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We investigate superfluidity, and the mechanism for creation of quantized vortices, in the relativistic regime.
The general framework is a nonlinear Klein-Gordon equation in curved spacetime for a complex scalar field,
whose phase dynamics gives rise to superfluidity. The mechanisms discussed are local inertial forces (Coriolis
and centrifugal), and current-current interaction with an external source. The primary application is to
cosmology, but we also discuss the reduction to the nonrelativistic nonlinear Schrödinger equation, which is
widely used in describing superfluidity and vorticity in liquid helium and cold-trapped atomic gases.
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I. INTRODUCTION

In quantum mechanics, a system of particles is describ-
able by a complex wave function, which has a modulus as
well as a phase, and the existence of the quantum phase is
an essential distinction between quantum mechanics and
classical mechanics. Macroscopic phase coherence (corre-
lation of the quantum phase over macroscopic distances)
gives rise to superfluidity and occurs in Bose-Einstein
condensates (BEC) in diverse systems [1–3]: liquid 4He at
low temperatures, cold-trapped atomic gases, the central
region in relativistic heavy-ion collisions, Higgs or Higgs-
like fields over cosmological scales, superconducting
metals, liquid 3He at low temperatures, and the interior
of neutron stars. The last three refer to superconductivity,
which can be viewed as the superfluidity of condensed
fermion pairs. Ginzburg and Landau [4] propose a general
phenomenological theory that describes the phase coher-
ence in terms of a complex scalar field, which is viewed as
an order parameter that emerges in a phase transition below
a critical temperature. This phase transition is associated
with spontaneous breaking of global gauge symmetry, i.e.,
the invariance of the wave function under a constant change
of phase. We adopt such an approach here, and, in view of
cosmological applications, begin with a complex scalar field
in curved spacetime, and then consider the flat-spacetime

and nonrelativistic limits. Our treatment is confined to the
neighborhood of the absolute zero of temperature.
We denote the complex scalar field by

Φ ¼ Feiσ; ð1Þ

which satisfies a nonlinear Klein-Gordon equation (NLKG)
of the form □Φþ fðΦÞ ¼ 0, where the d’Alembertian
operator □ is the generalization of ∂μ∂μ ¼ ∇2 − 1

c2
∂2
∂t2 to

curvilinear coordinate frames, and f is a nonlinear function,
which contains a potential that has a minimum at Φ ≠ 0.
Thus, there exists a nonzero vacuum field, which breaks
global gauge symmetry spontaneously. The superfluid
velocity is proportional to the spatial gradient of the phase
∇σ, which has quantized circulation:

I
C

∇σ · ds ¼ 2πn ðn ¼ 0;�1;�2;…Þ: ð2Þ

The integral extends over a spatial closed loop C, and the
quantization is a consequence of the fact that Φ, and hence
the phase factor eiσ, must be a continuous function in space.
The contour C encircles a vortex line, which may meander
in space but must end on itself, forming a closed loop, or
terminate on boundaries. The modulus F must vanish on
the vortex line, where it approaches zero continuously, over
a characteristic distance, the healing length. Thus the vortex
line is in actuality a vortex filament with a finite effective
radius.
The superfluid velocity vs is a hydrodynamic quantity

that obeys certain conservation laws. As discussed below, it
has the form
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vs
c
¼ ξs∇σ; ð3Þ

where ξs is a correlation length that is generally spacetime
dependent, with ξs → ℏ=mc in the nonrelativistic limit,
where m is a mass scale. The fact that the modulus F must
vanish at the vortex center effectively makes the space
nonsimply connected; i.e., there are closed circuits that
cannot be shrunken to zero continuously. This is why we
can have ∇ × vs ≠ 0, even though vs is proportional to a
gradient (at least nonrelativistically).
In the large-scale motion of a quantum fluid, as in a

classical medium such as the atmosphere or the ocean,
vorticity is ubiquitous, being induced through different
means in different systems. In liquid helium in the labo-
ratory, they can be created through rotation of the container,
or through local heat perturbations. The latter can create
quantum turbulence in the form of a vortex tangle. In the
cosmos, quantized vortices in the background superfluid can
be created by a rotating black hole, a rotating galaxy, or
colliding galaxies. The big bang era could witness the
creation of quantum turbulence. Our main theme is that
all these effects can be traced to a universal mechanism
characterized by operator terms in the NLKG that can be
associated with the Coriolis and the centrifugal force:

