1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage


View online: http://dx.doi.org/10.1063/1.4869575
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/104/12?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Phase change behaviors of Zn-doped Ge2Sb2Te5 films

Inducing chalcogenide phase change with ultra-narrow carbon nanotube heaters
Appl. Phys. Lett. 95, 243103 (2009); 10.1063/1.3273370

Rewritable phase-change optical recording in Ge 2 Sb 2 Te 5 films induced by picosecond laser pulses
Appl. Phys. Lett. 84, 2250 (2004); 10.1063/1.1689756

Optical properties and structure of tellurium–germanium–bismuth–antimony compounds with fast phase-change capability
J. Appl. Phys. 89, 3290 (2001); 10.1063/1.1348327

Crystallization behavior of as-deposited, melt quenched, and primed amorphous states of Ge 2 Sb 2.3 Te 5 films
J. Appl. Phys. 88, 3926 (2000); 10.1063/1.1289811
We demonstrate high-density, multi-level crystallization of a Ge2Sb2Te5 thin film using tightly focused femtosecond laser pulses. The submicron spots with 8 distinct data storage states are written on a 1.08 μm square grid. The significant change in reflectivity of every specific state of crystallized spot allows easy optical reading and identification. As a demonstration, two gray-scale images are written into the storage medium. Our results open up potential applications in ultra-fast two-dimensional parallel cognitive computing and holography. © 2014 AIP Publishing LLC.

Chalcogenide glasses were originally presented by Ovshinsky as a promising candidate for non-volatile data storage, through switching between amorphous and crystalline phase states. Typical chalcogenides, such as Germanium-Antimony-Telluride (GeSbTe), exhibit large changes of optical reflectivity, electronic conductivity, and thermal conductivity between amorphous and crystalline phases, and are easily changed between these states using optical, electrical, or thermal energy. These remarkable properties make chalcogenide glass an excellent rewritable optical data-recording medium. GeSbTe can also form intermediate states, where the material contains regions in both the amorphous and crystalline states, which are attractive for applications in solid-state storage devices. Recently, attention has focused on cumulative switching of GeSbTe films induced by ultrafast lasers, where the repeatable energy dose and rapid heat diffusion allow control of the crystallization process. By repeatedly exposing the same area of a GeSbTe film to femtosecond laser pulses, a continuous change of reflectivity was achieved. This partial crystallization allows multi-level optical data storage, analogous to electrical multi-level storage.

Conventionally, high-density optical-data-storage efforts work to minimize the footprint of the recorded bits. An alternative is to increase the number of bits stored in each recording units. In this paper, we demonstrate high-density image storage by writing multi-level scale data on a chalcogenide film. Each gray-scale level is achieved by delivering a specific amount of pulse energy to the targeted point on the GeSbTe film, where the well-defined spot shape, the submicron-sized spot area and the large change in reflectivity available are the crucial factors in accurate writing. Additionally, recent studies demonstrate that a specifically designed film-substrate system allows reversible phase switching using a single femtosecond laser pulse, but in commercial optical data storage the typical time-scale for data recording and erasing is several hundred nanoseconds. Therefore, the use of the femtosecond lasers for optical data storage could dramatically reduce the laser-beam exposure time for data storage and erase.

We use Ge2Sb2Te5 (GST) as our phase-change material which is a semiconductor chalcogenide alloy with a crystallization temperature Tc of about 160 °C and a melting temperature Tm of about 600 °C. The film will be crystallized if it is heated above its crystallization temperature, but without reaching the melting temperature. In conventional binary optical data storage (rewritable optical discs and phase-change random-access memory), a single excitation event completely switches the phase state. In contrast, we locally heat the film using focused femtosecond laser pulses, but we control the pulse energy so that we bring the film to around Tc; hence it only partially crystallises. The degree of crystallization is probed by measuring the optical reflectivity of the submicron switched area.

Figure 1 shows a schematic diagram of the experimental setup. The laser source is a titanium-sapphire femtosecond laser (Coherent Chameleon Vision S) generating 80 MHz train of 85 fs pulses at 730 nm wavelength. We use an electro-optical modulator (Conoptics Corp.) to select single pulses. The output from the pulse picker is then expanded through a telescope system and incident on a spatial light modulator (SLM), for control of the beam scanning and focusing on the sample surface. The modulated beam is imaged by a 4 f telescope system onto the back aperture of an objective lens (Nikon UL Plan Fluor 50×, 0.8 numerical aperture), which focuses the light on the sample surface. The phase-change medium (Figure 1 inset) is made by sputtering a film of GST sandwiched between two ZnS:SiO2 layers to aid thermal diffusion and prevent oxidation, all 50 nm thick and supported on a 170 μm thick silica substrate. The changes in reflectivity of crystallized GST film are detected by using a CCD camera through a 50 × (0.7 numerical aperture) objective, under incoherent monochromatic (633 nm) illumination. A spot on the GST film is written by using a single 85 fs pulse at 730 nm.

