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SUMMARY

A collocation method has been recently developed as a powerful alternative to Galerkin’s method in
the context of isogeometric analysis, characterized by significantly reduced computational cost, but still
guaranteeinghigher order convergence rates. In this work, we propose a novel adaptive isogeometric analysis
meshfree collocation (IGAM-C) for the two-dimensional elasticity and frictional contact problems. The
concept of the IGAM-C method is based upon the correspondence between the isogeometric collocation
and reproducing kernel meshfree approach, which facilitates the robust mesh adaptivity in isogeometric
collocation. The proposed method reconciles collocation at the Greville points via the discretization of the
strong form of the equilibrium equations. The adaptive refinement in collocation is guided by the gradient-
based error estimator. Moreover, the resolution of the nonlinear equations governing the contact problem
is derived from a strong form to avoid the disadvantages of numerical integration. Numerical examples are
presented to demonstrate the effectiveness, robustness and straightforward implementation of the present
method for adaptive analysis. Copyright c© 2019 John Wiley & Sons, Ltd.

Received . . .
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1. INTRODUCTION

Meshfree methods are viewed as next-generation computational techniques for problems involving

large deformation, fracture and fragmentation and contact problems [1, 2, 3, 4, 5, 6]. Since the

meshfree methods do not rely on a fixed topological connectivity between nodes, they are expected

to be more adaptive and robust in resolving the problems where the classic grid-based methods are

not suitable. Compared to the finite element method (FEM), meshfree methods are able to save

computational time by avoiding re-meshing after each crack extension. Nevertheless, the meshfree

method usually has less computational efficiency than the FEM, as higher computational cost is

required for meshfree interpolation and numerical integration.
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The isogeometric analysis (IGA) was first proposed by Hughes et al. [7] as a powerful and reliable

tool for computation and simulation of engineering problems. By adopting the non-uniform rational

B-splines (NURBS) which are widely used in computer-aided designs as basis functions, IGA is

not only applicable to engineering analyses but also capable of delivering accuracies superior to the

standard FEM in many applications including contact mechanics. Recent attempts to solve contact

problems within the IGA framework [8, 9, 10, 11, 12, 13] demonstrated significant advantages

of IGA over conventional FEM, especially for the contact problems involving large deformations

and large sliding. The exact geometry of contact surfaces can be smoothly represented by IGA to

eliminate the geometry discontinuities caused by facet-based discretization. Besides, NURBS based

IGA elements are less sensitive to the intense element distortions induced by the large deformation

[14]. However, it is difficult to locally refine the NURBS patch due to its tensor product nature,

which leads to an excessive overhead of control points with increasing refinement. With the goal

of overcoming the limitations of NURBS for IGA, adaptive IGA has been studied with T-splines

[15, 16], PHT-splines [17, 18, 19], hierarchical B-splines [20, 21], LR-splines [22] and hierarchical

refinement [23, 24]. However, constraint equations are required in tandem with these methods,

increasing the complexity and effort in their implementation.

Within the isogeometric collocation (IGA-C) context, several strategies have been studied to

reduce the computational cost for Galerkin methods by using higher-order isogeometric basis

functions [25, 26, 27, 28]. On one hand, exploiting the properties of the NURBS shape functions

allows for integration rules with fewer integration points, e.g. 4 integration points instead of 9 for

a two-dimensional (2D) element with a polynomial order of 3 [29]. A much higher increase in

computational efficiency has been achieved through the collocation method. The strong form of

the problem is enforced across a set of discrete collocation points that are equal to the number of

control points. Although the number of computations per collocation point may be different from

that per Gauss point, the collocation method saves a significant computational cost for higher-order

shape functions [30]. Isogeometric collocation methods also eliminate the need for ad hoc hourglass

stabilization techniques. Moreover, they show great promise for the development of accurate higher-

order time integration schemes due to the convergence of high modes in the eigenspectrum. The

discontinuous contact problem is generally very challenging for Galerkin methods [31, 32, 33, 34],

whereas it can be effectively tackled by collocation methods. Recently, the enhanced collocation

method proposed by Lorenzis et al. [35] which restores robustness and accuracy for general

Neumann boundary conditions by emulating the integral Galerkin formulation on the domain

boundaries. Kruse et al. [36] extended this work to large deformation frictional contact problems

by using the two-half-pass formulation [37, 38] which seems to be the most natural algorithm in the

collocation framework.

In this paper, a novel adaptive isogeometric analysis meshfree collocation method (IGAM-C)

for 2D elasticity and frictional contact problems is investigated. The reproducing kernel meshfree

is blended with isogeometric collocation, which provides the flexibility of meshfree adaptive

refinement for isogeometric collocation. The formulation procedure is also simple and straight

forward, as integration is not required in the formulation procedure. Moreover, the adaptivity scheme

adopted in this work uses the gradient based error estimator which is robust and efficient. The

purpose of this paper is two-fold. Firstly, the IGAM-C scheme for the numerical solution of linear

steady state elasticity equations is developed with respect to their strong forms. The features of the

IGAM-C method can facilitate an easier implementation of adaptive analysis. The computational

efficiency of adaptive refinement and a high convergence rate can be achieved. Secondly, the present

method is applied to 2D frictional contact problems with large deformation. The penalty method is

regularized for the frictional contact constraints. The simulation results are in good agreement with

the analytical solutions.

