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Abstract—Cloud radio access network (C-RAN) is emerging as
a potential alternative for the next generation RAN by merging
RAN and cloud computing together. In this paper, we consider
the baseband unit (BBU) pool of C-RAN as a collection of virtal
machines (VMs). We allow each user equipment (UE) to assot&a
with multiple VMs in the BBU pool, and each remote radio
head (RRH) can only serve a limited number of UEs. Under this
model, we jointly optimize the VM activation in the BBU pool
and sparse beamforming in the coordinated RRH cluster, whib is
constrained by limited fronthaul capacity, to minimize the system
cost of C-RAN. We formulate this problem as a mixed-integer
nonlinear programming (MINLP) problem, and then propose
efficient methods to optimize the number of active VMs, as wel
as the sparse beamforming vectors. Moreover, we derive cled-
form solution for the beamforming vectors. Simulation resuts
suggest that our proposed algorithms have better performace
than the benchmark algorithms in terms of both system cost ad
robustness.

Index Terms—C-RAN, VM activation, limited fronthaul capac-
ity, computation capacity
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Fig. 1. A typical structure of C-RAN.

Secondly, costly capital and operating expenditure leads t
falling average revenue per user. Moreover, with the dynami
nature of mobile traffic, the utilization of some BSs is atifua
quite low during non-peak hours.

Along with RANSs’ evolution, cloud computing has emerged
as a popular computing paradigm, since cloud computing
has its attractive characteristics like resource poolimgl a

The evolution of radio access network (RAN) over theapid elasticity. By introducing the merits of cloud comyput
past decade has been driven by fast data proliferationoCisog into RANs, cloud radio access network (C-RAN) has
Systems predicts that mobile data traffic will increase I8-fobeen proposed as a prospective architecture to overcome the
from 2015 to 2020, and the number of mobile devices paforementioned challenges [3]. A typical C-RAN consists of
capita will reach 1.5 by the year 2020 [1]. To maintain #hree components (cf. Figure 1): baseband unit (BBU) pool,

high quality-of-service (QoS), the principal solution iRAN

fronthaul links and remote radio heads (RRHs). The most

service providers is enhancing RANS’ capacity and coveragggnificant innovation of C-RAN is utilizing a centralized
However, they are facing many challenges when adopting tltieud-based BBU pool instead of the conventional distedut
solution approach [2]: Firstly, the explosive increase @i-n baseband processing devices co-located with the BSs. That
work capacity demand (especially busy-hour demand) trgggemeans, in C-RAN, baseband signal processing functioesliti
an exponential increase in the number of base stations (BSs8E decoupled from the RRHs, and RRHSs just need to keep
which leads to a significantly higher power consumptiorbasic signal transmission and reception functionalities.
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C-RAN possesses several advantages compared to the con-

ventional RAN: Firstly, utilizing centralized signal press-

ing in the BBU pool instead of the distributed BSs in the
conventional RAN can significantly save the capital and op-
erating expenditure. Secondly, joint processing in the BBU
pool and cooperative radio techniques over RRHs, which
are interconnected via the BBU pool, improves the spectrum
efficiency, link reliability and the communication qualitf

the cell edge users. Thirdly, BBU pool consists of many
general purpose servers. Applying cloud computing as the
computing paradigm of the centralized BBU pool can reduce
the power consumption and improve hardware utilization,
through resource sharing and virtualization, i.e., a Jeced

be further virtualized into many virtual machines (VMs).wo
ever, several challenges in C-RAN remain to be addressdd, an



| summarize these challenges asliaited versus unlimited references [14]-[17], [24] develop efficient signal congsre
problem: sion/quantization algorithms to downsize the load in the C-
. Due to the high amount of data transfers (especialfjAN fronthaul. Admission control in heterogeneous netvork

when joint transmission techniques are adopted in tMath wireless backhaul is studied in [25]. In addition, tduee
C-RAN downlink) in the fronthaul, whose capacity isthe amount of data transfer in C-RAN, caching at access
actually limited, efficient data transfer algorithms need0ints is a promising approach [26]-{28], and users device
to be developed. level caching is also applicable [29].

. As all the computation resources are migrated from Instead of focusing on the wireless transmission part of C-
the BSs into a centralized BBU pool, the amount drRAN, several works also investigate the problems introduce
computation resources in BBU pool is relativeiglimited Py the BBU pool. Computationally aware strategies are pro-
(compared to these in BSs). We need to effectively maRosed to rgduce computational outage in [30], and to magimiz
age and dispatch those computation resources in C-RANM-rate in [31]. The reference [32] uses task assignment to
In particular, with the ability to elastically scale serwic Minimize the power consumption in the BBU pool of C-RAN.
capacities in the cloud-based BBU pool, many problenlm'loweveﬂ most of these _Works fail to consider the_ interactio
s well studied in the conventional RANs have to b&etween cloud processing and wireless transmission in C-
relooked at in C-RAN. For example, resource allocatioRAN- In [33], we jointly optimize the elastic service scajin
schemes for conventional RANs are typically oblivioud! the BBU pool, RRH selection, and the beamformer design
to computation capatities/costs since they are fixed. ft the RRHs. However, the system model studied in [33] is
C-RAN, however, the computation capatities/costs at tf@mewhat idealized. This work considers a more practical
cloud BBU pool can be dynamically scaled, e.g., turningyStém, which differs from our previous work in the followin
on or off VMs, according to system demands. aspects: - N _ _

In this paper, we jointly optimize the VM activation in 1) In this paper, to fully utilize the computation capacity

. . of VMs, we consider the case where each UE can be
the BBU pool and sparse beamforming vector in the RRHSs, associated with multiple VMs in the BBU bool. and we
which have limited fronthaul capacity, to minimize the gyst P pool,

. . . ; need to optimize the number of active VMs in the BBU
cost of C-RAN, including cloud processing cost and wireless .
o pool. However, in [33], we assume each UE can only
transmission cost.

associate with one VM, and one VM can only server

one UE. Hence, the number of active VMs is just simply
A. Related Work equal to the number of UEs, while this is not practical.
We consider the limited fronthaul capacity in this paper,
which is assumed to be unlimited in [33]. As a conse-
guence, in this paper, each UE can only access a limited
number of RRHs in the active RRH cluster. In [33], we
assume each UE can access every RRH in the active RRH
cluster, which is not practical.

