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W e consider an inventory system under continuous review with two demand classes that are different in terms of
service level required (or penalty cost incurred for backordering of demand). Prior literature has proposed the criti-

cal level rationing (CLR) policy under which the demand from the lower priority class is backordered once inventory falls
below the critical level. While this reduces the penalty cost for the higher demand class, the fill rate achieved for the lower
priority demand class gets compromised. In this study, we propose a new class of two-bin (2B) policy for the problem.
The proposed 2B policy assigns separate bins of inventory for the two demand classes. The demand for each class is ful-
filled from its assigned bin. However, when the bin intended for the higher demand class is empty, the demand from the
higher class can still be fulfilled with the inventory from the other bin. The advantage of the 2B policy is that better fill
rates are achieved, especially for the lower demand class. Computational results show that the proposed policy is able to
provide a much higher service level for the lower priority class demand without increasing the total cost too much and
without affecting the service level for the higher priority class. When a service level constrained optimization problem is
considered, the 2B policy dominates the CLR policy when the service level difference for the two classes is not too high
or the service levels required for both the classes are relatively lower.
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1. Introduction

In today’s competitive environment, manufacturing
firms are increasingly focusing on aftermarket ser-
vices, where service differentiation is seen as a key
strategy to manage costs and deliver what is prom-
ised to the customer. Inventory policies that can tackle
differentiated service requirements effectively and
efficiently are therefore very important in the man-
agement of service parts logistics. Many organizations
segregate the demand for the same product into mul-
tiple customer classes or demand classes according to
the different priorities for order fulfillment. (Through-
out the study, we use the terms demand classes, cus-
tomer classes, and order classes interchangeably to mean
the same thing).
Our interactions with the regional warehouse of a

leading automobile company distributing spare parts
have shown that they use three order classes for the

purposes of service differentiation: normal, urgent,
and vehicle off-road (emergency). Normal orders (or
demands) are fulfilled immediately on arrival only if
the inventory level is higher than the reserve inven-
tory level; else they are backordered. The reserve
inventory is kept aside for fulfilling urgent demand. If
there is no inventory at all in the regional distribution
warehouse, then urgent orders are also backordered
and replenishment orders placed with the headquar-
ters are expedited. Vehicle off-road (or emergency)
orders are situations where there is demand for a very
high-value spare part (whose failure has caused the
vehicle to be off-road). Demand for these high-value
spare parts occur with very low probability, and
therefore are fulfilled from the central warehouse in
the headquarters directly by emergency air-ship-
ments. Similar observations were made in our interac-
tions with an aircraft service company. In military
materials management, when the same spare part is
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requisitioned from different divisions, an inventory
control policy that prioritizes the orders according to
the end use need to be deployed so that the more criti-
cal demand is fulfilled first (Deshpande et al. 2003).
Inventory rationing has been shown to be an effec-

tive strategy when there are multiple demand classes
requiring different service levels (or incurring differ-
ent penalty costs). Critical level rationing (CLR),
where the lower class demand is either backordered
or not satisfied after the on-hand inventory reaches a
pre-determined critical level (called rationing level) is
the most widely studied and recommended policy in
the available literature.
Although CLR provides an inventory policy with a

lower cost (Deshpande et al. 2003), its major short-
coming is that by reserving inventory, it provides a
high service level to the higher priority customer class
at the expense of the lower priority class. It is conceiv-
able that the inventory reserved for the higher priority
demand class may not get fully utilized if there is only
little demand for the higher class after rationing kicks
in. The lower priority demand class, therefore, may
not be fulfilled on time even when there is inventory
available. Thus the CLR policy results in a low fill rate
for the lower priority demand class. Numerical exper-
iments in our study show that if no fill rate constraints
are imposed, the service level or fill rate for the lower
priority demand class suffers significantly in the CLR
policy. For example, in some cases, the policy pro-
vides a fill rate of only 64% to the lower priority class.
In this study, a new two-bin (2B) policy is proposed.
This policy attempts to provide a higher service level
to the lower priority demand class while maintaining
the service level for the higher priority class.
In our proposed policy, two separate bins, BIN1

and BIN2, are kept for the two demand classes; with
class 1 being the higher priority demand class.
Demand from each class is satisfied from its respec-
tive bin. However, the demand from class 1 can be
fulfilled with inventory from BIN2 (if available), once
BIN1 becomes empty, on a first-come-first-serve
(FCFS) basis. The lower priority demand class, how-
ever, cannot use BIN1 when BIN2 runs out. This pol-

icy ensures that the lower class demand is not
backordered as long as there is inventory left in BIN2.
At the same time, it preserves the priority of the
higher demand class by allowing it to use the lower
class’s stock once its own stock runs out. Thus this
policy gives some protection to the lower demand
class while still providing higher priority to class 1
demand. The policy is depicted in Figure 1.
Numerical experiments discussed later in the study

show that, for the problem of minimizing the total
(ordering + holding + penalty) cost with no restric-
tions on the demand fill rate, our proposed policy
increases the service level for the lower class demand
by as much as 25%, with only a slight increase in cost.
When a service level constrained optimization prob-
lem is considered, where instead of imposing penalty
costs, fill rate constraints are imposed on the two
demand classes and the total cost (comprised of
ordering and holding cost) is minimized, our pro-
posed policy provides a lower cost than the CLR
policy in many instances.
The remainder of this paper is organized as follows.

We first provide a brief review of the related literature
at the end of this section. In section 2, the proposed
2B policy for inventory rationing is explained. The
model for this policy is formulated and the exact
expression for the expected cost is developed. The
algorithm to determine the optimal parameters is
described next. Section 3 provides the results of com-
putational experiments comparing the proposed 2B
policy with the CLR policy. The final section provides
concluding remarks and a summary.

