for the requirement ε̃ = 0, there emerges a
continuous crossover of the ground state from single localized
phase to a doubly degenerate localized phase. It follows that
the aforementioned continuous crossover does not contradict
the discontinuous behavior revealed in Sec. III B using the
Davydov D1 ansatz, because the condition of ε̃ = 0 employed
here is inherently different from the requirement of c1 = 0 (in
the expansion for E(M) around M = 0) in the latter case. From
a physical perspective, as the effect of the off-diagonal cou-
pling may run counter to that of the bias, it is possible for the
system to stay in a delocalized phase with M = 0 for a cer-
tain off-diagonal coupling strength under a finite bias. As the
condition of c1 = 0 implies that there exists a finite ε̃, i.e.,
ε̃ 
= 0, the energy surface E(M) is asymmetric about M = 0
as shown in Fig. 5. For weak off-diagonal coupling, there is
only one minimum at M = M0 = 0 on the energy surface, and
the system is in a delocalized phase. On the other hand, with
α and β inter-related as shown in Fig. 3, for a certain special
parameter regime, the energy surface exhibits two asymmetri-
cal localized minima because ε̃ 
= 0, with either a finite M or
zero M (cf. Fig. 5). The minimum with a lower energy corre-
sponds to the stable ground state. At the same time, the max-
imum occurs at nonzero M. This implies the possibility of a
phase transition showing an abrupt crossover from a delocal-
ized state with M = 0 to a localized state with M 
= 0 provided
that the diagonal and off-diagonal coupling strengths satisfy
the condition c1 = 0. It is thus likely that a discontinuous
phase transition occurs as a result of the combined effect of
the bias and the two competing forms of the spin-boson cou-
pling, marking a behavior that is entirely different from the

continuous phase transition in the unbiased SBM devoid of
the off-diagonal coupling. Our work thus reveals the rich en-
ergy landscapes and transition properties emerging from the
competition between the diagonal and the off-diagonal cou-
pling in the extended sub-Ohmic SBM.

IV. CONCLUSIONS AND DISCUSSION

Off-diagonal exciton-phonon coupling is an important is-
sue often neglected by the polaron community. Early treat-
ments of the off-diagonal coupling in the Holstein Hamil-
tonian include the Munn-Silbey theory,46, 47 the Toyozawa
ansatz,32 and Sumi’s theory employing the dynamic coherent
potential approximation (DCPA).48 Furthermore, the DCPA
based theory was generalized by Kato et al.49 while an explicit
expression was subsequently derived by Hannewald et al.
for the temperature dependence of the polaron bandwidths
by treating diagonal and off-diagonal coupling on an equal
footing.50 More recently, the Global-Local Ansatz,51 formu-
lated by Zhao et al. in the early 1990s, has been compared
with DCPA with the Hartree approximation,52 and the delo-
calized form of the Davydov D1 ansatz has been used to study
the ground-state properties of the Holstein Hamiltonian with
off-diagonal coupling.53 The absence of phase transitions in
the Holstein model when one considers only the diagonal cou-
pling is well known.27 Recent studies, however, indicate that
novel nonanalyticities may emerge in the simultaneous pres-
ence of the diagonal and the off-diagonal coupling. For exam-
ple, a sharp transition at the critical electron-phonon coupling
strength of the Su-Schrieffer-Heeger model was revealed by
Marchand et al.28 By employing linearized von Neumann en-
tropy to quantify exciton-phonon correlations in the ground
state, Zhang et al. uncovered the discontinuities in the pres-
ence of off-diagonal coupling of the antisymmetric form as
opposed to the smooth crossover resulting from the symmetric
off-diagonal coupling.29 Owing to the similarity between the
SBM and the Holstein model, trial states from the hierarchy
of Davydov ansätze may yield reliable results on the ground
state properties upon inclusion of the off-diagonal coupling.

In this work, we have systematically explored the pos-
sibility of a phase transition in the SBM in the sub-Ohmic
regime, under the simultaneous influence of the diagonal and
off-diagonal spin-boson coupling. As the Davydov D1 ansatz
was employed successfully in studying the Holstein polaron,
an analogous approach was taken in this work to investigate
the SBM by drawing parallels to its relevance to the SBM.
It is demonstrated that a Taylor series expansion of the sys-
tem energy reveals the possible occurrence of the phase tran-
sition as well as its nature, if it does occur. The existence of
a continuous phase transition in the SBM with purely diago-
nal coupling has been shown earlier;17 however, it is known
to vanish in the presence of a bias. Primarily focussing on the
influence of the off-diagonal coupling, the current work re-
veals the presence of a discontinuous transition between the
states characterized by zero and finite magnetization for the
sub-Ohmic SBM. It is to be noted, however, that the control
parameters α, β, �, and ε must satisfy a certain interrelation
to guarantee that the first order derivative of the system en-
ergy with respect to the magnetization M is always zero. This
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criterion leads to an increase in the required off-diagonal cou-
pling strength with an increase in the bias. This imposition of
restraints on the involved model parameters lends specificity
to the resulting trajectory in the parameter space exhibiting
discontinuous behavior. Accordingly, the possibility of ob-
serving such abrupt transitions in a “realistic” system is rather
remote, yet our results bear a significance in yielding valu-
able theoretical insights on the emergence of novel features in
the ground state of the sub-Ohmic SBM. The magnetization
corresponding to the extreme values of the system energy is
found to be asymmetrical about zero magnetization. At the
critical coupling strength, there exists a discontinuous change
from a non-degenerate delocalized state (M = 0) to another
non-degenerate localized state (M 
= 0). The corresponding
critical coupling strength decreases with an increase of s̄ if
all other control parameters are fixed. We have also probed
the entanglement entropy near the phase transition, revealing
a discontinuity in it at the transition point. For s = s̄, a unitary
transformation has been borrowed to map Hamiltonian (1) to
a SBM model with modified bias and tunneling amplitude.
In the framework of the unitary transformation approach,44

we have obtained the ground state energy of Hamiltonian (1)
and discuss its instabilities. Two types of crossover in the
ground state have been uncovered. In addition to the discon-
tinuous crossover from zero magnetization to a finite one,
a continuous phase transition also exists in some parameter
regime which satisfies zero modified bias (ε̃ = 0). With si-
multaneously considered diagonal and off-diagonal coupling,
this work is thus hoped to shed new light on the emergence of
interesting properties in the sub-ohmic regime of the SBM.

We note that in the absence of bias and off-diagonal cou-
pling, the Hamiltonian of Eq. (1) is invariant under the trans-
formation of σ z → −σ z, bl → −bl, and b

†
l → −b

†
l . In this

case, there exist two degenerate ground states with differing
magnetization characteristics, and their wave functions can
then be used to form symmetric and anti-symmetric wave
functions which are similar to the Bloch states that are com-
monly employed in the study of the Holstein model.32 Very
recently, Bera et al. have proposed a trial state54 to describe
the adiabatic response of the high frequency bosonic modes to
the spin tunneling as well as non-classical correlations due to
the low frequency modes. With the new ansatz, comparable
results to those from the NRG method were obtained, and new
behavior in spin coherence and environmental entanglement
was unveiled.54 Our current approach could well be extended
to incorporate the influence of an “anti-polaron” state via the
symmetric and anti-symmetric wave functions. The approach
of utilizing such superposed wave functions may be expected
to not only allow for improved descriptions of ground state
properties in SBM but also lead to revelation of novel proper-
ties.
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