C-RAN [4]-[6] has attracted increasing research interesg )
over the past three years. C-RAN provides a centralized BBU
pool to improve resource utilization, such as the hardwarck a
energy utilization, and enables centralized processinthef
receive and transmit signals at the RRHs. However, the main
concern for this centralized processing structure is thgh hi
amount of data transfer in the capacity-limited fronthaJ-[ B Main Contributions

[20]. In fact, there are two main different definitions foreth In this paper, we jointly optimize the VM activation and

fronthaul capacity in the literature: L o
) ] ) sparse beamforming in order to minimize the overall cost for
1) Fronthaul capacity was defined as the maximum sum dafg&c-RAN with limited fronthaul capacity. Our main contribu-
rate transmitted on each fronthaul, such as in [11] afgns are as follows:

[18]. ) _ ] o We formulate the tnlimited versus limited problem
2) Fronthaul cgpacﬂy was defined as the maximum number 5q 5 mixed-integer nonlinear programming (MINLP) by
of user equipments (UEs) can be served on each fron-  minimizing the overall cost, which consists of two parts:
thaul, such as in [9], [10] and [21]. the cloud processing cost (in the BBU pool) with respect
The authors always implicitly assume that each fronthaol ca  to (w.r.t.) the number of active VMs, and the wireless
serve unlimited number of users when they adopt the first transmission cost (in the fronthaul and RRHs) w.r.t. the
definition. However, due to the signaling and coordination transmit beamformers.
overhead, in the real system, this assumption can not hold. To avoid the feasibility problem caused by relaxing the
Thus, we adopt the second definition in this work (See the [, o-norm constraint directly, we reformulate the original
detailed mathematical definition in Section 1I-C). Moregve MINLP into an equivalent problem, which introduces a
the second definition is also applied in the simulation p&rt o price vector. This equivalent problem can then be solved
[22]. by adjusting the value of the price vector, and reducing
With respect to the problem formulations, the works [7], to a subproblem. We propose two different approaches
[8] aim to minimize the number of active UE-RRH pairs to  to solve this subproblem: an integer search (IS) approach
mitigate the amount of data transfer in the fronthaul, while and a joint optimization with integer recovery (JR) ap-
in [9], [11], [13], [23], the authors consider the fronthaul proach. Moreover, we derive the closed-form solution for
capacity as a constraint in their optimization formulati®he the JR approach.



o We provide simulation results that suggest that our pro- ‘ o N
posed approach can provide better feasibility guaran- jﬂ:@l» J_»m_.

tee and obtain lower system cost than the benchmark o . >
algorithms, for example, the recently proposed static® % m :D:[@_' 2 ,
clustering algorithm in [11]. = . ) ?_r

o H H o)

The remainder of this paper is organized as follows. We - o -
present the C-RAN system model in Section Il, and propose _|—> AN @
the problem formulation and its equivalent formulation in | | D |
Section Ill. In Section IV and V, we propose approaches ! Prosesing ! :T,Va‘:,'::llf::ion:

to solve the problem step-by-step. And in Section VI, the

numerical results are presented. We conclude the paperrFi§ 2. Queueing network model representation of a C-RANtlprocessing
Section VII. and wireless transmission.

Notations are heterogeneous, and can be fiber links, copper cables or
We use calligraphy letters to represent sets, boldfacerlowdreless channels). After processing by the VMs, each UE's

case letters to denote vectors, and boldface upper caseslefi@ta is forwarded to the UE via at mobtRRHSs (since the

to denote matrices. The notatiir|, stands for the Euclidean data is shared among the limited fronthaul RRHs). Let the

norm, while(-)7 and(-)¥ are the transpose and the COnjugm@ch|evable wireless transmission rate to UBe c;.

transpose, respectively. We use C andR™ to represent the

natural numbers, complex numbers and non-negative real nuBd Queueing system model

bers, respectively. The notatiof\ B denotes the sed with its

subset3 removed. We also use the notatioh = max(0, z).

|| stands for the largest integer smaller than or equalsad

[x] stands for the smallest integer larger than or equals

Each active VM in the BBU pool can be modeled as a
gueue. Specifically, for each queue, the mean arrival rate is
a/m and the mean service rate jis Throughout the paper,
we assume the tasks within each queue is served in a first
in first out (FIFO) manner and the buffer length is infinite.

Il. SYSTEM MODEL We note that the use of queuing models, where the wireless
In this section, we present our C-RAN system model arfftRnsmission rate is the queue’s service rate, is not new, an
its practical constraints. has been widely used to characterize wireless communicatio

systems [35].
We consider a double-layer queueing network to represent
) each UE’s data processing and transmitting behavior in the C
Suppose that there are single-antenna UEs anfl RRHs, RaN downlink (cf. Figure 2). Specifically, in the BBU pool,
each with K" antennas, in a C-RAN cluster. We denote thge transport blocks to each UE is processed (e.g., encoded)
set of all UEs and all RRHs a&" = {1,--- N} andL = py 1, parallel active VMs, each of which is abstracted as a
{1,---, L}, respectively. There ar8/ homogenous VMs in gueye with mean service rate Then, the processed data is
the BBU pool. Each has computation capagitgnd incurs a transmitted to UE via RRHs over wireless channels, which
VM costyp > 0 when it is active. We denote the number ofre modeled by a wireless transmission queue with mean
active VMs asm € N, wherem < M. This model reflects ggryice rate;.
the popular commercial cloud service models, e.g., AMazonpe denote the mean processing delay for data toi Ui
Elastic Compute Cloud (EC2). In EC2, there are thousandsgt ggu pool ash;. Let d; be the mean transmission delay
instances (VMs) in the data center, and each instance hag;ahe data to UE in the wireless transmission queue (i.e.,
fixed comp_utation capacity. Cloud users just need to decigg expected delay incurred at the queue before the data is
how many instances they need to rent. completely transmitted). We assume that EEpacket arrival
_In the downlink of a C-RAN (cf. Figure 1), all UES" process to the dispatcher is a Poisson process with mean
incoming traffic is first processed by a dispatcher. We assumge \i. Hence, the arrival process to each VM also forms
that the mean arrival data rate of UEo the dispatcher iS;, pgisson process with mean arrival ratém. Suppose that the
Vi € N, and leta = >, Ai. Then, each transport blockseryice time of each data packet in each VM queue follows an
[34] (or even a code block within each transport block) in th@xponential distribution with meahy ., for o > a/m. Then,
data flow to UE: can be routed to one ofi active VMs for  for each UE's data, the arrival rate to the wireless transiois
processing (e.g., turbo coding) with probabilitym by the gyeye is the same as the one to the dispatcher [36][37
dispatcher. Therefore, the mean incoming traffic rate tde a55me that the service time of each data packet in the gérele

each active VM isa/m. o transmission queue follows an exponential distributiothwi
In the wireless transmission part, we consider joint trans-
mission as the CoMP technique in C-RAN, i.e., each UE’s!Note that, we do not consider the impact, introduced by kmsiprocess-

data can be shared among all the coordinated/associated"®R-on the arrival data rate to the wireless transmissiogugu Specifically,
we assume that, after being processed by the VM, the sizeeofrdmsport

RHs, while the_ RRHs have limited fronthaul link capacityocks and the inter-arrival times to the assembler stiain the same as
(the fronthaul links between the BBU pool and the RRHuose to the dispatcher.