1.1. Literature Review
Over the years many researchers have studied inven-
tory rationing. Veinott (1965) was the first to propose
inventory rationing but Topkis (1968) first analyzed,
theoretically, the concept of inventory rationing and
developed allocation policies for inventory among
multiple classes. Evans (1968) and Kaplan (1969) inde-
pendently derived the same results as Topkis (1968)
for two customer classes. Evans (1968) assumed that
unsatisfied demand is lost, whereas Kaplan (1969)

(d1 is class 1 demand, and d2 is class 2 demand)

d1

d2

Exclusively for 
fulfilling class 1 

demand

d1

BIN1

d1, d2For fulfilling class 2 
demand; also for class 
1 demand when BIN1
is empty

BIN2

Backorder demand
(d1 or d2)

BIN1 is 
empty?

Yes

BIN2 is 
empty?

Yes

Figure 1 Proposed Two-Bin (2B) Policy
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assumed that it is backordered to the next cycle. These
studies considered period review inventory systems
with zero lead time and the focus was on developing
the structure of the optimal inventory and rationing
policy.
Nahmias and Demmy (1981) were the first to

consider continuous review inventory systems under
Poisson demand. In their study, they first considered
a single period model, and then developed an approx-
imate continuous review model with the assumption
that there is never more than one order outstanding.
Their focus was on developing and evaluating
approximate expressions for fill rates for a given
inventory policy and rationing level, rather than on
optimizing the cost. Later, Moon and Kang (1998)
extended the same idea to compound Poisson pro-
cess, but using a simulation model. Some researchers
such as Evans (1968), Dekker et al. (2002), and Melchi-
ors et al. (2000), considered the lost sale case, where
the unmet demand is not satisfied and assumed as
lost, incurring a one-time penalty cost. Lost sale is
more appropriate in a retail setting where rationing
might not always be appropriate or practical. In
industrial or B2B settings, such as spare parts
distribution, it is more appropriate to assume that
demand not satisfied immediately is backordered,
rather than lost.
Recent work on inventory rationing in a continuous

review environment with setup cost includes Desh-
pande et al. (2003) and Arslan et al. (2007). Deshpan-
de et al. (2003) considered an inventory system with
two customer classes whose demands follow Poisson
processes. The inventory is replenished according to a
(Q, r) policy where a replenishment order of quantity
Q is placed whenever the inventory position drops to
level r. The demand is fulfilled from inventory on a
FCFS basis, as long as on-hand inventory is equal to
or above the rationing level, K. Demand from the
lower priority class (class 2) is backordered once on-
hand inventory falls below the rationing level, but
demand from higher priority class (class 1) is still sat-
isfied as long as there is on-hand inventory. Demand
from the higher priority class is backordered only
after the inventory runs out. Backorders are cleared
when the next replenishment arrives according to a
threshold clearing mechanism that they proposed. The
threshold clearing mechanism clears backorders con-
sidering inventory position rather than inventory
level. This means that all the lower class demand that
occurs after the placement of replenishment order,
until the (r + Q � K)th demand arrival, is cleared
upon receipt of the replenishment. The threshold
clearing mechanism aids in the regeneration of the
inventory positions and thus facilitates the analytical
derivation of the probability distribution of inventory
levels easily as compared to priority clearing, where

backorders are cleared based on the priority of the
demand. Therefore, accurate expressions for the
expected cost can be developed. For a (Q, r) policy,
with a fixed rationing level, K, Deshpande et al.
(2003) derived the expression for long-run expected
cost. Using the algorithm of Federgruen and Zheng
(1992), the optimal (Q, r) policy for a fixed K is deter-
mined; the optimal rationing level can then be deter-
mined by exhaustive search over all possible
rationing levels. Deshpande et al. (2003) also showed
that the simulated cost for the priority clearing mech-
anism using the optimal policy parameters obtained
by assuming threshold clearing was not very different
from the cost for the threshold clearing mechanism.
Arslan et al. (2007) considered the same clearing

mechanism as Deshpande et al. (2003) but considered
‘n’ customer classes. They developed an equivalent
serial-stage inventory system framework for solving
the problem. In their problem formulation, the objec-
tive was to minimize the expected average inventory
level subject to constraints on the pre-defined service
levels for the different customer classes.
Another recent work on spare parts inventory man-

agement (in a multi-item, multi-location network) is
by Alvarez et al. (2013). They propose a new strategy
where dedicated stock is kept at the customers’ site
along with a common stock at a central location. The
concept of dedicated stock might seem similar to the
bin stock under our proposed 2B policy, but it is not.
Under the 2B policy, the higher class demand can be
fulfilled from BIN2, if BIN1 is empty. In the policy by
Alvarez et al. (2013), the dedicated stock at one loca-
tion cannot be used to fulfill demand at another loca-
tion. All the customer classes can use the common
stock only if its own dedicated stock is empty. So in a
sense, the policy by Alvarez et al. (2013) is more akin
to a modified critical level policy. Moreover, their
study does not consider ordering cost, and therefore
lot for lot ordering is pursued; this makes the
computation of the holding cost very straight for-
ward. Furthermore, their cost evaluations are only
approximate.
All the above studies and the problem being

considered in this study assume that it is an
inventory system with fixed lead time for replen-
ishment. It is also relevant to point out there is a
body of literature considering single product man-
ufacturing systems with multiple demand classes
under a make-to-stock framework. Studies in this
body of literature do not consider any fixed setup
cost, and use a queuing theoretic framework to
model the lead time for orders that are queued in
the system. The focus of these studies is to ana-
lyze the structure of the optimal policy for fulfill-
ing/rationing of the incoming orders. Studies
belonging to this category include Ha (1997a,b,
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2000), de V�ericourt et al. (2000, 2002), and Gayon
et al. (2009).