The paper is structured as follows. A brief introduction of meshfree and isogeometric

approximants is given in Section 2. Section 3 presents the isogeometric and meshfree coupling

approach within the framework of reproducing conditions. Section 4 elaborates the foundations

of the linear elasticity collocation. Section 5 describes the formulation of the frictional contact

This article is protected by copyright. All rights reserved.
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problem. Section 6 describes the gradient-based error estimation strategy. Section 7 explores various

numerical examples. We finally close our paper with concluding remarks.

2. ISOGEOMETRIC ANALYSIS AND MESHFREE APPROXIMANTS

2.1. Isogeometric analysis

The B-spline basis functions Ni,p(ξ) of order q = 0 (piece-wise constant) are defined recursively on

the corresponding knot vector as follows:

Ni,q(ξ) =

{

1 if ξi ≤ ξ ≤ ξi+1

0 otherwise
, (1)

Ni,q (ξ) =
ξ − ξi

ξi+q − ξi
Ni,q−1 (ξ) +

ξi+q+1 − ξ

ξi+q+1 − ξi+1
Ni+1,q−1 (ξ) (for q ≥ 1) . (2)

The NURBS surface is given by

S (ξ, η) =

n
∑

i=1

Ri (ξ, η)Pi ; Ri =
Ni (ξ, η)wi

∑n
ī=1 Nī (ξ, η)wī

, (3)

where Pi are the control points in a bidirectional control net, Ni(ξ, η) are the B-spline basis

functions and wi are the weights.

2.2. Moving least-squares interpolation

Based on the moving least-squares (MLS) based meshfree methods [39, 40], the unknown function

u is approximated by

uh (ξ) = pT (ξ)a (ξ) , (4)

where pT (ξ) = {p1 (ξ) , p2 (ξ) , ..., pm (ξ)} is a complete monomial basis; m denotes the number

of terms in the basis; ξ are the parametric coordinates, and a (ξ) is a vector of unknown coefficients.

A complete polynomial basis of order q is defined as follows:

pT (ξ) =
{

1, ξ, η, ξ2, ξη, η2
}

quadratic basis m = 6 . (5)

The unknown coefficients a (ξ) can be determined by minimizing the weighted L2 norm with a

weighted function as follows

J(a) =

nm
∑

i=1

w̄ (ξ − ξi)
[

pT (ξi)a (ξ) − ui

]2
, (6)

where nm is the number of nodes within the domain of node ξ in which the weight function

w̄ (ξ − ξi) cannot equal to zero, and ui denotes the nodal parameter of u at ξ = ξi.
The weight function w̄ (ξ − ξi) in Eq. (6) influences the smoothness property of MLS shape

functions. The quartic splines weight function is given as follows:

w̄ (ξ − ξi) =

{

1− 6r2 + 8r3 − 3r4

0
(r ≤ 1)
(r > 1)

, r =
|ξ − ξi|

dImax

, dimax = λdc , (7)

where dimax is the support radius of the node ξi, dc denotes the average nodal spacing, and λ
represents the dimensionless size of the support domain.

By setting the derivatives of J with respect to a(ξ) to be zero, it is solved as follows:

A (ξ)a (ξ) = B (ξ)u , (8)

This article is protected by copyright. All rights reserved.
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where matrices A (ξ) and B (ξ) are defined by

A (ξ) =

nm
∑

i=1

w̄ (ξ − ξi)p (ξi)p
T (ξi) and (9)

B (ξ) =
[

w̄ (ξ − ξ1) p (ξ1) w̄ (ξ − ξ2) p (ξ2) · · · w̄ (ξ − ξnm) p (ξnm)
]

. (10)

By substituting a (ξ) into Eq. (4), the meshfree approximation of the displacement can be

expressed as follows:

uh (ξ) =

nm
∑

i=1

ϕi (ξ)ui (ξ) = ϕ (ξ)u, (11)

where the shape function ϕi (ξ) is defined by

ϕi (ξ) =

m
∑

j=1

pj (ξ)
(

A−1 (ξ)B (ξ)
)

ji
= pT (ξ)

(

A−1B
)

i
. (12)

For reproducing the polynomial of complete order, the consistency condition for the meshfree

approximation is given as follows:

nm
∑

i=1

ϕi (ξ)p (ξi) = p (ξ) . (13)

3. REPRODUCING KERNEL MESHFREE FORMULATION OF ISOGEOMETRIC BASIS

FUNCTIONS

3.1. Reproducing conditions for B-spline basis functions

The one-dimensional (1D) consistency condition for B-spline basis functions is defined as

n
∑

i=1

Np
i (ξ)p

(

ξ
[·]
i

)