A. System description



meanl/c,;. Therefore, the data processing and transmission other words, at most; UEs can be associated with RRH
in our C-RAN model can be treated as two layers of M/M/1  j. We can cast this fronthaul capacity constraint as
gueues in tandem. In addition, from queueing theory [38], we

have > iy < S5,V € £,
ieN
by = —= L . . . _
T mp—a’ where |lw;; ||, , = 1 if and only if RRH j is associated
J 1 ) with UE 3.
Ay )
wherep > a/m,c; > N\, Vi € N.
Let u; denote the data symbol for UEwith E[|u,|?] = 1, Il. PROBLEM FORMULATION

andw;; € CX*! denote the transmit beamformer for UE . .

from RRH j. We assume block fading wireless transmission The system cost incurred by a C-RAN is the total VM
channels from the RRHs to the UEs. We define thg- cost in the BBU pool and the power consumption incurred
norm andl,,;-norm of vectorw;; as [|w;; |, , = ngwino by _th_e RRHs. Our aim is to minimize the system cost by
and ||w;; ], , £ w/w;; respectively. Then, the association®Ptimizing the numb_e_r of active VMs and the beamformers
between UEs and RRHs can be representegivby|, ., i.e., at the RRHs. Specifically, (i) the cost for cloud process-
Wi, = 1 if and only if UE i is connected tg. :29 ; gw:z (i T\z.jw +In%ggedszy Vrgvélﬁss ;Dranjvrrr:lesrselon

The block fading channel from RRHK to UE ¢ is denoted " 2ui=1 j_zlh ”dPQ’l' i=1Zj=1 th |2R9Rq’ di

ash? whereh;; € CK*1 fori € ' andj € £. The received n > 0 is a weight andP; is a static cost when RRH (and its

ij0 . . _— . .
signal at UEi is then given by fronthaul) is active. Our optimization problem is formadt

as:
N
N L N L
i = hﬁwijui—i- hZHijUk"‘(Sia ; g w5
jezﬁ ’ gﬁ:wezﬁ ’ (PO) mr?ll\r/lv” me +1 Zl Zl (Wi |‘2,1 + Zl Zl Py ||wi; ||2,o
1=1 7= 1=17=
where the first term is the useful signal for UEthe second m 1 ,
term is the interference to UE andd; ~ CN(0,02) is the st mp—a T G — N s 7, VieN, )
additive white Gaussian noise (AWGN) at UEThe signal- a<mu, A <ci, Yie N (5)
to-interference-plus-noise ratio (SINR) at UHs o ’
0<m< M, meN, (6)
H
o | 2 e i wis ° ¢ < Bilog (1 +SINR,), Vi € N, @)
SINR; = ~ - ) 3)
a; T2 ki | 2o jer i Wiy [? N
The downlink achievable rate to UE i satisfies Z; HW”HM < Bj, Vi€l ®)
¢i < B;log(1l + SINR)), N '
. . - . > lwislly < S, Vi€ L, )
where B; is the wireless transmission bandwidth for UE 1
:E:Ch RRHj's maximum transmit power is denoted &5, where “s.t” stands for “subject to” and SINR given by (3).

We assume the feasible region of problem (P0O) is nhonempty.
N Let the optimal solution for problem (PO) Hgm*, c;, w;;) :
> iy, < By, forj e L. ieN,jeL).
=1 Remark 1:Actually, the system cost in this paper is a wide
concept, and its physical meaning can be varied. For instanc

C. Practical constraints 1) It can be the monetary cost per unit timegpistands for
In addition to the basic system model above, we include the (€ Price of renting/tumning on a VM per unit time;
following two practical constraints to capture the feasuod denotes the unit time electricity price of turning on RRH
C-RAN: j andn captures the electricity price per Watts per unit
time.

1) System delay constraint To couple cloud processing and 2) It also can be the power consumptiongistands for the

wireless transmission in C-RAN, we propose the cross- . . .
layer system delay constraint: static power consumption o_f turning on a VW, denotes
' the static power consumption of turning on RRHand
by +d; <15,Vi €N, n captures the inefficiency coefficient of the amplifier of

. ) . each RRH.
where; is a predefined maximum system delay for UE

i, which can be treated as its QoS requirement. For problem (PO0), we first note that there is no loss in
2) Fronthaul capacity constraint: We denoteS; € N as optimality if we restrict the constraints (4) to be equafti

the fronthaul linkj’s capacity, i.e., the maximum number Proposition 1: There exists an optimal solution

of UEs that can be connected with this fronthaul link. I (m*, c¢;,w};) : i € N,j € L} such that constraints

bt A



(4) are active, i.e.(m*,c;) for problem (PO) satisfies the .

following equation
m* 1 o . / Price T
m*u— + =\ Tir Vi EN. ) " ;1 0 {m*, e W)
Proof: For any optimal solution, if there exists are N . ¢, w,; ] ‘
such that (4) is a strict inequality, then we can decregse l
until equality in (4) holds. This is still a feasible solutidor
(P0), and the proposition is proved. O P2

Proposition 1 shows the interaction between cloud process-
ing and wireless communication. For example, if we needF- 3. An iterative approach to solve problem (PO).
lower processing delay;, which means more VMs should be

added, then this will result in a higher cloud processing.cos Based on Theorem 1, if a price vecibran be found so that