2. The Proposed Two-Bin Policy

The notation used in the study is presented in Table 1.
We consider a single item, continuous review inven-
tory system that follows a (Q, r) policy, wherein a
replenishment order of quantity Q is placed when the
inventory position (inventory on hand + inventory
on order � backorders) of the system drops to r. The
demand for the item comes from two different cus-
tomer classes that vary in their penalty cost or fill rate
requirement. The demand from each customer class,
i, follows a Poisson process with intensity ki; the total
demand from two classes therefore also follows a
Poisson process with intensity k = k1 + k2. Each
replenishment order incurs a fixed ordering cost A.
Holding cost is incurred at the rate of h per unit of on-
hand inventory per unit time. The (fixed) lead time
for replenishment is L (>0). The demand that is not
satisfied immediately upon arrival is backordered
and incurs two types of penalty costs: a delay cost at
rate pi per unit per unit time for the duration the
demand is not fulfilled, and a one-time stock-out cost
of pi per unit. It is assumed that class 1 demand has
higher priority than class 2 demand; accordingly the
penalty cost for class 1 is higher than that of class 2,
that is, p1 ≥ p2 and p1 ≥ p2.
Two separate bins are kept for the two customer

classes, BIN1 and BIN2. As a (Q, r) policy is followed
and the demand follows a Poisson process, the total
inventory position immediately after an order is
placed is r + Q = S1 + S2, where S1 and S2 are the
base stocks allocated to BIN1 and BIN2, respectively.
The quantity ordered for each bin (denoted by q1 and
q2, respectively) is equal to the base stock allocated to
that bin minus its inventory position at the time of
ordering. Note that, Q = q1 + q2.
The 2B policy proposed in this study works as fol-

lows. Demand that arrives for each class is fulfilled
from their respective bins, if possible. When BIN2 is
empty, demand for class 2 is backordered. When

BIN1 is empty, demand for class 1 is fulfilled from
BIN2, if sufficient inventory is available in BIN2, if
not, it is backordered (see Figure 1). We assume that
the backorders are cleared using the threshold clear-
ing mechanism, in order to develop the exact cost
expression for the 2B policy. Under threshold clear-
ing, backorders in the current order cycle are cleared
when replenishments arrive, if the inventory position
in the respective bins was positive at the time of the
corresponding demand arrival. If not, they are cleared
from the replenishment in the next order cycle. The
threshold clearing mechanism ensures that the inven-
tory positions are regenerated in every replenishment
cycle and thus the holding and penalty costs can be
calculated exactly. This is unlike the priority clearing
mechanism, where the backorders for the higher
demand class is always cleared first when replenish-
ment arrives. Therefore, as in Deshpande et al. (2003),
we use the threshold clearing mechanism to develop
the optimal 2B policy and to evaluate the costs, even
though priority clearing is easier to implement in
practice. As discussed earlier, Deshpande et al. (2003)
had shown that the expected cost obtained by the pri-
ority clearing mechanism is close to that of the thresh-
old clearing mechanism in simulation experiments. A
more detailed explanation of the implementation of
the threshold clearing mechanism for the 2B policy is
provided in the unabridged version of the study.
In practice in an ERP system, the 2B policy with pri-

ority clearing can be implemented by treating the two
bins as the separate items (or same item in two differ-
ent locations), with the additional condition that item
1 can be substituted by item 2. Furthermore, the reor-
der should be triggered only based on the sum of the
inventory positions of the two items. On the basis of
the conversation with a leading ERP system provider,
we believe that the 2B system can be implemented by
customizing the ERP system. If not, a special purpose
inventory software package has to run on top of the
ERP system to implement the policy.

2.1. Evaluation of The Policy Cost
The decision variables for the proposed policy are the
order quantity Q and the base stock positions of BIN1

and BIN2, S1 and S2, respectively. Note that the reor-
der point, r = (S1 + S2 � Q). Let C(Q, S1, S2) denote
the long-run expected cost of the policy for a given Q,
S1, and S2. The expected cost comprises of three com-
ponents—ordering cost, holding cost, and penalty
cost. Since the order quantity is Q for every order, the
expected ordering cost is A�

Q . Therefore, the expected
cost can be written as

CðQ; S1; S2Þ ¼ A�

Q
þ GðQ; S1; S2Þ; ð1Þ

Table 1 Notation

i Index for demand class, i = 1, 2
ki Demand rate for class i
k Total demand rate for the two classes. k = k1 + k2
pi Time-weighted delay cost per unit for class i
pi Fixed stock-out cost per unit for class i
h Holding cost per unit per unit time
A Fixed ordering cost per order
L Lead time for replenishment arrival
Q Order quantity
r Reorder point
Si Base stock for class i
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where G(Q, S1, S2) is the expected holding and pen-
alty cost for a given policy.
Given that a (Q, r) policy is used, the total inventory

position of the two bins follows a regenerative pro-
cess. Let the lth order be placed at time sl and the
l + 1th order at slþ1. Let t be any point in the lth
replenishment cycle such that sl\t� slþ1 (see
Figure 2). Knowing the probability distribution of
inventory position at time t (or total demand in the
interval (sl, t]), and the demand during period (t, t+L],
the cost C(Q, S1, S2) can be evaluated. The order
placed at sl would be received at sl+L. Therefore the
inventory represented by inventory position (S1, S2) at
sl would be fully available at sl+L, and this inventory
position minus the demand during (sl, t+L] would
accurately represent the inventory level/backorders
at time t+L. Also, due to the design of the threshold
clearing mechanism, the backorders from the previ-
ous replenishment cycles are already accounted for in
the inventory position Si (even though they may be
cleared only at sl+L) and can be ignored for comput-
ing the inventory levels and cost at time (t+L). How-
ever, the sequence of demand arrivals during the
period (sl, t+L] is important in computing the correct
penalty costs. Since a (Q, r) policy is used, and the
demand follows a Poisson distribution, the total
demand for the two classes, �Dt during the period (sl,
t] follows a Uniform distribution with probability

uð�Dt ¼ iÞ ¼ 1

Q
; i ¼ 0; 1; 2. . .;Q� 1: ð2Þ

The total demand for the two classes during the
period (t, t+L], �DL follows a Poisson distribution,