RCoriolis ¼
2Ω
c2

∂2

∂ϕ∂t ;

Rcentrifugal ¼ −
Ω2

c2
∂2

∂ϕ2
; ð4Þ

where Ω is an angular velocity, and ϕ the angle of rotation.
The angular velocity may be an externally given constant,
or it may be a spacetime function arising from dynamics,
interaction with external sources, or spacetime geometry.
The various threads of our investigation may be

summarized by the chart in Fig. 1. We begin in Sec. II
with a general formulation of the NLKG in general
relativity, and define the superfluid velocity field vs in
terms of the phase of the field. This is followed in Sec. III
by a reduction to flat Minkowski spacetime. In Sec. IV, we
then consider the NLKG in a global rotating frame for
orientation, and exhibit the Coriolis force and centrifugal
force (the top link in Fig. 1). This enables us to extract
local Coriolis and centrifugal terms from the curved-space
equation, by expansion in the local angular velocity, (the
left to right link in Fig. 1). The local rotating frames
associated with the Coriolis force leads to frame-dragging.
We then make a nonrelativistic reduction in Sec. V,
recovering the nonlinear Schrödinger equation, particu-
larly the form used to describe vortex generation in
rotating BEC (the link to the bottom square in Fig. 1).
In Sec. VI, we discuss the introduction of an external
source via current-current coupling, and note how it can
have the same effect as the Coriolis force (the right link in

Fig. 1). Finally, in Sec. VII, we show some results from
numerical computations.

II. SUPERFLUIDITY IN CURVED SPACETIME

We start with the NLKG in a general background metric
gμνðμ; ν ¼ 0; 1; 2; 3Þ. The action of the complex scalar field
is given by

S ¼ −
Z

dtd3x
ffiffiffiffiffiffi
−g

p ðgμν∂μΦ�∂νΦþ VÞ; ð5Þ

where g ¼ detðgμνÞ, and V denotes a self-interaction
potential that depends only on Φ�Φ. The equation of
motion is

ð□ − V0ÞΦ ¼ 0; ð6Þ
where V 0 ¼ dV=dðΦ�ΦÞ, and

□Φ≡∇μ∇μΦ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ: ð7Þ

where ∇μ is the covariant derivative.
In the phase representation Φ ¼ Feiσ, the real and

imaginary parts of (6) lead to the equations:

ð□ − V 0ÞF − F∇μσ∇μσ ¼ 0;

2∇μF∇μσ þ F∇μ∇μσ ¼ 0: ð8Þ

The first equation can be rewritten in the form of a
relativistic Euler equation

FIG. 1. Chart showing various threads of our investigation. The
general theme, shown by the central and the left square, is that the
mechanisms for vortex creation are the inertia forces (Coriolis
and centrifugal) in rotating frames, generated by external means
or by the spacetime metric, or by external sources through a
current-current interaction. See Sec. I to follow the various
threads.
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∇μðF−1
□F − V 0Þ − 2F−2∇λðF2∇λσ∇μσÞ ¼ 0: ð9Þ

The second equation is a continuity equation

∇μjμ ¼ 0; ð10Þ

with

jμ ≡ F2∇μσ ¼ F2∂μσ: ð11Þ

There exist a conserved charge

Q ¼
Z

d3x
ffiffiffiffiffiffi
−g

p
j0; ð12Þ

and a covariantly conserved energy-momentum tensor

Tμν ¼ ∇μΦ�∇νΦþ∇νΦ�∇μΦ − gμν∇τΦ�∇τΦ − gμνV:

ð13Þ

We turn to the definition of the superfluid velocity vs.
The field Φðx; tÞ corresponds to an order parameter at
absolute zero, and thus represents a pure superfluid. Let τ
be the proper time along a timelike worldline of a fluid
element whose coordinates are

xμ ¼ ðctðτÞ; xiðτÞÞ; ð14Þ

where i ¼ 1; 2; 3. The superfluid velocity is the 3-velocity
of the fluid element:

vs ¼
dx
dt

: ð15Þ

We define a 4-velocity

Uμ ≡ dxμ

dτ
¼ ðγc; γvsÞ; ð16Þ

where γ ≡ dt=dτ. From ds2 ¼ −c2dτ2 ¼ gμνdxμdxν, we
obtain

γ ¼
�
−g00 − 2g0i

vi

c
− gij

vivj

c2

�−1=2
: ð17Þ

The superfluid density ρs is defined through

jμ ¼ ρsUμ: ð18Þ

Comparison with (11) leads to

ρs ¼ ℏðcγξsÞ−1F2;
vs
c
¼ ξs∇σ ð19Þ

where

ξs ¼ ð∂0σÞ−1: ð20Þ

III. REDUCTION TO MINKOWSKI SPACETIME

In the Minkowski metric ð−1; 1; 1; 1Þ, the Euler equation
and the continuity equation become

∂μðF−1
□F − V 0Þ − 2F−2∂λðF2∂λσ∂μσÞ ¼ 0;

∂μðF2∂μσÞ ¼ 0: ð21Þ

The 4-velocity is given by

Uμ ¼ ðγc; γvsÞ; γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2s=c2

p : ð22Þ

One can checkUμUμ ¼ −c2, which guarantees vs < c. The
superfluid density and velocity are given by

ρs ¼ −
ℏ _σ
c2γ

F2;

vs
c
¼ −

c
_σ
∇σ: ð23Þ

In a stationary solution of the form Φðx; tÞ ¼ e−iωtχðxÞ, we
have _σ ¼ −ω. Eq. (23) was first derived in Ref. [5].

IV. SUPERFLUID ROTATION

A. Rotating frame

A superfluid can flow frictionlessly past a wall at low
velocities; dissipations can occur only when the velocity
exceeds a critical value necessary to excite the system.
Similarly, a superfluid contained in a rotating bucket will
remain at rest, until the angular frequency of the bucket
exceeds a critical value, whereupon a rotational velocity
field occurs through the creation of quantized vortices, with
vortex lines parallel to the axis of rotation. In a steady state,
these vortices form a lattice of specific form. Theoretical
treatment of this problem is best done in a coordinate frame
rotating with the bucket, for it easily exposes the inertial
forces, i.e., the Coriolis force and the centrifugal force, that
are responsible for vortex creation. The actual superfluid
we are studying may not be contained in a bucket, and we
may not be in a rotating frame, but the mechanism for
vortex creation may be attributed to a local version of these
forces.
Consider a rotating frame with angular velocityΩ0 about

the z axis. In spatial spherical coordinates, the lab frame
ðt0; r0; θ0;ϕ0Þ and the rotating frame ðt; r; θ;ϕÞ are related by
the transformation

t¼ t0; r¼ r0; θ ¼ θ0; ϕ¼ ϕ0 −Ω0t0: ð24Þ

The d’Alembertian operator in the rotating frame in flat
spacetime is given by
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□ ¼ □
ð0Þ þ RCoriolis þ Rcentrifugal; ð25Þ

where □ð0Þ ¼ ∇2 − 1
c2

∂2

∂t2, and

RCoriolis ¼
2Ω0

c2
∂2

∂t∂ϕ ;

Rcentrifugal ¼ −
Ω2

0

c2
∂2

∂ϕ2
: ð26Þ

Equation (25) can be applied to the study of any Klein-
Gordon equation in the rotation frame with interactions,
e.g., a self-interaction V which gives the NLKG. Note that
the coordinate transformation (24) is restricted by the
condition Ω0R ≪ c where R is the radius of system.
This constraint is satisfied in most rotating systems, from
laboratory experiments on liquid 4He and BEC to neutron
stars. Here the spacetime background is assumed to be flat.
Curved-spacetime cases involving fast-rotating blackholes
are studied in [6] and a general treatment will be given in
subsection C.

B. Feynman’s relation

Consider N vortices in rotating bucket of radius R and
angular velocity Ω. At the wall of the bucket, the superfluid
velocity is vs ¼ ΩR. Thus, ∇σ ¼ vs=ðcξsÞ ¼ ΩR=ðcξsÞ.
From the relation

H
ds ·∇σ ¼ 2πN, we obtain

Ω ¼ πcξsnv; ð27Þ

where nv ¼ N=ðπR2Þ is the number of vortices per unit
area. This formulas can give an estimate of the local vortex
density when the superfluid flows with varying local
angular velocity. In the nonrelativistic limit ξs → ℏ=mc,
we have Ω ¼ ðπℏ=mÞnv, which is called Feynman’s
relation. The derivation is valid only for large N, since
we treat the rotating superfluid as if it were a rigid body.