However, on the other hand, based on Proposition 1, a IOV\(%) holds, then we can solve (P1) instead of (P0). However,

processing delay; will lead to a higher transmission delay such a price vector may not exist, and in general, the solutio
in return. That means we can save some wireless transmis%?repl) is sub-optimal for (PO) if

power and active RRHs. Then a lower wireless transmission
cost can be achieved. This interaction reveals C-RAN as a B;(I) <S;, VjeL. (11)

coupled system. . . .
Problem (PO0) is difficult to solve, due to the following Instead of solving problem (PQ)dlrectIy, n Whath”OWSBW
ropose a step-by-step relaxation and reformulation ambro

reason;: Q) It Is an MINLP V.V'th two integer constraints (© o simplify the problem, and obtain a reasonable but sub-
and (9); and (ii) the problem is nonconvex even if we assume

m € RT and the fronthaul capacity constraint (9) is removeg.ptlmaI solut_lon: . )
In the following section, we propose a reformulation and gom 1) In_Section IV, we introduce some properties of the

relaxation techniques to make problem (PO) tractable. price vectorI" in problem (P1), and we propose a
price adjusting algorithm to find a price vectdr that

. _ satisfies equation (11). For a fixed price vectgrwe
A. An equivalent formulation for problem (P0) apply reweighted;-norm relaxation on problem (P1) to

In problem (P0), one of the solution challenges is the- simplify it into another problem (P2) in subsection IV-B.
norm constraint (9). Two commonly used approaches to dead) In Section V, we propose two different approaches to
with the I, o-norm are: smoothing function approximation  Solve problem (P2).

[8], [39] and reweighted, ;-norm approximation [11], [40].  We show the logic flow for solving problem (PO) in Fig-
However, if we just relax the left hand side of constraint (Qre 3.

with a smoothing function of, ;-norm approximations, and

solve the relaxed problem directly, then we have no guaeante IV. APPROXIMATION FOR PROBLEM(P1)

that the o_ptimal solutio_n _derived from the relaxed problem i |, this section, we first present some properties that the
also feasible for the original problem (PO). price vectorD’ satisfies. Then, we proposepaice adjusting

Let's consider the following problem, which considers thgjgorithm to obtain a sub-optimal solution for problem (PO)
trade-off between the system cost and fronthaul capacity:

o1 . N L A. Bisection search for price vectdr
(P1) mncm?v] me WZ;Z; HW“HQJ In the following proposition, we present results that allow
N LZ_ = us to iteratively adjust the price vector in problem (P1)hsuc
that equation (11) holds. The proposition is inspired by [9]
P; i) ||Wis L. .
+ ;;( 5+ %) Wil 0 Proposition 2: Fix eachy, as a constanty, for all k €

‘C\j! and letf] = [’_Yl?"' 7ﬁj*177j7’_}/j+17"' a’_YL]T' Then

i=1 j=1
st (4), (5) (6), (7) and (8) the following holds.

wherev; > 0 is the price for RRHj. LetT £ [y1,---,v.]". (i) 8;(T';) is a non-increasing function w.r4;;.

We denote{m(T"),w;;(I")} as the optimal solution for (i) There is a threshold price for RRH, 0; = oM +
problem (P1) for a given price vectdr. Define 3;(T") = > jec(NEj + PjS;) + 3 e\, WSk, such that fory; >
Zf;l [wi;j (I) |5 o- The following theorem shows the relation- 65, 5, (T;) < S;.
ship between problem (P0) and problem (P1). Proof: The proof is similar with the one in [9]. We

Theorem 1:For problem (P1), if provide it for completeness in Appendix B. 0

B,(T) = 8, Vj € L, (10) Recall that the feasible region of problem (P0) is nonempty,

therefore, we can always satisfy equation (11) by iterbtive

then the optimal solution to problem (P1) is also optimal faearching overy; € [0,6;]. We elaborate the algorithm to

problem (PO0). solve problem (P1) by iteratively adjusting the price vedto
Proof: See Appendix A. [0 Algorithm 1, in which 'yj(l) is the j-th component o™ in



the [-th iteration, and@él) = oM + > ;c.(nE; + P;S;) + V. TWO OPTIMIZATION APPROACHES FOR PROBLEMP2)

Zkeﬁ\j%’(cl_l)sk' In this section, we propose two different approaches to
' solve problem (P2), which obtain its global and local optima
solution respectively.

First of all, constraints (4 and (5) imply that

Algorithm 1 Price adjusting algorithm for problem (P1)

1: Initialize: LetT(® = [o,---,0].
2: Iterationl: Solve problem (P1) with givei ‘=1, obtain-  ,,, — , (E + 1 >
ing 3;(TU=1), for j € L. ni - ni(ni(ci — Ai) — )
3 if B;(00-Y) < S, V5 € £, then i 1 A :
> - = (3 ) 13

4: break; =« n; * nz(nl(él — )\z) — /L) mi, Vi eN ( )
5. else ) A and
6: for thosej € AD={j: 3;(T"V) > §; Vj € L}, set i N

O — oW Fix 4O = A0=D 0] =N+ =+ ————————2g,(m), Vie N, (14
. en?j]_ ) 93. CFixyy =, VE e L\AWY. ¢ e  m(nem —am) gi(m), Vi (14)
8; Let! =1+ 1, go to step 2. wheren; = ;u—1 > 0, andg¢; is an upper bound af;, which

can be derived by applying the Cauchy-Schwarz inequality on

In Algorithm 1, the main iteration in Step 2 involves an(7) as follows:

algorithm to solve problem (P1). Although we avoid the 1 & ) L )

feasibility problem by reformulating problem (P0) into (P1 ¢ < Bjlog [ 1+ ;Z i 15>~ lwis 5

the [ o-norm still remains unsolved in the objective function. v j=1 j=1

In the next subsection, we introduce reweighted-norm | L

approximation for problem (P1). < B;log |1+ ?Z IIhing Ej | 2£¢, VieN. (15)
ij=1

B. Reweighteds ;-norm relaxation _Based on (13) and (14), in what follows, we discuss two
' 21 different approaches to solve problem (P2).
In compressive sensing [41], reweighigehorm is regarded
as an effective way to deal with tHg-norm in the objective A Integer search (IS) approach
function, sincel;-norm is the convex relaxation fdg-norm Oncem is fixed as an integem, problem (P2) is reduced
[40]. In the same spirit, we adopt an iterative procedure toto the following weighted sum-power minimization (WSPM)
solve problem (P1), and the terms involvihgy-norm in the problem:

objective function of problem (P1) as: N L
. ; ®) iw.
Wil o = 2 Wi, ay D g 20w Ml
st. & < B;jlog(1+SINR;), Vie N, (16)