= p (ξ) , (14)

where p

(

ξ
[·]
i

)

=

{

1, ξ
[1]
i ,

(

ξ
[2]
i

)2

, · · · ,
(

ξ
[p]
i

)p
}T

is the 1D reproducing point vector and the

reproducing points ξ
[l]
i (l = 1, 2, · · · , p) are computed as

ξ
[l]
i =

l

√

√

√

√

Sl
p

[

Gi+p
i+1

]

C l
p

, C l
p =

p!

l! (p− l)!
. (15)

The 2D consistency condition is obtained as follows:

nb
∑

I=1

Npq
i (ξ)p

(

ξ
[·]
i

)

= p (ξ) , (16)

where the reproducing point vector is expressed as

pT
(

ξ
[·]
i

)

=

{

1, ξ
[1]
i , η

[1]
i ,
(

ξ
[2]
i

)2

, ξ
[1]
i η

[1]
i ,
(

η
[2]
i

)2

, · · · ,
(

ξ
[p]
i

)p

, · · · ,
(

η
[q]
i

)q
}

, (17)

ξ
[1]
i =

ξi+1 + ξi+2

2
, and ξ

[2]
i =

√

ξi+1ξi+2 . (18)

This article is protected by copyright. All rights reserved.
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The reproducing kernel formulation is defined as

φi (ξ) = pT
(

ξ
[·]
i

)

C̄−1 (ξ)p (ξ) w̄
(

ξ − ξ
[1]
i

)

, (19)

where the moment matrix is calculated as

C̄ (ξ) =

nm
∑

i=1

p

(

ξ
[·]
i

)

pT
(

ξ
[·]
i

)

w̄
(

ξ − ξ
[1]
i

)

. (20)

The linear reproducing points ξ
[1]
i are treated as meshfree nodes. The B-spline basis functions can

be represented by Eq. (19) when the support size equals (p+ 1)/2.

The IGAM-C basis functions can be obtained by considering weights w as follows:

Φi (ξ) =
φi (ξ)wi

∑n
j=1 φj (ξ)wj

. (21)

The derivatives of the basis functions are shown in Appendix A.

3.2. Meshfree local refinement procedure

Consider knot vectors, Ξ1 = {0, 0, 0, 1, 2, 3, 3, 3}, is defined to obtain the initial meshfree nodes

in directions ξ that is calculated as ξ[1] =
{

0, 1
2 ,

3
2 ,

5
2 , 3
}

. The initial isogeometric basis function

and the reproducing kernel meshfree basis functions are shown in Fig. 1. After the subdivision at

ξ = 3
2 , the meshfree nodes of the new knot vectors Ξ1 =

{

0, 0, 0, 1, 32 , 2, 3, 3, 3
}

are calculated as

ξ[1] =
{

0, 12 ,
5
4 ,

7
4 ,

5
2 , 3
}

. Fig. 2a illustrates the basis functions after the first step of mesh refinement.

It is found that two new meshfree nodes,
(

5
4
, 7
4

)

, have replaced the original node
(

3
2

)

. Fig. 2b

shows the second level of mesh refinement at ξ = 7/4. The meshfree nodes of the new knot

vectors Ξ1 =
{

0, 0, 0, 1, 32 ,
7
4 , 2, 3, 3, 3

}

are calculated as ξ[1] =
{

0, 12 ,
5
4 ,

13
8 ,

15
8 , 52 , 3

}

. The 2D basis

functions at the initial and second level mesh refinement are shown in Fig. 3 and Fig. 4, respectively.

0 1/2 3/2 5/2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1. The initial basis functions in 1D with ξ[1] =
{

0, 12 ,
3
2 ,

5
2 , 3
}

.
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0 1/2 5/4 7/4 5/2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) ξ[1] =
{

0, 1
2
, 5
4
, 7
4
, 5
2
, 3
}

0 1/2 5/4 13/8 15/8 5/2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) ξ[1] =
{

0, 1
2
, 5
4
, 13

8
, 15

8
, 5
2
,3
}

Figure 2. The basis functions in 1D: (a) first level refinement at ξ =
3
2 , and (b) second level refinement at

ξ =
7
4 .

0 1/2 3/2

3/2

5/2 3

3

5/2

1/2

0

Figure 3. The basis functions at initial refinement mesh in 2D.

4. LINEAR ELASTOSTATICS

Let us assume a solid mechanics problem with linear elastic constitutive law and small

displacements in the domain Ω bounded by Γ (Γ = ΓD ∪ ΓN ), as shown in Fig. 5. The equilibrium

equation is given by

∇ · σ + b = 0 in Ω , (22)

where σ is the Cauchy stress tensor (σ = σijei ⊗ ej) and b a body force. The traction boundary

condition is imposed as follows:

σ · n = t̄ in ΓD , (23)

where n is the outward unit normal to the boundary of the domain, and t̄ is the prescribed traction.