Prð�DL ¼ jÞ ¼ e��Lð�LÞj
j!

j ¼ 0; 1; . . .1: ð3Þ

Let �DtþL be the total demand during the period (sl,
t+L]. Then the probability distribution of �DtþL can be
computed as a convolution of the Uniform and the
Poisson distribution as follows

Prð�DtþL ¼ jÞ ¼ ftþLðjÞ

¼
Xminðj;Q�1Þ

i¼0

ð1
Q

e��Lð�LÞj�i

ðj� iÞ! Þ j ¼ 0; 1; . . .1: ð4Þ

Since the demands follow Poisson process, the
probability that a particular demand arrives from
class i (i = 1, 2) is ai ¼ �i

� and the number of ith class
demand arrivals, Di, out of a total demand, �DtþL fol-
lows a binomial distribution given by

BðDi; �D
tþL; aiÞ ¼ �D

tþL

CDi
ai

Dið1� aiÞ�D
tþL�Di ; ð5Þ

where,
�D
tþL

CDi
¼ �D

tþL
!

Di!ð�DtþL�DiÞ!
is the number of ways of

choosing Di class i demands out of the total �DtþL

demand arrivals. If k1 and k2 are the actual number
of demand arrivals for class 1 and class 2, respec-
tively, during the time period (sl, t+L], the probabil-
ity distribution of k1 and k2 can be computed as a
convolution of the Poisson distribution, given by
Equation (4) and the binomial distribution, given by
Equation (5). The joint probability distribution of
demand for the two classes D1 and D2 during the
time period (sl, t+L] is given by

gðk1; k2Þ ¼ PrðD1 ¼ k1;D2 ¼ k2Þ
¼ ftþLðk1 þ k2ÞBðk1; k1 þ k2; a1Þ: ð6Þ

As class 1 demand can also be satisfied from BIN2,
if BIN1 is empty, the expected holding and penalty
costs depend on the sequence of demand arrivals. Let
l1 = S1 � k1 and l2 = S2 � k2. When both l1 and l2 are
greater than zero, they represent the inventory levels
in BIN1 and BIN2 at time (t+L). In other cases, one or
both demand classes can incur penalty costs. Table 2
provides a list of possibilities for the holding and pen-
alty costs for different values of l1 and l2.
Cases (1) and (2) do not require class 1 demand to

use BIN2 because in both these cases, the inventory in
BIN1 is enough to satisfy all the demand from class 1.
In Case (3a), BIN1 runs out of inventory, but the
remaining class 1 demand can be fulfilled from BIN2.
However, in cases (3b) and (4) the inventory available
in BIN2 is not enough to satisfy all the demand from
the two classes. In these cases, the number of units of
class 1 demand (and class 2 demand) that are backor-
dered depends upon the sequence of demand arriv-
als. Let Gj (Q, S1, S2) represent the expected holding
and penalty cost for case j, j = 1, 2, 3a, 3b, 4.
Case 1: In this case, all demands for each class are

satisfied from their respective bins and there are no
backorders at time (t + L). The units remaining after
satisfying the demands incur holding cost; the
expected penalty and holding cost per unit time for
this case is

G1ðQ; S1; S2Þ ¼
X1
l1¼1

X1
l2¼1

hðl1 þ l2ÞgðS1 � l1; S2 � l2Þ: ð7Þ

Note that for a given l1, l2, the realized demand for
the two classes during the period (sl, t+L] isτl t τl+1        t+L

(l+1) th order 
placed l th Order 

received   
(l+1) th Order 
received   

τl+1+L

l th order 
placed

τl+L

Figure 2 Timeline of The Replenishment Cycles
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k1 = (S1 � l1), and k2 = (S2 � l2), respectively. Corre-
spondingly the joint probability distribution of the
demand is g(S1 � l1, S2 � l2).
Case 2: The inventory in BIN1 is enough to satisfy

the demand from class 1 in the period (sl, t+L], but the
inventory in BIN2 is not enough to satisfy all the
demand from class 2. Therefore, there is inventory left
over in BIN1, but penalty cost is incurred for some of
the class 2 demand arrivals. The units left in BIN1

after satisfying all the demand from class 1 is l1 and
the holding cost is hl1. Since there are some backor-
ders for class 2, they incur delay cost of p2 l2j j and
stock-out cost of k2p2. Note that l2 is non-positive in
this case. The expected penalty and holding cost per
unit time for this case is