)

9 —1
where p\?) = (HW%"”‘L + ¢> is the weight in thep-th
)

N

iteration,wl(;’_ is a constant vector obtained from previous Z [wijlly ) < Ej, Vi€ L,

iteration and¢ is a small positive constant to guarantee the i=1

numerical stability. The intuition behind the Weigﬁf) is that where¢;, = g;(m) is a constant. Since phase rotationvef;

the beamformer vector that has smaller norm in itergtienl  does not affect problem (P2-1), we can recast constraint (16

is allocated a larger weighif.ﬁ.’) in iterationp, and hence, the as the following second-order cone (SOC) [42], [43]:

norm is further reduced after solving the problem in itenati —

p. Irill, < V1+1/(27 — 1)Re[Ru], Vie N, (17)

mated a5 1 folowing problem i theth teraton: e Rk = X hiIw, 10 = (R, Ry, o and
MRe(-) stands for the real part of a complex number. Thus,

N L ®) problem (P2-1) can be reformulated as a second-order cone
(P2) mncli_lv}/” me + Z Zzif Wil 4 programming (SOCP), which can be easily solved by interior
Y i=1j=1 point method with standard optimization tool boxes like CVX
st (4), (5), (6), (7) and (8) [44].
) ®) Sincec¢; = g;(m) is decreasing inn, the optimal objective
wherez;;” =0+ (P +7;)pij - function value in (P2-1) is non-increasing in. Therefore,

After the reweighted.,,,-norm relaxation, a sub-optimala straightforward approach to obtain an optimal solution fo

solution can be obtained for problem (P1). However, in eaghgplem (P2) is to first perform a search for the optimal €
iteration of the reweightet, ;-norm relaxation, problem (P2) y i the following interval

is required to be solved, which is still an MINLP. In the next
section, we discuss two different approaches to solve probl [max [m] M] 7 (18)
(P2). ic



which minimizes the optimal objective function value in We partition the variables in problem (P2-2) into three
problem (P2). This IS approach can obtain the global optimgioups, i.e.x;, y; and{m,w;, }. The reasons that we introduce
solution for problem (P2). two new groups of variables; andy; in problem (P2-2) are:

o If we fix z; andy;, then problem (P2-2) can be easily
recast as a convex optimization problem wif, w;; },
sinceg;(m) is a convex function.

If the number of available VMsM is very large, the . For the right hand side of (23), by checking the first order
aforedescribed integer search algorithm may not be afipdica optimality condition, optimal receive beamformegscan

B. Joint optimization with integer recovery (JR) approach

For the case with largeV/, we can relaxm from nature be obtained using (21).
numbers to non-negative real numbers, ive.c R. « The optimal MSE weight; in the right hand side of (23)
For the received signal; at UE i, lety; € C be the receive is given by
beamformer. Then, the mean square error (M§E3$ defined B
as [11]: 2= (™97, (25)
N 2 for fixed w;; + andy;.
e 2 [||yfa: — ;] {m,wi;} andy | |
5 9 Problem (P2-2) is convex w.r.t. each variable group while
N keeping other variable groups fixed. Therefore problem (P2-
2
= yszhfjWij =1 + Z yszthlj +07 il 2) is much easier to solve using an alternating optimization
JEL I JEL approach than problem (P2). Specifically, in problem (P2-

2 2), the optimaly; and z; can be obtained with closed-form

N
) . . i )
= Z yH Z hgwlj — 2%Re |y Z thij + o2 |yl solutions if we fix the other variable groups as constantd, an
=

1 jer jer {m,w;;} can be obtained by solving the following convex
11 (19) optimization problem, for fixed:; andy;:
N L
Hence, for a given transmit beamformer;, the minimum P2-2.1) min mo + CNTIv
mean square error (MMSE) is ( ) mwey ;; i Wisllz,y
eM™e=1 - "wih;;y"e (20) st gi(m) + Biwie; < Bj(logz; + 1),
jEL Vie N, (26)
where y"™¢ is the well-known MMSE receive beamformer (24) and (8)
given by A local optimal solution for problem (P2-2) can be achieved
e _ Zjeﬁ hgwl-j by this alternating optimization procedure. . o
i  hAw ) Wi, 2 Eroblem (P2-2.1) can be solved by applymg the interior
Y (ZJ“ kg (ZJEL ki ) 7 point method. However, to reduce the complexity further, we

(21) propose the following dual decomposition approach, which
Lemma 1:Each UEi’s achievable rate; log (1 + SINR;) obtains the closed-form solution for Problem (P2-2.1).
satisfies the following equation [45], [46]: 1) Dual decomposition approach: The Lagrangian associ-

ated with problem (P2-2.1) is (we drop the superscfiptin

Tiyy this subsubsection)

wherez; € Rt is the MSE weight N L

With Lemma 1, we have the following Proposition. Z(m, Wij, &5, v5) = mp + ZZ zij [IWij [l 4

Proposition 3:For m € R, problem (P2) can be repre- N ==t
sented as:

+ Z €; (gl(m) + Bxie; — Bi(log T+ 1))
N L i=1
(P2-2)  min me+ 33 2P wisll,

L N
TiyYi,M,Wij : -
J =1 j=1 + Z V;j <Z ||Wij||271 — EJ> s (27)
i=1 =1

Vie N, (23) whereg; > 0, Vi € N andy; > 0, Vj € L are the

max [m;] <m < M, m € R, (24) Lagrange multipliers associated with cons_traint (26) a&)_j (
iEN respectively. Then, the Lagrange dual function can be written
N as

Iwijll,, < Ej, Vi€ L,
; st ’ f(ei,vj) = min Z(m,w;;,&;,v5)

m,Wij
whereg;(m) ande; are given by (14) and (19) respectively.

Let the optimal solution for problem (P2-2) Hem, ¢;, W;;) : 2Constraint (24) can be simply omitted in the Lagrangiangssiit is just
1eN,jeL}. a constant bound fon.