The displacement boundary condition is given by

This article is protected by copyright. All rights reserved.
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0 1/2 3/2 5/2 3

3

3/2

5/2

1/2

0

Figure 4. The basis functions at second level refinement (ξ = η = 7/4).

Figure 5. The collocation points in the reference configuration.

u = ū in ΓN . (24)

The constitutive law for a linear isotropic elastic material is given by

σ = 2µε+ λtr (ε)1 (25)

ε =
1

2

(

∇u+∇uT
)

, (26)

where ε is Cauchy’s strain tensor, tr(ε) is the trace of the strain tensor and 1 is a second-order

identity tensor (1 = δijei ⊗ ej ). The Láme constants are

λ =
νE

1− ν2
, µ = G =

E

2 (1 + ν)
(for plane stress) (27)

λ =
νE

(1 + ν) (1− 2ν)
, µ = G =

E

2 (1 + ν)
(for plane strain) , (28)

where E is Young’s modulus, G is the shear modulus, and µ is Poisson’s ratio.

This article is protected by copyright. All rights reserved.
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Within the isogeometric framework, we find an approximation uh to the unknown exact solution

field u of the elastostatic problem in the form

uh =

n
∑

i=1

Φiui (29)

where Φi are the IGAM-C basis functions, ui are the unknown displacement control variables.

The stiffness matrix, displacement and force vectors are given by





Ki

KD

KN









ui

uD

uN



 =





f i

fD

fN



 , (30)

where
Ki = L (Φj (ξi))u ; f i = −b (ξi) ∀ (ξi) ∈ Ω

KD = BD (Φj (ξi))u ; fD = t̄ (ξi) ∀ (ξi) ∈ ΓD

KN = BN (Φj (ξi))u ; fN = ū (ξi) ∀ (ξi) ∈ ΓN

. (31)

The operator matrices in the two-dimensional elasticity can be written as

L =

[

(λ+ 2µ) ∂2

∂x2 + µ ∂2

∂y2 (λ + µ) ∂2

∂x∂y

(λ+ µ) ∂2

∂x∂y (λ+ 2µ) ∂2

∂y2 + µ ∂2

∂x2

]

(32)

BN =

[

(λ+ 2µ)nx
∂
∂x + µny

∂
∂y λnx

∂
∂y + µny

∂
∂x

λny
∂
∂x

+ µnx
∂
∂y

(λ + 2µ)ny
∂
∂y

+ µnx
∂
∂x

]

(33)

BD =

[

1 0
0 1

]

. (34)

5. LARGE DEFORMATION CONTACT PROBLEM

In this section, the basics of frictional contact between two deformable bodies in a geometrically

non-linear framework are presented. This includes normal and tangential contact traction, the

differentiation between sticking and sliding, and the linearization of the contact traction.

5.1. Statement of the contact algorithms

Consider two elastic bodies that come into contact at some points of time during their deformation

(see in Fig. 6). The two bodies will be distinguished in the sense that one surface will be denoted

as the mortar surface (master) Bm and the other as the non-mortar surface (slave) Bs . The relation

between the initial configuration Xα, the displacements uα and the current configuration xi is given

by

xα = uα +Xα , (35)

where α denotes the slave and master bodies, respectively.

In order to take interactions between the master body ϕ (Bm) and the slave body ϕ (Bs) into

account, the location and the size of the contact boundary have to be known. The distance between

a fixed point xs on the contact boundary Γs of the slave surface and an arbitrary point xm = xm (ξ)
on the contact boundary of the master surface Γm is introduced by the function

d = min
xm⊆Γm

‖xs − xm (ξ)‖ (36)

On the master surface, the convective coordinates ξm are mapped onto the parametric coordinates

of the surface and define the covariant vectors τ 1 = xm
,ξ . Using the metric m11 := τ 1 · τ 1 with

This article is protected by copyright. All rights reserved.
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Figure 6. Geometrical magnitudes for the contact formulation.

inverse component m11, the contravariant vector τ 1 := m11τ 1 is induced. The curvature follows

k11 = xm
,ξξ · n, where n = nm is the normal unit vector.

The residual of the closest point projection is given by

f (ξ) = τ 1 (ξ) · [x
s − xm (ξ)] , (37)

and this closest point vanishes at the projection point ξ̄, i.e., f
(

ξ̄
)

= 0.

The iterative process starting from a guess ξ̂ requires the tangent

K11 = f,ξ = xm
,ξξ (ξ) · [x

s − xm (ξ)]−m11 (ξ) . (38)

The closest projection point and the related variables are usually defined in the literature with the

notation (•̄), such as x̄m = xm
(

ξ̄
)

. In the following, we will denote a quantity’s evaluation at the

minimum distance point by a bar over its notation.

The outward unit normal on the master surface at the master point is given by

n̄m =
xs − x̄m

‖xs − x̄m‖
= −

ām × ē3

‖ām × ē3‖
, (39)

where ē3 is the unit vector orthogonal to the plane, and the tangent vector ām = x̄m
,1 .