G2ðQ; S1; S2Þ ¼
X1
l1¼1

X0
l2¼�1

ðhl1 þ p2 l2j j þ �2p2Þ�

gðS1 � l1; S2 � l2Þ:
ð8Þ

Case 3a: In this case, the inventory available in BIN1

is not enough to satisfy the demand from class 1 in
the period (sl, t+L] but the inventory in BIN2 is
enough to satisfy all the demand from class 2 during
that period plus the demand from class 1 which is
transferred over from BIN1. Hence, there are no back-

orders for either class at time t+L. The cost for this
case therefore is

G3aðS1; S2;QÞ ¼
X0

l1¼�1

X1
l2¼ l1j jþ1

hðl1 þ l2ÞgðS1 � l1;S2

� l2Þ: ð9Þ

As an example, suppose at time t+L, l1 = �5 and
l2 = 8. This means that 5 units of class 1 cannot be

satisfied from BIN1, but after satisfying all demand
from class 2, BIN2 still has 8 units left. So, the units left
in BIN2 can be used to fulfill the unsatisfied class 1
demand; then the units leftover will be l1+l2 = 3, with
the associated cost of 3h.
Case 3b: In this case, the inventory available in BIN2

after satisfying all the class 2 demand is not enough to
satisfy the class 1 demand that spills over from BIN1.
Since there are l2 units left in BIN2 at least l2 units of
class 1 demand can be satisfied from BIN2. However,
the actual number of class 1 demand fulfilled from
BIN2 can be higher depending on the sequence of
demand arrivals. When BIN1 runs out of inventory,
BIN2 can be used to satisfy demand for both class 1
and class 2 on an FCFS basis, and therefore it may
happen that some of the class 2 demand gets backor-
dered as the BIN2 gets exhausted by the class 1
demand arrivals, before some of the remaining class 2
demands arrive. We need to determine the possible
sequences of demand arrivals and the probability of
that sequence. For every such sequence, we can find
the number of backorders for each class and the asso-
ciated penalty cost, and, in turn, the expected penalty
cost for this case. This case is best illustrated with an
example which is discussed in the Appendix A. The
expected holding and penalty cost for case 3b can be
expressed as

Of the total demand (S1 + S2 � l1 � l2) only
(S1 + S2) units of demand can be satisfied and the
remaining l1 þ l2j j units of demand will be backor-
dered. Since class 1 demand can also use BIN2

after finishing BIN1, demand from both classes is sat-
isfied on an FCFS basis and only the last l1 þ l2j j
demands will be backordered. Let j be the units of
class 2 demand that arrives within the last l1 þ l2j j
demand arrivals. Then, out of first S1 + S2 demands,

Table 2. Effect on Holding and Penalty Cost for Different Cases of l1 and l2

Case l1 l2 Description Associated cost

1 >0 >0 Demands for both classes are fulfilled from their respective bins Holding costs for both BIN1 & BIN2

2 >0 ≤0 Demand for class 1 is fulfilled from its bin, BIN2 runs out, and
class 2 demands are backordered

Holding costs for BIN1 & penalty cost for class 2
demand

3a ≤0 >0 |l1| < l2 All demands are satisfied, class 1 demand is partly fulfilled from
BIN2. BIN1 has zero inventory

Holding cost for BIN2

3b |l1| ≥ l2 Both BIN1 and BIN2 have zero inventory. Some of the demands
are backordered

Penalty cost for class 1 and class 2 demand, depending
on sequence of demand arrivals

4 ≤0 ≤0 Both BIN1 and BIN2 have zero inventory. Some of the demands
are backordered

Penalty cost for class 1 and class 2 demand, depending
on sequence of demand arrivals

G3bðQ; S1; S2Þ ¼
X0

l1¼�1

Xl1j j

l2¼1

PminðS2�l2; l1þl2j jÞ

j¼0

S1þS2CS2�l2�j
l1þl2j jCj

ð l1 þ l2j j � jÞp1þ
jp2 þ �1p1 þ �2p2

� �

S1þS2�l1�l2CS2�l2

gðS1 � l1; S2 � l2Þ : ð10Þ
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S2 � l2 � j units would come from class 2. The

probability of this event is
S1þS2CS2�l2�j

l1þl2j jCj

S1þS2�l1�l2CS2�l2

. The units

of class 1 demand within last l1 þ l2j j demands
will be ( l1 þ l2j j � j). So, the penalty cost is
ð l1 þ l2j j � jÞp1 þ jp2 þ �1p1 þ �2p2f g. However, the

total class 2 demand arrivals is S2 � l2 and hence
j cannot be more than either (S2 � l2) or l1 þ l2j j. This
leads to the expression given in Equation (10).
Case 4: In this case, the demand for both the classes

in the period (sl, t+L] is greater than the allocated
inventory position in the respective bins at time sl,
that is, D1 ≥ S1 and D2 ≥ S2. While some of the class 1
demand can possibly be satisfied from BIN2, as in case
3b, there are likely to be backorders for each class.
The exact number of backorders for each class would
again depend on the sequence of demand arrivals.
The cost for case 4,

As can be seen, the denominator in Equation (11) is
the same as in Equation (10) in Case 3b. The first term
of the numerator in Equation (11) is almost the same
as in Equation (10). The major difference is that in
Case 4, the demand for class 2 will incur stock out of
at least l2j j units as its demand cannot be fulfilled
from BIN1 and the excess demand over the base stock
level is l2j j. When the number of class 2 demands, j, in
the last l1 þ l2j j demands is less than l2j j, it simply
means that BIN2 is completely exhausted by class 2
demands in the first (S1 + S2) demands itself, and
there is still stock available in BIN1 to satisfy some of
the class 1 demands in the last l1 þ l2j j demands in the
period (sl, t+L]. Therefore, expression Equation (11)
has two terms, one for the case where the number of
class 2 demands, in the last l1 þ l2j j demands, j[ l2j j
and one for the case when j� l2j j. For j� l2j j, the pen-
alty cost incurred is identical for all values of j, and
the stock out incurred is l1j j and l2j j, respectively, for
class 1 and class 2 demands.
The only other point to note in expression Equa-

tion (11) is that if D2 > (S1 + S2), then at least
D2 � (S1 + S2) units of class 2 demand have to occur
within the last l1 þ l2j j demand arrivals. Since a
maximum of (S1 + S2) units of class 2 demand can
arrive within first (S1 + S2) demand arrivals,
the remaining units, D2 � (S1 + S2) can only arrive

in the last l1 þ l2j j demand arrivals. Hence,
j[D2 � ðS1 þ S2Þ ¼ ð�S1 � l2Þ. This has to be
reflected in the summation range in both terms in the
numerator in Equation (11). Note that when
D2 ≤ (S1 + S2), (�S1 � l2) ≤ 0, and then it does not
have an impact on the summation range in either
term. Finally, using Equations (7) to (11), the exact
expression for the expected total cost of the proposed
2B policy can be obtained as