N

e (1) — B, . +
= min mp + Zgigi(m) + Bixiei(t) — Bi(logz; + 1))] ™, (35)
m,Wij °
i=1 and
N L N N I
+ Z Z(Zij + ;) Wiy, + Z Bigiwie; vi(t+1) = [uj(t) + ma(t) (Z Wi (8], 4 — Ejﬂ ,
1=1 j=1 i=1 : = s
3 (36)

L
— EZBZ(IOg x; + 1) — I/'E', (28)
; ; Y wherem (t) > 0 andm2(t) > 0 are step sizesp(t) denotes
the number of active VMs calculated by solving problem (30)
in the ¢-th iteration,w;;(¢) is the beamformer derived from

(32) and (34) in the-th iteration, and

wherem should satisfy (24).
The dual problem is then formulated as

max  f(e;,v5) (29) N )
Ei,Vj
st. >0, VieN e;(t) :Z yH Z thI-sz(t) — 2% |y Z thij(t)
v; >0, VjeL. =1 32€L ey
+0f [yil” + 1. 37)

To solve the dual problem, we first observe that the La- _ _ - _
grangian (27) is separable over and w;;. Hence, in the 2_) Implementatlon: With dgal decomposition and_gradlent
Lagrange dual function, the minimization can be achieved Ipyojection, problem (P2-2.1) is ready to be tackled in gekal

the following two subproblems: Specifically, optimalm(t) and dual variablez;(¢) can be
calculated by one certain computation resource block in BBU
. l pool, and the optimak;; (¢t) and dual variable,(¢) can be cal-
e + ; €igi(m) (30) culated by another computation resource block. Moreotier, t
st max[mi] <m< M, meR’ parallel cor_nputmg property of the cl_oud BBU pool pro_wdes a
ieN = =T ’ nature environment to implement this parallel computingl a
and the enormous computation resource in the cloud BBU pool

N I N can help solve the problem quickly.

. From subsection IV-B and subsection V-B, we see that one
Wy 2D i+ zy) Wil + ;Bialxze“ 1) approach to solve problem (P2) includes two nested loops:
an outer loop to update the weighztg) and an inner loop
. _ to solve problem (P2-2) by the iteratively weighted minimum
Problem (30) can be easily solved numerically. And the ean square error (WMMSE) method [47], [48]. To reduce
closed-form solution for problem (31) can be derived %he complexity, we can combine the two nested loops together

i=1 j=1

wheree; is given by (19).

follows. with in a single loop [11], as elaborated in Algorithm 2, in
Let w; = [Wil,WiQ,"' 7WiL] S CKLXl and hz = which
[hi1,Ni2, -+ ,h;r] € CELX! pe the network-wide beam- N oL
former and channel for UE respectively. DefineA; = (») (») (») ’ (p)
{0k, ,0k, 1,0k, --- 0} € REXKL whereOy is the 0 m ¢+;;Zw i ||y
i1 L—j
K x K zero matrix andlx is the K x K identity matrix.
Then, we have VI. NUMERICAL RESULTS
Wor — AW, (32) In this section, we conduct simulations to verify the per-
R formance of our proposed algorithms, and compare them with
Thus, problem (31) is equivalent to current benchmark algorithms in the literature.

N N
min > owfQiw; — Y 2BigzMe [y'w/'hi],  (33) A. Simulation setup
=t =1 In our simulation, we define the VM cost as its power
where  Q; = Zjeﬁ(yj 4 zij)AfAj + consumption (in Watts), i.eqp = ku?, which is measured
(Xen v hihiy)Bieizi. And Qs can be easily proven asPY [49], and adopted by [50] and [S1]. Hekeis a parameter
a positive definite matrix. Then, the closed-form solution f determined by the processor structure, angtycles/s) is the

problem (33) can be derived as computation capacity of the VM. We choode = 10726
i ; and . = 10° in our simulation, which is consistent with the
w; = Qi'Re [y;hi] Bie;, (34) measurements in [52]. Moreover, we assume that, for eah dat

: - byte arrives at the BBU pool, 1900 processor cycles are neede
whereQ;' is the pseudo-inverse @;. . :
Therefore, the dual problem (29) can be solve via tht8 finish its baseband (cloud) processing [53], and meangtack

. . . . . size is 1000 bytes.
following gradient projection algorithm: We consider a C-RAN system of 3 RRHs, where RRH 1

gi(t+1) =[ei(t) + m(t)(g:(m(2)) to 3 are located on a circle with radius 0.5 km. The 3 RRHs



Algorithm 2 Joint reweighted, ;-norm relaxation and itera-
tively WMMSE approach for problem (P2)

1: Initialize: w'? andp = 1.

2: while |O®) — OP=D| > ¢ do

3; Givenwg”l), obtain receive beamformgfp) by (21);

4. Fix WZ(.?_I) andy”, obtain the MSE weight”’ from
(20) and (25);

5. Given 2", 4" and zi(f), utilize the proposed low-
complexity dual decomposition approach to solve th
convex optimization problem (P2-2.1), obtaining th
number of active VMsn(?) and transmit beamformer
ng);

6: Updatesz);

7. lLetp=p+1.

8: end while

9: Integer recovery: Setn = m). Therefore;n* is chosen

from {|m], [m]} to minimize the optimal objective func-
tion value of (P2). Thenw;; can be obtained by solving
problem (P2-1) withe; = g;(m™*).

Output: {(m*, cj,wj;) :i € N, j € L}.

IR

10:

Fig. 4. Simulation topology.

are placed at equal distances apart, as shown in Figure 4. UEs

are randomly, uniformly and independently distributedhimit

this disk. The wireless transmission bandwidth is 10 MHz for
each UE. We adopt the path loss model used by the 3GPP

specification for Evolved Universal Terrestrial Radio Asse
in [54], where the received power at a WEkm from a RRH
is given by

p (dB) = 128.1 + 37.6log,, d.

The transmit antenna gain at each RRHYisThe lognormal
shadowing standard deviation is

In our simulations, we consider homogeneous RRHs with

E1:EQZ-'-:EL:E,Pl:PQZ'-':PL:P,and
S1 =85 =--- =5, = S. We also consider homogeneous
UEswithoy =09 = - =0ony =0, A\1 = - = Ay = )\,
andm, = » = --- = 75y = 7. We summarize our default

simulation parameters in Table I, if not specified.