Chalcogenide glasses were originally presented by Ovshinsky as a promising candidate for non-volatile data storage, through switching between amorphous and crystalline phase states. Typical chalcogenides, such as Germanium-Antimony-Telluride (GeSbTe), exhibit large changes of optical reflectivity, electronic conductivity, and thermal conductivity between amorphous and crystalline phases, and are easily changed between these states using optical, electrical, or thermal energy. These remarkable properties make chalcogenide glass an excellent rewritable optical data-recording medium. GeSbTe can also form intermediate states, where the material contains regions in both the amorphous and crystalline states, which are attractive for applications in solid-state storage devices.

Recently, attention has focused on cumulative switching of GeSbTe films induced by ultrafast lasers, where the repeatable energy dose and rapid heat diffusion allow control of the crystallization process. By repeatedly exposing the same area of a GeSbTe film to femtosecond laser pulses, a continuous change of reflectivity was achieved. This partial crystallization allows multi-level optical data storage, analogous to electrical multi-level storage.

Conventionally, high-density optical-data-storage efforts work to minimize the footprint of the recorded bits. An alternative is to increase the number of bits stored in each recording units. In this paper, we demonstrate high-density image storage by writing multi-level scale data on a chalcogenide film. Each gray-scale level is achieved by delivering a specific amount of pulse energy to the targeted point on the GeSbTe film, where the well-defined spot shape, the submicron-sized spot area and the large change in reflectivity available are the crucial factors in accurate writing. Additionally, recent studies demonstrate that a specifically designed film-substrate system allows reversible phase switching using a single femtosecond laser pulse, but in commercial optical data storage the typical time-scale for data recording and erasing is several hundred nanoseconds. Therefore, the use of the femtosecond lasers for optical data storage could dramatically reduce the laser-beam exposure time for data storage and erase.

We use Ge2Sb2Te5 (GST) as our phase-change material which is a semiconductor chalcogenide alloy with a crystallization temperature Tc of about 160 °C and a melting temperature Tm of about 600 °C. The film will be crystallized if it is heated above its crystallization temperature, but without reaching the melting temperature. In conventional binary optical data storage (rewritable optical discs and phase-change random-access memory), a single excitation event completely switches the phase state. In contrast, we locally heat the film using focused femtosecond laser pulses, but we control the pulse energy so that we bring the film to around Tc; hence it only partially crystallises. The degree of crystallization is probed by measuring the optical reflectivity of the submicron switched area.

Figure 1 shows a schematic diagram of the experimental setup. The laser source is a titanium-sapphire femtosecond laser (Coherent Chameleon Vision S) generating 80 MHz train of 85 fs pulses at 730 nm wavelength. We use an electro-optical modulator (Conoptics Corp.) to select single pulses. The output from the pulse picker is then expanded through a telescope system and incident on a spatial light modulator (SLM), for control of the beam scanning and focusing on the sample surface. The modulated beam is imaged by a 4 f telescope system onto the back aperture of an objective lens (Nikon UL Plan Fluor 50×, 0.8 numerical aperture), which focuses the light on the sample surface. The phase-change medium (Figure 1 inset) is made by sputtering a film of GST sandwiched between two ZnS:SiO2 layers to aid thermal diffusion and prevent oxidation, all 50 nm thick and supported on a 170 μm thick silica substrate. The changes in reflectivity of crystallized GST film are detected by using a CCD camera through a 50 × (0.7 numerical aperture) objective, under incoherent monochromatic (633 nm) illumination. A spot on the GST film is written by using a single 85 fs pulse at 730 nm.
successive low-energy pulses to initiate nucleation and crystal growth. The number of pulses is varied to achieve different reflectivity levels. The separation between pulses is set to 1 μs, which is sufficient to ensure the system thermally relaxes between pulses and hence the crystallization level of the GST film depends only on the total number of incident pulses. After each pulse, a microscope image of the film is recorded to measure the relative change of reflectivity. For imaging the crystallized spot, a mechanical shutter is used to block any leakage through the electro-optic modulator.