CðQ; S1; S2Þ ¼ �A

Q
þ G1ðQ; S1;S2Þ þ G2ðQ; S1; S2Þ

þ G3aðQ; S1; S2Þ þ G3bðQ; S1; S2Þ þ G4ðQ; S1; S2Þ
:

ð12Þ

Note that, if we choose to optimize only the total
(ordering + holding) cost subject to fill rate restric-

tions on the two demand classes (as in Arslan et al.
(2007)), the cost expression in Equations (10), (11),
and (12) would be simplified significantly as
G3b = G4 = 0, in that case.

2.2. Development of Optimal Policy Parameters
We now develop a method to derive the optimal pol-
icy parameters Q, S1, and S2 that minimize the total
expected cost for the proposed 2B policy. For the CLR
policy, Deshpande et al. (2003) showed that for a
fixed value of the critical inventory level K, Q can be
determined using an algorithm similar to Federgruen
and Zheng (1992), by exploiting the convexity of the
underlying cost terms. However, they still needed
to enumerate the cost exhaustively for all possible
values of K.
Due to the complex nature of the cost expression of

the proposed 2B policy, no such structural results on
the cost function could be obtained. However, we are
able to use the key insights from the (Q, r) policy algo-
rithm of Federgruen and Zheng (1992) to limit our
search in the algorithm to determine the optimal pol-
icy parameters. Note that in our case, S1 þ S2 ¼ rþQ.
Let S1 * (Q) and S2 * (Q) be the optimal value of S1
and S2 for a given Q. In the Federgruen and Zheng
algorithm for the single demand class problem, when
Q is incremented by one to Qnew = Q + 1, either the

G4ðQ; S1; S2Þ ¼
X0

l1¼�1

X0
l2¼�1

PminðS2�l2; l1þl2j jÞ

j¼maxð l2j jþ1;�S1�l2Þ
S1þS2CS2�l2�j

l1þl2j jCj
ð l1 þ l2j j � jÞp1þ
jp2 þ �1p1 þ �2p2

� �
þ

Pl2j j

j¼maxð0;�S1�l2Þ
S1þS2CS2�l2�j

l1þl2j jCjð l1j jp1 þ l2j jp2 þ �1p1 þ �2p2Þ

0
BBBB@

1
CCCCA

S1þS2�l1�l2CS2�l2

gðS1 � l1; S2 � l2Þ:

ð11Þ
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optimal value of r remains the same, or r decreases by
1 [or in other words, the new value of (r + Q) either
remains the same (r decreases by 1, Q increases by 1)
or increases by 1 (r remains same, Q increases by 1)].
By the same logic, in our proposed 2B policy, when Q
is incremented by 1 to Qnew = Q + 1, there are three
possible values for S1*(Q + 1), S2*(Q + 1). The possi-
ble values are (1) S1*(Q + 1) = S1*(Q) & S2*
(Q + 1) = S2*(Q), (2) S1*(Q + 1) = S1*(Q) + 1 & S2*
(Q + 1) = S2*(Q), and (3) S1*(Q + 1) = S1*(Q) & S2*
(Q + 1) = S2*(Q) + 1. In other words, when Q is incre-
mented in the algorithm, we need only search for
three possible values of (S1, S2). While we are not able
to prove this result analytically, all our numerical
experiments over a range of problem parameters sup-
port this conjecture. This, along with the bounds on
the decisions variables, Q and S ¼ S1 þ S2 (developed
below), help us to search for the optimal values for
the proposed policy in an efficient manner.

2.3. Bounds on S ¼ S1 þ S2 and Q
Clearly a lower bound, SL, on S can be obtained by
solving a single customer class problem with

demand, � ¼ P2
i¼1

�i; p ¼ p2 and p = p2. An upper

bound, SU1, on S can be obtained by solving a single

customer class problem with � ¼ P2
i¼1

�i; p ¼ p1 and

p = p1.
If a separate stock policy was considered (i.e., BIN2

can only be used to satisfy demand from class 2, but
ordering for the two classes is done together), then
the problem reduces to a joint replenishment problem
(JRP) and the (Q, S) policy developed by Pantumsinc-
hai (1992) can be used to solve it. As the inventory of
each BINi is segregated to fulfill only a specific
demand class, the value of S1 + S2 of this JRP solution

should serve as an upper bound SU2 on S of the origi-
nal problem. One can then choose the upper bound

on S as SU ¼ minðSU1; SU2Þ. If each demand class were
to be treated as a separate item, each with ordering
cost A, and demand ki (i.e., a separate stock policy
with no economies of scale in ordering), then the sum
of the optimal order quantity of the two separate clas-
ses or items would clearly be an upper bound, QU, on
the Q.
The algorithm for determining the optimal policy

then involves searching for the lowest C (Q, S1, S2)
within the lower and upper bounds of Q and S.
For the first value of Q, we have to search for all
values of (S1, S2) within the lower and upper
bounds of S. Thereafter, when Q is incremented
by one in each iteration, one needs to search only
for the three possible combinations of (S1, S2) as
mentioned earlier.