5.2. Contact variables and constraints

In this formulation a penalty function is introduced to enforce the contact constraints

pn =

{

−εngnn
m for gn < 0

0 for gn ≥ 0
(40)

where εn is the penalty parameter and the normal gap between the two bodies is defined as

gn = (xs − xm) · nm (41)

where xs,xm are the coordinates of the collocation points in contact and the corresponding

projection points on the other surface respectively; nm is the surface normal at the contact

collocation point.

The contact traction is composed of normal and tangential components

p = −pnn
m + p1tτ

m
1 (42)

where τm
1 are the covariant tangential vectors (τm

1 = xm
,ξ ).

This article is protected by copyright. All rights reserved.
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For frictional contact, the tangential component is dependent on whether sticking or sliding

occurs. The status of the contact, stick or slip, is determined by a trial function given by

Φtrial =
∥

∥ptrial
t

∥

∥+ µpn (43)

with

ptrial
t = p1trial

t τm
1 . (44)

The sticking constraint can be regularized by a penalty approach as follows:

p1t = p1trial
t = p1old

t + εt
(

ξ̄m − ξold
)

. (45)

Consequently, the tangential components in sticking or sliding are

p1t =

{

p1trial
t if Φtrial ≤ 0

−µpn
p1trial
t

‖ptrial
t ‖

otherwise
(46)

where for the sliding condition validity of the Coulomb’s law has been assumed.

p1t = −µpn
p1trial
t

∥

∥ptrial
t

∥

∥

, (47)

where µ is the coefficient of friction. More details about the linearization and the consequent

expression of the consistent tangent stiffness matrix are deferred to the Appendix B.

6. ADAPTIVE SCHEME

The IGAM-C possesses attractive features to facilitate an easier implementation for an adaptive

scheme. Without the constraint of the nodal connectivity, additional nodes can be easily inserted

into the meshes for local refinement, and the cumbersome remeshing process is also avoided.

6.1. Error estimator

In order to determine and refine the elements associated with large errors, the gradient-based error

estimation strategy [41] is applied. To calculate the gradient of strain energy density, the following

steps are implemented.

The strain energy density of an element e is calculated as

DSE
e =

1

2
σT ε =

1

2
uTBTCBu , (48)

where σ and ǫ are the stress and strain vectors respectively. The averaged gradient of strain energy

density for an element e is calculated as

GSED
e =

Ne−1
∑

i=1

Ne
∑

j=i+1

|DSE
i −DSE

j |
lij

Ne!
. (49)

where Ne is the number of nodes within an element k and lij is the distance between nodes i and

j. The strain energy densities at nodes i and j are denoted by DSE
i and DSE

j , respectively.

The averaged mesh intensity of an element e is obtained by

rMI
e =

GSED
e

DM
e

(50)
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A mesh density DM
e that represents the number of nodes within a unit area is calculated as

DM
e =

Ne

Ae
, (51)

where Ae is the area of an element e.

6.2. Refinement and stopping criteria

To mark elements that need to be refined, the threshold Rthre is used. For elements with a higher

averaged mesh intensity than the threshold, mesh refinement should be implemented within this

element. Otherwise, the element remains constant. The refinement criteria can be expressed as

if rMI
e > Rthre refine (Rmin ≤ Rthre ≤ Rmax) .

Here, different thresholds Rthre may be chosen in different problems for obtaining both accurate

and efficient solutions. The flow chart of the adaptive analysis is summarized in Fig. 7

Figure 7. The flow chart for isogeomtric meshfree collocation with adaptive refinement.

7. NUMERICAL EXAMPLES

In this section, we present the performance of the proposed method through benchmark examples,

considering both elasticity and large deformation contact problems. An intensive numerical study is

carried out to verify the proposed method. The IGAM-C and IGA-C discretizations with the same

global number of degree of freedom (DOF) and a quadratic polynomial (p = 2) are employed for

comparison purposes. The numerical effectiveness of the present method heavily relies on the robust

computation of the strain energy in terms of the accuracy and computational cost.
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7.1. Convergence studies

In the convergence studies, the error is studied as a function of the number of collocation points.

The error in the displacement is calculated by

‖err‖L2
=

‖u− uexact‖L2

‖uexact‖L2

, (52)

with

‖u‖L2
=

(∫

Ω

uTudΩ

)1/2

. (53)

The error in the strain energy is computed by

‖err‖E =
‖u− uexact‖E
‖uexact‖E

, (54)

with

‖u‖E =

(∫

Ω

(ε− εexact)
T
C (ε − εexact) dΩ

)1/2

. (55)

7.2. Linear elastostatics problems

7.2.1. A hollow cylinder As shown in Fig. 8a, we consider a hollow cylinder with an internal radius

a of 1m and an external radius b of 4m being subjected to an internal pressure p = 3× 104kN/m2 .