B. The optimality of price adjusting

It is noted that once the sparsity of the beamforming vector
is obtained, the association relationship between the RiRids
the UEs is also determined. Specificallpw;;||, > 0 if and
only if UE ¢ is associated with RRH. In Section IV, we
obtain the number of active VMs and the sparse beamforming
vectors by solving problem (P1). Hence, the sparsity of the
beamforming vectors, or the RRH-UE associations, can be
achieved by our proposed price adjusting (PA) algorithm. To

show the optimality of our proposed PA algorithm, we utilize

?he following benchmark algorithms:

« Static Clustering (SC). This is proposed by the authors
in [11], which obtains the sparse beamforming vectors in

two steps:

1) The heuristic Algorithm 3 in [11] is used to obtain
the UE setV; that associates with RRH, such that

[|wi ||, > 0 for i € A and|jw; ||, = 0 for i € Nj©,
where ;¢ is the complementary set of;.

2) Based on the given user association/sgt a solution

to the following problem is found:

N L
(PO-S)  min  mpnd > Wil

i=1 j=1

N L
N P Wil

i=1 j=1
(4), (5), (6), (7) and (8)
W]l =0, Vi€ N j€L.

S.t.

Problem (P0O-S) is very similar with problem (P2), and,
hence, can be solved by either IS or JR approach.

Exhaustive Search (ES). This algorithm aims to find out
the best association by searching all possible RRH-UE
associations. It has an extremely high complexity. In the
worst case, the number of possible RRH-UE association
relationship can b§[ ., (Zf;’o (J;’)) , where(") stands

for the number ofi-combinations of a set withiv ele-
ments. For each possible RRH-UE association case, we
denotel; as the RRH set that serves UFand use’;¢

as the complementary set gf. The following problem
(similar with problem (P0-S)) is needed to be solved (by
IS or JR):

N L
(PO-E) in - me 3D Iwilly,

i=1 j=1

N L
+ ZZ P; HWinQ,o

i=1 j=1
(4), (5), (6), (7) and (8)
[wijll, =0, Vj € L ieN.

S.t.

Closest Clustering (CC). This algorithm simply assumes
each UE only associates with one RRH which provides
the best channel gain. Specifically, the RRH associates
with UE 7 is determined by

(38)

Ei = argmjax ||h”||2 .
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TABLE |
SIMULATION PARAMETERS

Parameter Value Parameter Value
Computation capacity: 1 x 10° cycles/s|| Weightn 5x 10*
Static costP 5 Number of UESN 4
Maximum number of VMsM 25 VM cost ¢ 10
Fronthaul capacitys 2 Number of antenna&” | 2
Maximum transmitting powefs | 1 W QoS requirement 50 ms
White noise power density? -174 dBm/Hz Mean arrival rate\ 10 Mb/s
Transmit antenna gaiti 15 dBi Lognormal shadowing | 10 dB

However, this algorithm may easily obtainfeasible
associations i.e., the number of UEs associated with 500k S R ]
certain RRH is more than its fronthaul capachy For
any feasible RRH-UE association case, problem (PO-E)
is also needed to be solved, whefg is calculated by
(38).

As we can learn from Section V, IS always performs better
than JR (since IS obtains the global optimal for problem (P2) - CCIS
while JR only obtains the local optimal). In this subsectin —-°-SCIS
identify the performance gap between PA and its benchmark ——PAIS
algorithms above, we only utilize IS to solve problem (P2) 3501 ’ES'S\
(and its similar problems (P0-S) and (PO-E)). 5 10 15 20

We show the number of feasible associations in Figure 5 A (Mb/s)
under 500 channel realizations. Specifically, we fix= 50 (a) Different arrival rates.

(ms) in Figure 5(a) and increasegradually. While in Figure

5(b), A is set asl0 Mb/s andr is varied. We can conclude 500L - . ]
that CC and SC algorithms are unable to guarantee feagibilit
when A becomes high and becomes low because that the
user association sets obtained from CC and SC algorithms
are oblivious to UEs’ incoming traffic rates and their QoS
requirements.

In Figure 6, we present the system cost with different traffic |
rate, different QoS requirements, and differgwalues respec- fgg;g
tively, under different algorithms. We observe that, firsBA +PA|S//
algorithm outperforms the CC and SC algorithms. Secondly, 3 S ESIS |
PA algorithm has much lower complexity than ES algorithm,
but still has close performance with ES algorithm.

N
a
=]
)

N
o
S

No. of feasible associations
h

N
a
.\

N
o
.

No. of feasible associations
13

20 80

50
T(ms)
(b) Different system delay constraints.

C. Allocations by PAIS Fig. 5. Feasibility under different user association atars.
With the “cross-layer” resource allocation in both BBU

pool and RRHSs, an interesting question is how the allocation

works in the system by applying our proposed algorithms. me.ntlcaI.IHowever, the cost of wireless trgnsm|33|on el&ses
Figure 7, we present the cost and delay allocations under ﬁ;gctly with 7. Secondly, the cost of wweless_transmlssmn
QoS requirement as 20 ms, 50 ms and 80 ms respectiva uch Iow_er than the cos_t of cloud processing (under the
(with fixed A\ = 10 (Mb/s)). Leveraging our proposed pajgParameters n Table 1). In F|gur_e 7(.b)’ we show t_he_delay n
algorithm, we can obtain the number of active VMs und oud processing and the delay in wireless transmissiararit

these three different QoS requirements as 11, 10 and .'ea”.“ that, intergstingly_, the delay in_wireless traiss'mr_l
respectively. And the optimal achievable rate for the UE a%rlctly Increases .W'th’ Wh".e the delay in cloud processing
11.33, 10.67 and 10.19 (Mb/s) respectively. may not vary during some increments-af

In Figure 7(a), we show the cost of cloud processing (in the ) )
BBU pool, i.e., the first term in problem (P0)) and the cod?- Performance gain by cross-layer design
of wireless transmission (in the fronthauls and RRHs, ite2,  Most of the previous work in C-RAN just optimizes the cost
second and third terms in problem (P0)). The first intergstirin wireless transmission, without any considerations efdbst
observation is, whernr increases from 50 to 80 (ms), thein cloud processing, for instance, [11] and [42]. We callsiéno
cost of cloud processing remains the same. That becaasgorithms which consider the cost in wireless transmissio
the optimal numbers of VMs for = 50 and7 = 80 are and cloud processing independently as decoupled-layey (DL
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Fig. 6. System cost under different user association dlgus.
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(b) Delay allocation.

Fig. 7. Allocations in the system.

this subsection, we have three algorithms: PADL, PAJR and
PAIS.

