The extensive utilization of Global Positioning System technology has made our daily lives much easier. Compared to outdoor localization which requires an accuracy of just several meters, the complex indoor scenarios with dense multipath components need a better positioning performance. Ultra-wideband technology (UWB) improves the precision significantly to centimeter level. The large bandwidth of UWB impulse radio (>500MHz) guarantees high time-of-arrival (TOA) resolution. However, even with such accuracy, the estimated indoor coordinate still deviates from the real location. The study of the range error dependency on distance helps refine the position estimation algorithm more effectively, hence enhance the reliability of UWB technology.

Objective

To find a suitable model to relate range error changes with distances between two sensors using UWB RFID indoor positioning technology.

Hardware

- Battery-powered transmitter (driven by Texas Instrument MSP430 low power microcontroller)
- Two signal sensors
- UTP cables (10m, 30m)
- Locator box (USB2.0 interface)
- Computer

Methodology

Data Collection

Two sensors are separated by distances from 1~35m, with the tag placed at one sensor first. 500 sample data of TOA at both sensors is collected. Then the tag is moved to the other sensor and another 500 sample data is saved.

Time-Difference-of-Arrival (TDOA)

TOA consists of the signal generation time (T_t), the time of flight in the air (T_f) and the cable transmitting time (T_c).

When the tag is placed at S_1, $T_f^1=0$

$$T_{DOA}^{21}=TOA_2-TOA_1=(T_f^2-T_f^1)+(T_c^2-T_c^1)=T_f^2+(T_c^2-T_c^1)$$

When the tag is placed at S_2, $T_f^2'=0$

$$T_{DOA}^{21}'=(T_f^2'-T_f^1')+(T_c^2'-T_c^1')=T_f^1'-(T_f^2'-T_c^1')$$

Ideally, $T_c^1=T_c^1'$, $T_c^2=T_c^2'$. Hence the time for the signal to travel between two sensors is $T_{21}=T_{21}'=T_{DOA}^{21}+T_{DOA}^{21}'/2$.

Distance

To convert the sampling time points to real time distance: $d_{21}=T_{21} \times tsamp \times c$, where $tsamp$ is the inverse of the frequency of the time points ($3.25MHz \pm 10ppm$), c is the speed of light in the air.

Range Error Modelling

Mean and Root Mean Square Error with respect to distance are modeled.

Indoor measurements were conducted @ INFINITUS lab (S2-B4b-05), NTU.

Project Title: Ultra Wideband Impulse Radio RFID Positioning System
Supervisor: Assoc Prof Law Choi Look
Student: Zhang Lian
Collaborator: Ms Luo Yanjia
School of Electrical and Electronic Engineering
Category: 3
Project ID: EEE13163
Project Title: Ultra Wideband Impulse Radio RFID Positioning System
Supervisor: Assoc Prof Law Choi Look
Student: Zhang Lian
Collaborator: Ms Luo Yanjia
School of Electrical and Electronic Engineering
Category: 3
Project ID: EEE13163