Plane stress conditions are assumed with Young’s modulus E = 3× 107kN/m2 and Poisson ratio

ν = 0.25. Symmetry conditions are imposed on the left and bottom edges while the outer boundary

is traction free. The exact solution for the stress components [42] is given by

σr(r) =
a2p

b2 − a2

(

1−
b2

r2

)

; σθ(r) =
a2p

b2 − a2

(

1 +
b2

r2

)

; σrθ = 0 , (56)

whereas the radial and the tangential exact displacements are given by

ur(r) =
a2pr

E(b2 − a2)

{

1− υ +
b2

r2
(1 + υ)

}

; uθ = 0 . (57)

Starting from an initial parametrization of degree 2 with 72 DOFs (Fig. 8b), we obtained an

adaptive mesh after 5 refinement steps as shown in Fig. 8c. Beside that, the uniform mesh of the

IGA-C method is shown in Fig. 8d. The error in strain energy error norms is shown in Fig. 9. It

is evident that the present method with uniform mesh achieves the same convergence rate as that

obtained by the IGA-C method. Moreover, the present method with adaptive refinement achieves

more accurate and efficient solutions than the IGA-C method. The number of DOFs required in the

present method with the adaptivity is 4588, which is less than the 8712 required in the basic IGA-C

method. The contour plot of displacement is also shown in Fig. 10.

7.2.2. Elastic plate with circular hole Consider the problem of an infinite plate with a circular hole

of radius R loaded at infinity by a traction Tx in the x direction, as shown in Fig. 11a. The analytical

solution of this problem is given by

σrr(r, θ) =
Tx

2

(

1−
R2

r2

)

+
Tx

2

(

1− 4
R2

r2
+ 3

R4

r4

)

cos 2θ

σθθ(r, θ) =
Tx

2

(

1 +
R2

r2

)

−
Tx

2

(

1 + 3
R4

r4

)

cos 2θ

σrθ(r, θ) = −
Tx

2

(

1 + 2
R2

r2
− 3

R4

r4

)

sin 2θ

(58)
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Figure 8. A hollow cylinder subjected to inner pressure and domain discretization: (a) geometrical modeling,
(b) initial mesh, (c) adaptive mesh after 5 refinement steps, and (d) uniform mesh.

and (r, θ) is a polar co-ordinate system with the origin at the center of the hole.

Due to symmetry, only the upper right quadrant of the plate is modelled. A plane stress state

is assumed with dimensionless elastic modulus E = 1× 105 and Poisson’s ratio ν = 0.3, Tx is

assumed to be 1. Symmetry conditions are imposed on the right and bottom edges, while the inner

boundary at R = 1 is traction free.

Fig. 11b,c,d show an initial mesh (with DOFs being 120), adaptive mesh refinement and uniform

mesh respectively. The contour plot of stress components are shown in Fig. 12. Fig. 13 illustrates

the convergence rate in terms of the error in energy norm. It is obvious that the present method

offers the same convergence rate as that obtained by the basic isogeometric collocation in terms

of uniform mesh. With respect to the DOFs used to achieve a certain accuracy, the present method

is, as expected, superior to adaptive refinement with fewer DOFs. The number of DOFs needed

by the present method with the adaptivity is 4432, which is less than the 17160 needed by

the IGA-C method. Fig. 14 shows the efficiency of computation in terms of the error estimator

versus computational cost. It can be seen that the present method is the most efficient while the

isogeometric collocation is the least.
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Figure 9. Convergence plot in the energy norm.

Figure 10. Contour plot in the displacement.

7.2.3. Hertzian contact The Hertz’s problems are a typical benchmark in linear elasticity contact

mechanics. In this work, we consider the problem of the contact of an infinite cylinder of radius

R = 1 with a rigid plane (see Fig. 15a). The material of the cylinder is linear elastic with Young’s

modulus E = 1.33 and Poisson’s ratio ν = 0.333. The penalty parameters are ǫn = 104, ǫt = 103

and the coefficient of friction is µ = 0.3. The cylinder is loaded by a vertical force p̄ = 0.005 applied

as a uniformly distributed load on the upper surface. The analytical solution for this problem can be

found in [43, 44].

As can be seen from Fig. 15b,c,d which show the uniform mesh, non-uniform mesh and adaptive

mesh refinement respectively. Fig. 16 shows the contour plot of the stress σyy. Fig. 17 shows a

comparison of the normal and tangential components of the contact traction, both normalized with

respect to the normal contact traction at the midpoint of the contact area. It can be seen that, the

contact traction predicted by the proposed contact formulation in isogeometric collocation agrees

well with that given by the analytical solution. As shown in Fig. 18, the present method achieves

a higher convergence rate than the IGA-C method with both uniform and non-uniform meshes.

Moreover, the number of DOFs required in the present method is 5384, which is less than the 12000

and 38720 required in the IGA-C method with uniform and non-uniform meshes, respectively.
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Figure 11. The elastic plate with a circular hole: (a) geometrical modeling, (b) initial mesh, (c) adaptive
mesh after 5 refinement steps, and (d) uniform mesh.