In Figure 8, we present the system cost with different
traffic rate and number of UEs under different algorithms.
In particular, we show the relationship between UES’ mean
arrival rate and system cost fd¥ = 4 in Figure 8(a), and
the performance of system cost versus the number of UEs
is depicted in Figure 8(b) whea = 10 Mb/s. We observe
that, firstly, JR algorithm have very close performance With
algorithm. In addition, IS and JR algorithms have lower syst
cost than DL algorithm, since the optimal delay allocation f
cloud processing and wireless transmission is not triéaivje
can learn from Section VI-C). However, DL algorithm always
trivially allocates this two delays.

algorithms. We assume that, for the DL algorithm in our

simulations, the delay in the cloud processing quglend the
delay in the wireless transmission quetiesatisfy b; < 7;/2

VII. CONCLUSION

andd; < 7;/2, respectively. Specifically, in our simulations, In this paper, we considered the joint VM activation and

we use the following DL algorithm:

1) we obtain the optimal number of VMsn*

max;ec - L;j(jgw from (1);

2) we obtain the optimal beamformess; by solving prob-

lem (P2-1) withe; = \; + %

sparse beamforming problem in C-RAN, which has limited
fronthaul capacity. We aim to minimize the system cost of C-
RAN, including VM cost (w.r.t. the number of active VMSs) in
the BBU pool and RRH cost (w.r.t. the beamformer vectors).
To tackle the limited fronthaul capacity constraint, weprse

a price adjusting algorithm. To find out the the optimal numbe

This DL algorithm can be used in tandem with the PAfVMs, we proposed two different algorithms: integer skarc
algorithm, in place of the IS and JR algorithms. Hence, iand joint optimization. Simulation results suggest that ou
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300 ‘ ‘ p <m‘p+”ZZHWmHQ+ZZP HW13H20+277

11_]1 1171

2501
- F)‘P"’nZZ”WiJ ||2+ZZP [[wi (T ”20
3 200t i=1 j=1 i=1 j=1
£ L
:‘%150— + Z%’Sj’
j=1

100" where the first inequality is based on tHak(I"), w;;(T")} is
the optimal solution for problem (P1), the second ineqgualit
50 ‘ ‘ in based on constraint (9) in problem (P0), the third ineigyal
A (Mbls) 15 is based on thafc;,w;;} is the optimal solution for problem
(PO) and{m(T"),w;;(T")} is a feasible solution for problem

(PO). Then, let's substitute the equatiép(I') = S; into the

(a) Different arrival rates.

160 right hand side of the third inequality above, we can have
150} N L
D +n) Y Iwy Dl + ZZP [[wig (D)l
3z 140 i=1 j=1 i=1 j—1
8 130! N L N L
5 =mioand 3wl + 3> Filwil, GO
%1207 i=1 j=1 i=1 j=1
110f Therefore, the theorem is now proved.
100)
90 ‘ APPENDIXB
3 & 5 PROOF OFPROPOSITION2
(b) Different number of UEs. Let F’ SV -, %.]* be a different price vector
Fig. 8. System cost under different algorithms. from FJ' such that'yj > and? 716 = Tk for k € E\] We

have

proposed algorithms have more robust performance and Iowef” Qe+ Z Z HWU >H§ + Z Z by HWiJ’(fj)Hz,o

system cost than the benchmark algorithms. i=lj=1 i=1j=1
With dense RRH placement in C-RAN, the huge amount + ;3;(T Z Y1 Be (T
of channel state information (CSI) exchange will lead to keL\j

additional overhead and even cause potential problems-for C N L

RAN. Therefore, in future work, it would be of interest to < m(I%)p +nY_ > [lwi; ()] +ZZP [wi; @)
study effective techniques to reduce CSI overhead. Besides i=1 j=1 i=1 j=1 ’
more practically, we will examine both maximum sum data BT Z Ve B (T,

rate and maximum number of associated UEs as the fronthual

. . keL\j
capacity constraint.
and
- N L . N L -
APPENDIXA m(T)e+ 0y Wi (Tl + DD P Wiy (T
PROOF OFTHEOREM 1 =1 j=1 i=1 j=1
. . . . . + %ﬂa Z kﬂk
Firstly, if 8;(I") = S;, which implies that{m(T"),w;;(I")} keﬁ\J

is also a feasible solution for problem (PO). N L
Then, based on{m*,wj;} and {m(I'),w;;(I")} are the < m(T ¢+nzz | wi; (T -)H§+ZZPJ» [lwi; (T;)

J Hz,o

optimal solutions for problem (P0) and (P1) respectivelg, w i=1 j=1 i=1 j=1
have N . "‘%ﬁj Z 'Ykﬂk
keL\j
Die+ny > Iy (D)ll; + Y (P +7;)8(T) o

where the first inequality is based on the assumption that
{m(T';),w;;(T;)} is the optimal solution for problem (P1),

L N L . - . \
< m*o+ W (P + W and the second inequality is based on the assumption that
=me n;; | JH Z:z:: ) 19351l 0 {m(T}),w;;(T})} is the optimal solution for problem (P1).

i=1 j=1 =1

<.



Adding up both sides of the two inequalities above ands]
simplifying it, we have
). B

(¥ = 7)) < (%) — ;)8 (T;
Hence, the first statement is now proved.

We denote{r, W;; } as a feasible solution for problem (P0O)j10]
whose feasible region is nonempty. Then, we have

B N L o, XL B [11]
Lo+ > Wi (Tl + DD Py lwi (T,
i=1 j=1 i=1 j=1 [12]
+Bi T+ Y Wb(Ty)
keLl/j [13]
N L N L
~ 2 ~
303 g 24 S0 ST Py (s "
i=1 j=1 i=1 j:l
+'YJZHW1JH20+ Z ’YkZ”WUCHQOa [15]
keLl/j =1
Then, we obtain [16]
N
- Z Hwin270
i=1 [17]
N L N L
A ~ 2 ~
< (mp+nd Y Il + D0 Pyl 18]
i=1 j:l i=1 j=1
+ Z Yk Z Wik ll5,0)/7i [19]
keL/j =1
[20]
M(p—l—nZE +ZPS + > WSk)/v
= Jj=1 keL/j [21]
Therefore, ify; > 6;, then 3;(T;) — ZZJ'V:I [Wislly 0 < 1.

Since 3;(T';) and 31, |[W;; |, , are both integers, then wel22]
have8;(T';) = 3201, Wijl,0 < Sj-

This completes the proof. 23]
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