3. Numerical Results

The performance of the proposed 2B policy was
compared with the CLR policy in an extensive
numerical study. The problem parameters used in
the study were similar to that used in Deshpande
et al. (2003), which itself reflect data from different
categories of industries. In the first part of the
numerical study, we included the penalty cost in the
total cost and did not impose any minimum service
level requirements on the two demand classes. The
problem parameters used in the first numerical
study are summarized in Table 3. We initially had
840 problems in the first numerical study. However,
for values of p2 > 1200, both the policies resulted in
identical optimal cost and with no need for rationing
for a significant majority of the problems. Hence
only two values of p2 were considered and this
reduced the number of problems in the study to 168.
For all these 168 problems, we calculated the optimal
cost (as well as the fill rates obtained for the two
demand classes) for both the policies.
The service level for the two classes is determined

using PASTA property which states that for Poison
demand, the fill rate is equal to the probability that
the steady-state inventory level is positive. For the
CLR policy, the fill rates for the two demand classes
can be calculated as

SLCLR1 ¼ PrðIL[ 0Þ; ð13Þ

SLCLR2 ¼ PrðIL�KÞ; ð14Þ
where, K is the rationing level and IL is the steady-
state inventory level. For the proposed 2B policy,
the fill rates for the two demand classes can be cal-
culated as follows:

SL2B1 ¼ Prðl1 [ 0Þ þ Pr½l1 � 0 & ððl1 þ l2Þ[ 0Þ�; ð15Þ

SL2B2 ¼ Prðl2 [ 0Þ: ð16Þ

3.1. Comparison of The Two Policies without
Service Level Constraints
The complete results for the two policies for the first
numerical study can be obtained from the authors.

Table 3 Problem Parameters Used in the First Numerical Study

Demand k = (k1 + k2) = 20, k1 = 7, 8, 9, 10, 11, 12, 13
(7 values)

Back order cost Delay cost p1 = 6000 (fixed). p2 = 600, 1200
(2 values)

Stock-out cost p1 = p2 = 0
Lead time L = 0.25, 0.3, 0.35, 0.4, 0.45, and 0.5 (6 values)
Holding cost rate h = 250, 300 (2 values)
Fixed ordering cost A = 100
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A partial sample of the results is provided in Table 4.
For all the 168 problems in the study, the CLR policy
resulted in a lower cost than the 2B policy. The aver-
age difference in the cost between 2B and CLR policy
was 3.85%, and the maximum difference was 6.83%.
However, the service level provided to the lower class
demand by the proposed 2B policy was as much as
28% higher than that of the CLR (with an average
increase in fill rate of 11.5%). The 2B policy also
resulted in a slightly higher fill rate for the higher
class demand, with an average increase in fill rate of
2.8%, and a maximum increase of 9%. Thus, the 2B
policy provides a much higher service level to the
lower class demand, for only a slightly increase in
cost (less than 4%). This is because the inventory in
BIN2 initially gets reserved for the lower class
demand as the demand for the higher class gets ful-
filled first from BIN1, whereas in CLR, demand from
both the classes are initially fulfilled from the same
common stock.

3.2. Comparison of The Two Policies with Service
Level Constraints
When no service level constraints are imposed and
the total cost (including penalty cost), is optimized,
the CLR policy provides a low fill rate for the lower
priority demand class (which is as low as 64%). In
reality, the service level requirement for the lower
demand class may not be that low.
We therefore considered a service level constrained

optimization problem (as in Arslan et al. 2007), in the
second part of the numerical study. In this case, the
total cost (comprised of ordering cost and inventory
holding cost) is optimized subject to minimum fill rate
constraints on both the demand classes. The optimal
solution for both the 2B and CLR policies were
obtained by exhaustively searching for the lowest cost
solution that satisfied the fill rate requirements for the
two demand classes.
The problem parameters used for the experiments

in the second part of the numerical study were the

Table 4. Comparison of The 2B Policy with CLR Policy for Problems Without Service Level Constraints: Partial Results
(k = (k1 + k2) = 20, p1 = 6000, p2 = 600, p1 = p2 = 0, h = 250, A = 100)

Performance difference between 2B policy and CLR policy

L

k1 Percentage cost difference
between the 2B policy and
the CLR policy (%)

Difference in fill rate for the higher
class demand (SL1) between the 2B
policy and the CLR policy (%)

Difference in fill rate for the lower
class demand (SL2) between the 2B
policy and the CLR policy (%)(k2 = 20 � k1)

0.25 7 5.03 2.20 4.90
8 5.48 5.70 11.70
9 4.60 6.20 9.30
10 4.29 5.60 22.80
11 3.87 6.00 20.10
12 3.79 0.70 14.70
13 3.63 2.00 16.60

0.3 7 5.89 6.00 11.00
8 5.08 6.60 8.60
9 4.87 7.10 24.80
10 4.27 7.30 23.40
11 4.31 2.90 14.10
12 4.37 0.60 12.40
13 4.33 0.80 10.40

Table 5 Comparison of The 2B Policy with CLR Policy for The Service Level Constrained Optimization Problem

SL1 99% 99% 99% 99% 95% 95% 95% 90% 90% 85% 85% All problems
SL2 95% 90% 85% 80% 90% 85% 80% 85% 80% 80% 75%
Cost difference between CLR and 2B policy ((CLR-2B)/CLR) in percentage
Minimum difference �8 �13 �13.1 �18.1 �4.7 �11.3 �11.1 0 �6.2 0 �6.2 �18.1
Maximum difference 1 �1.2 �3.9 �1.8 4.5 �0.1 �0.6 5.2 1.8 5.8 5.2 5.8
Average difference �2.8 �7.5 �9 �10.4 �0.3 �4.6 �5 2.4 �2.7 2.1 �0.4 �3.5
Percentage of problems where CLR
had lower cost