Figure 12. Stress field contour plots for σxx and σxy , respectively.
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Figure 13. Convergence plot for the plate with circular hole.
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Figure 14. The comparison of the computational efficiency between IGAM-C and IGA-C.
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(a) (b)

(c) (d)

Figure 15. Hertzian contact problem: (a) geometrical configuration, (b) uniform mesh, (c) non-uniform
mesh, and (d) adaptive mesh after 5 refinement steps.

Figure 16. Distribution of the stress σyy , and close-up of the contact region.
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Figure 17. Analytical and numerical contact pressure (normal and tangential components).

10
3

10
4

Degree of freedoms

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 e
rr

o
r

IGA-Collocation (uniform)

IGA-Collocation (non-uniform)

Present method (adaptive)

0.6338

2.1354

1.3863

Figure 18. Convergence plot for the Hertz’s problem.
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7.3. Hertz contact problem with friction between deformable bodies

The schematic of this problem is shown in Fig. 19, where the values of the geometrical variables

are R = 1, b = 0.5, h = 0.3. The materials of both bodies are linearly elastic with Young’s modulus

E = 1 and Poisson’s ratio ν = 0.3. The penalty parameters are εN = 103 and εT = 102, and the

coefficient of friction is µ = 0.2. The model is loaded with a vertical downward displacement

v̂ = 0.002 and a horizontal displacement û = 0.00075. The analytical solution for infinitesimal

deformations can be found in [44].

Fig. 20 shows the final distribution of the stress σyy, whereas Fig. 21 compares numerical and

analytical results in terms of normalized components of the contact traction versus normalized

coordinates along the contact area. Once again excellent agreement is obtained.

(a) (b)

Figure 19. (a) Schematic of the cylinder on plane Hertzian contact problem, and (b) adaptive mesh after 3
refinement steps.

Figure 20. Contour plot of σyy , and close-up of the contact region.
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Figure 21. Analytical and numerical normalized contact traction components.

7.4. Sliding friction between deformable bodies

A half-cylindrical body is pressed onto an elastic slab and then moved in the tangential direction.

The lower surface of the cylinder is treated as a slave. Neo-Hookean hyper-elastic material behaviour

is assumed for both bodies, with material parameters E = 1 and ν = 0.3 for the slab, and E = 1000
and ν = 0.3 for the cylinder. The penalty parameters are ǫn = ǫt = 100 and the coefficient of friction

is µ = 0.5. The geometric model of the problem is illustrated in Fig. 22.

A uniform downward displacement Uy = -0.1 is applied to the upper face of the cylinder in

10 increments and then held constant while a horizontal displacement Ux = 2.0 is applied in 100

increments. Fig. 23 shows the contour plots for the stress field σyy in the deformed configuration

for different load increments.

Figure 22. Geometrical configuration for sliding friction between deformable bodies.
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Figure 23. (a) Adaptive mesh after 3 refinement steps and (b) the stress field contour plots for σyy at different
time steps t = 10, 50, 100, respectively.

This article is protected by copyright. All rights reserved.



A
c
c
e
p

te
d

A
r
ti

c
le

22

8. CONCLUSIONS

We have introduced an adaptivity in isogeometric meshfree collocation method for elasticity and

friction contact problems. The present method was developed based upon a connection between

the MLS-based meshfree shape functions and IGA basis functions to achieve the geometry

exactness and the adaptive local refinement flexibility. Moreover, the resolution of the nonlinear

contact governing equation is derived from a strong form to avoid the disadvantages of numerical

integration. Numerical examples have shown that the present method has not only obtained stable

and accurate results but has also been successfully implemented for the adaptive analysis. The

convergence studies have also proven that the present method offers spatial convergence as high as

that of the Galerkin finite element. Based on results obtained in this investigation, we have observed

that:

• The present method has successfully demonstrated its advantages in the adaptive analysis. The

gradient based error estimation strategy has also proved its robustness for the improvement of

computational efficiency.

• The total number of unknowns in the present method equals those in the direct isogeometric

collocation method, so the present method does not increase the computational cost

significantly. The computational efficiency of adaptive refinement is higher than that of

standard uniform refinement in terms of CPU time.

• The integrals were evaluated directly in the parametric space following the framework of IGA.

Therefore, the implementation of the proposed method is simplified, and the computational

effort is reduced.

• The comparison of the obtained results with an analytical solution for the Hertzian contact

problem showed a good agreement and demonstrated the feasibility of the present method for

treating the contact incompatible points. A high convergence rate was also achieved by the

present method when compared with isogeometric collocations in uniform and non-uniform

refinement.