Figure 2(a) shows three typical characteristic curves illustrating the change in optical reflectivity of the partial crystallization GST mark under pulsed illumination. The change in reflectivity is calculated using the formula \((R_c - R_a)/R_a\), where \(R_c\) is the peak reflectivity of the spot, and \(R_a\) is the average reflectivity of the amorphous GST film over the rectangular area around the GST mark (inset to Fig. 2(a)). The results clearly show the energy accumulation and partial crystallization of GST. With 0.21 nJ pulse excitation, there is no detectable change in reflectivity until after 45 pulses, where the crystallization threshold was reached and the reflectivity begins to change. With 0.28 nJ pulse energy, the reflectivity of GST mark increases gradually with the number of pulses. While with the 0.36 nJ pulse energy, the reflectivity of the GST film increases quickly with the number of pulses and the material was switched to a high reflectivity crystalline state. Since the mapping of reflectivity of the partially crystallized spots is based on the readout value of a single pixel in the centre of the spot, the noise in the curve is mainly due to CCD read noise.

Since crystallization of a GST thin film is strongly dependent on the pulse energy applied, in the following experiments, the pulse energy is adjusted so that the first pulse incident on the GST film results in a 2.5% change in reflectivity. As the number of pulses increases, the GST film undergoes first nucleation and then growth of crystallites, as shown in Fig. 2(a) (blue line). The change of reflectivity reaches 81% after 100 pulses. After that, the GST film reaches a fully crystallized state where the shape and reflectivity of spot does not change significantly. This large reflectivity variation lets us use intermediate reflectivity levels to store multiple bits in each phase-switched domain.

We use a tilted phase mask on SLM scan the focus across the sample surface, writing a different gray level at each point. As shown in Fig. 3(a), an 8-level spiral plate pattern was written on the GST film, where each level is written with a specific number of pulses—calculated from the nonlinear curve in the Fig. 2(a)—to write 8 gray-levels with increasing reflectivity. Fig. 3(b) shows the average of change in reflectivity in each segment of the pattern. The average reflectivity of GST mark is linearly increasing, as expected. With more accurate control of the pulse energy, and optimization of the read out system, it will be possible to reduce the variation between spots and hence increase the number of levels reliable to be written and read.

To demonstrate the practicality of complex imaging, a portrait of a little girl was written into the GST film with the same way (Fig. 3(d)). The original photo (Fig. 3(c)) was converted to an 8-level gray-scale image with 40 × 61 pixels, and the computer triggered the required number of pulses.
onto each point on the sample, using the SLM to control the beam scanning. As the gray-levels are directly coded into the film, it can easily read as a single microscope image. Any bit pattern stored in multi-level GST film can be thought of equivalent to such a gray-scale image.

In a multi-level storage system, the achievable data storage density is determined by the number of levels available, as well as the spacing of the stored bits. With 8 levels (equivalent to 3 bits/mark) and a 1.08 μm gray-scale portrait of a little girl. (d) A 43 μm × 66 μm gray-scale portrait of a little girl.

whereas the GST based writing proposed here is potentially rewritable. Writing of our grayscale images also uses only standard optical systems, without the need for costly electron beam lithography or focused ion beam milling.

In conclusion, we have demonstrated multi-level data storage and gray-scale image writing in a thin GST film using femtosecond laser. Our results have the potential to dramatically increase the optical data storage density in phase-change materials. Furthermore, the proposed femtosecond multi-level data storage opens up potential applications in ultra-fast two-dimensional parallel data processing, such as image encoding/decoding, rewritable amplitude masks, and holography. Additionally, the cumulative effects in controllable phase transition of GST films give the interesting prospect of realizing cognitive image processing.

The work is partially supported by the Advanced Optics in Engineering Programme from the Agency for Science, Technology and Research (A*STAR) of Singapore with Grant No. 122-360-0009, the UK Engineering and Physical Sciences Research Council with Grant Nos. EP/F040644/1 and EP/G060363/1, the Royal Society of London. Q. Wang acknowledges the fellowship support from the Agency for Science, Technology and Research, Singapore. E. Rogers acknowledges support from the University of Southampton Enterprise Fund.

FIG. 3. Gray-scale images with GST material. (a) A spiral plate pattern of showing 8 levels of gray-scale (total diameter 34 μm). Arrows show the direction of the increasing number (from 5 to 85) of pulses incident on the GST film. (b) The average change in reflectivity of each level with standard deviation bar. (c) The original 40 × 61 pixels gray-scale portrait of a little girl. (d) A 43 μm × 66 μm gray-scale portrait of a little girl.