90 100 100 100 39 100 100 0 86 0 38 69

Percentage of problems where 2B
had lower cost

8 0 0 0 61 0 0 60 8 43 43 20

Percentage of problems where both
policies had identical cost

1 0 0 0 0 0 0 40 6 57 19 11

SL1 is the minimum fill rate required for demand class 1 and SL2 is the minimum fill rate required for demand class 2.
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same as that given in Table 3, but with no penalty
costs for backordering. Instead, different values of the
fill rate constraints for the two demand classes were
used in this study. For each set of minimum fill rate
combinations for the two demand classes (SL1, SL2)
there were a total of 84 problems (7 demand values, 6
values of the lead time, and 2 values for the holding
cost rates). A total of 11 different fill rate combinations
were used in the study ([99%, 95%], [99%, 90%], [99%,
85%], [99%, 80%], [95%, 90%], [95%, 85%], [95%, 80%],
[90%, 85%], [90%, 80%], [85%, 80%], and [85%, 75%]).
Therefore a total of 924 problems were solved in the
second part of the numerical study.
The complete numerical results for these set of

experiments can also be obtained from the authors.
Table 5 provides a summary of these results. The
results of the numerical study show that CLR domi-
nates 2B in 69% of the problems, and 2B dominates
CLR in 20% of the problems. 2B seems to dominate in
a large percentage of the problems when the service
level difference for the two classes is not too high, or
when the service levels required are relatively lower.
For example, when (SL1, SL2) = (90%, 85%), the 2B
policy dominated the CLR policy in 60% of the prob-
lems and for the remaining 40% of the problems, both
policies resulted in the same optimal cost. By its very
nature of keeping stocks in two separate bins, the 2B
policy works well when the service level differentia-
tion required between the two demand classes is rela-
tively small. The CLR policy on the other hand works
well when a larger difference in the service level is
required.

4. Summary

In this study, a new class of two bin (2B) policy is
developed for continuous review inventory systems
with two differentiated demand classes. We have
developed the cost expressions for the proposed pol-
icy under the assumption of clearing the backorders
using a threshold clearing mechanism. An algorithm
to determine the optimal policy under this class is
also proposed. When the total cost (including penalty
cost) is optimized without any fill rate restrictions, the
CLR policy dominates 2B policy in all problems in a
computational study. However, the proposed 2B pol-
icy provides a higher service level (especially for the
lower customer class) compared to the CLR policy,
without too much increase in the cost. The fill rate
provided for the lower priority class in the CLR policy
can be very low (as low as 64%). Instead of penalty
costs, if minimum fill rate restrictions are imposed on
the two demand classes, the proposed 2B policy out-
performs the CLR policy, when the difference in ser-
vice level requirement for the two demand classes is
not very high. Future research could possibly address

extending the proposed 2B policy to systems involv-
ing more than two customer classes and to other
demand distributions.
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Appendix
Numerical Example Illustrating Case
3b of the Policy Cost Calculation
Let S1 = 7 and S2 = 6, l1 = �3 and l2 = 1. The demand
for the two classes during the period (sl, t + L] is
(S1 � l1) = 10, and (S2 � l2) = 5, respectively, with
the total demand being 15. Of the total demand of 15
for both classes together, a maximum of only
S1 + S2 = 13, can be satisfied. Of the 10 units of
demand from class 1, 7 would be satisfied from BIN1.
The exact number of units of class 1 demand (in
excess of 7) that would be satisfied depends upon the
sequence of arrival of the class 1 and class 2 demands.
There are three possible ways these demands can
arrive.
(a) Of the first 13 units of demand arrivals, 10 units

are from class 1 and 3 units are from class 2
(maximum possible demand from class 1 is 10)
and the last 2 (14th and 15th) demand arrivals
are from class 2.

(b) Of the first 13 units of demand arrivals, 9 units
are from class 1 and 4 units are from class 2. Of
the last two demand arrivals, 1 is from class 1
and the other from class 2.

(c) Of the first 13 units of demand arrivals, 8 units
are from class 1 and 5 units are from class 2 and
the last 2 demand arrivals are from class 1.

No other case is possible since demand from class 2
cannot exceed 5. In the first case, all the class 1
demand can be satisfied and there will be no backor-
ders for class 1. Also 3 units of class 2 demands will
be satisfied and 2 units of demand which arrived last
will be backordered. In the second case, 1 unit of the
demand for each class will be backordered. Finally, in
the third case, all the class 2 demands are satisfied
and 2 units of class 1 will be backordered as it arrives
after BIN2 becomes empty.
The probability of the first case is

13C3
2C2

15C5
. The numer-

ator denotes the number of ways in which there can
be 3 class 2 demands out of first 13 demands and 2
class 2 demands out of last 2 demands. The denomi-
nator denotes the number of ways in which there can
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be 5 class 2 demands of total 15 demands. Similarly,
the probability for the second case and third case

are
13C4

2C1
15C5

and
13C5

2C0
15C5

, respectively. Since in the first

case, there are no class 1 backorders and 2 units of
class 2 backorders, the penalty cost is
(0p1 + 2p2 + k1p1 + k2p2). Similarly, for the second
and third cases it will be (1p1 + 1p2 + k1p1 + k2p2)
and (2p1 + 0p2 + k1p1 + k2p2), respectively. So, the

expected penalty cost is
13C3

2C2
15C5

(0p1 + 2p2 + k2p2) +
13C4

2C1
15C5

(1p1 + 1p2 + k1p1 + k2p2) +
13C5

2C0
15C5

(2p1 + 0p2 +

k1p1 + k2p2). Note that due to PASTA property and
the fact that there is no inventory left over in either
bins at time (t + L), the expected stock-out cost for
demand class k is kkpk.
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