• A large deformation and large sliding frictional ironing example has led to remarkably smooth

global traction histories in both the normal and tangential directions.
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APPENDIX A: DERIVATIVES OF SHAPE FUNCTIONS

The first derivatives of shape function can be obtained from Eq. (19)

φi,α (ξ) =pT
(

ξ
[·]
i

)[

C−1
,α (ξ)p (ξ) Ŵ

(

ξ − ξ
[1]
i

)

+C−1 (ξ)p,α (ξ) Ŵ
(

ξ − ξ
[1]
i

)

+ C−1 (ξ) p (ξ) Ŵ,α

(

ξ − ξ
[1]
i

)]
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The second derivatives of shape function are given

φi,αβ (ξ) =pT
(

ξ
[·]
i

) [

C−1
,αβ (ξ)p (ξ) Ŵ

(

ξ − ξ
[1]
i

)

+C−1
,α (ξ)p,β (ξ) Ŵ

(

ξ − ξ
[1]
i

)

+C−1
,α (ξ)p (ξ) Ŵ,β

(

ξ − ξ
[1]
i

)

+C−1
,β (ξ) p,α (ξ) Ŵ

(

ξ − ξ
[1]
i

)

+C−1 (ξ)p,αβ (ξ) Ŵ
(

ξ − ξ
[1]
i

)

+C−1 (ξ)p,α (ξ) Ŵ,β

(

ξ − ξ
[1]
i

)

+C−1
,β (ξ)p (ξ) Ŵ,α

(

ξ − ξ
[1]
i

)

+C−1 (ξ)p,β (ξ) Ŵ,α

(

ξ − ξ
[1]
i

)

+ C−1 (ξ)p (ξ) Ŵ,αβ

(

ξ − ξ
[1]
i

)]

where C−1
,α = −C−1C,αC

−1, and C−1
,αβ = −C−1

(

C,αβC
−1 +C,αC

−1
,β +C,βC

−1
,α

)

.

APPENDIX B: LINEARIZATION OF THE CONTACT VARIABLES

The linearization of the normal gap is as follows ([45, 46, 36])

∆gn = (∆xs −∆x̄m) · nm

The linearization of the contact traction from Eq. (42)

∆p = −∆pnn
m − pn∆nm +∆p1tτ

m
1 + p1t∆τm

1

The variation of the normal ∆nm is given by

∆nm = −
(

∆x̄m
,ξ · nm + km11∆ξ̄m

)

τ 1m
1 = −

1

m11

(

∆x̄m
,ξ · nm + km11∆ξ̄m

)

τm
1

in which

∆ξ̄m =
1

Am
11

[

(∆xs −∆x̄m) · τm
1 + gnn

m ·∆x̄m
,ξ

]

(59)

Am
11 = mm

11 − gnk
m
11

Substituting the expression of ∆ξ̄m into ∆nm

∆nm = −
{

1
mm

11

∆x̄m
,ξ · nm +

km
11

Am
11

mm
11

[

(∆xs −∆x̄m) · τm
1 + gnn

m ·∆x̄m
,ξ

]

}

τm
1

= −
{

Am
11

+km
11

gn
Am

11
mm

11

nm ·∆x̄m
,ξ +

km
11

Am
11

mm
11

(∆xs −∆x̄m) · τm
1

}

τm
1

= −
{

C1n
m ·∆x̄m

,ξ + C2 (∆xs −∆x̄m) · τm
1

}

τm
1

where

C1 =
Am

11 + km11gn
Am

11m
m
11

; C2 =
km11

Am
11m

m
11

Linearization of the traction in sticking from Eq. (45)

∆p1t = ∆p1trial
t = εt∆ξ̄m =

εt
Am

11

[

(∆xs −∆x̄m) · τm
1 + gnn

m ·∆x̄m
,ξ

]

Linearization in case of sliding

∆p1t = −µ∆pn
p1trial
t

∥

∥ptrial
t

∥

∥

− µpn
∆p1trial

t
∥

∥ptrial
t

∥

∥

+ µpnp
1trial
t ·

∆
∥

∥ptrial
t

∥

∥

∥

∥ptrial
t

∥

∥

2 (60)

This article is protected by copyright. All rights reserved.



A
c
c
e
p

te
d

A
r
ti

c
le

24

where

∆
∥

∥ptrial
t

∥

∥ =
ptrial
t ·∆ptrial

t
∥

∥ptrial
t

∥

∥

∆ptrial
t = ∆p1trial

t · τm
1 + p1trial

t ·∆τm
1

∆τm
1 = ∆x̄m

,ξ + xm
,ξξ∆ξ̄m (61)

Substituting Equation (59) into Equation (61), it follows

∆τm
1 = ∆x̄m

,ξ +
xm
,ξξ

Am
11

[

(∆xs −∆x̄m) · τm + gnn
m ·∆x̄m

,ξ

]

Equation Equation (60) can be rewritten as

∆p1t = −
µ

∥

∥ptrial
t

∥

∥

(

p1trial
t ·∆pn + pn ·∆p1trial

t −
pnp

1trial
t ·∆

∥

∥ptrial
t

∥

∥

∥

∥ptrial
t

∥

∥

)

with

∆
∥

∥ptrial
t

∥

∥ =
ptrial
t

∥

∥ptrial
t

∥

∥

·
(

∆p1trial
t · τm

1 + p1trial
t ·∆τm

1

)
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