C. Frame-dragging from spacetime geometry

The transformation to a rotating coordinate frame is
equivalent to using the metric in the following line element:

ds20 ¼ −c2dt2 þ dr2 þ r2 sin2 θdθ2

þ r2ðdϕþΩ0dtÞ2: ð28Þ

The cross term 2Ω0r2dϕdt corresponds to a rotating frame
of angular velocity Ω0. A spacetime-dependent Ω0 may
lead to frame-dragging, i.e., local rotating frames. We give
a general treatment of this effect in the following.
Consider a stationary axially-symmetric background

metric with two Killing vectors ξa ¼ ð∂=∂tÞa and
ψa ¼ ð∂=∂ϕÞa, which characterize the stationary condition
and the rotational symmetry, respectively. The metric can
be parametrized with coordinates ft; u; v;ϕg as follows [7]:

ds2 ¼ −Adt2 þ guudu2 þ 2guvdudvþ gvvdv2

þ 2Bdϕdtþ Cdϕ2; ð29Þ

where the functions A; B;C are related to the Killing
vectors:

A ¼ −gtt ¼ −ξaξa;

B ¼ gtϕ ¼ ξaψa;

C ¼ gϕϕ ¼ ψaψa: ð30Þ

In general we should solve the NLKG in the background
metric (29) for rotation problems. Here we consider a small
B approximation. By expanding the d’Alembertian oper-
ator in powers of B, we find a cross term identifiable with
the Coriolis force:

2gtϕ
∂2

∂t∂ϕ ¼ 2B
AC

∂2

∂t∂ϕþOðB3Þ: ð31Þ

Noting that Ω ¼ −B=C is the coordinate angular velocity
of locally nonrotating observers [7], we can write

RCoriolis ¼
2Ω
gtt

∂2

∂t∂ϕ : ð32Þ

In a similar manner we obtain the centrifugal term

Rcentrifugal ¼
Ω2

gtt

∂2

∂ϕ2
: ð33Þ

Examples of metrics with frame-dragging are the BTZ
metric in 2þ 1 dimensional spacetime, and the Kerr metric
in 3þ 1 dimensional spacetime, which describe the space-
time curvature around a black hole. Frame-dragging in
these metrics arise from the angular velocity of the black
hole. Vortex creation due to this purely geometric effect is
investigated in [6]. From now on we will focus on the flat
spacetime background and study the NLKG in the rotating
frame defined by the transformation (24).

V. NONRELATIVISTIC LIMIT

A. From NLKG to NLSE

A solution to the NLKG generally contains frequencies
of both signs. A large frequency ω0 of one sign (say,
positive) could develop, due to an initial field with large
positive charge, or a large potential energy, and the system
will approach the nonrelativistic limit. We define a wave
function Ψ through

Φðx; tÞ ¼ e−iω0tΨðx; tÞ: ð34Þ

Introducing a mass scale m by putting ω0 ¼ mc2=ℏ, we
find the equation for Ψ:
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iℏ
∂Ψ
∂t ¼ −

ℏ2

2m
∇2ΨþUΨþ ℏ2

2mc2
∂2Ψ
∂t2 ; ð35Þ

where U ¼ ðℏ2=2mÞV 0 − ðmc2=2Þ. In the limit c → ∞, we
drop the term ∂2Ψ=∂t2 and obtain the nonlinear
Schrödinger equation (NLSE).
Let the phase of the nonrelativistic wave function be

denoted by βðx; tÞ:

Ψ ¼ jΨjeiβ: ð36Þ

The phase of the relativistic field Φ is thus given by

σ ¼ −ω0tþ β; ð37Þ

Putting

uk ≡ ∂kσ ¼ ∂kβ; ð38Þ

we obtain, from (21),

∂t

�
ð1 − _β=ω0ÞF2uk þ F2

4ω0

∂k∂tðlnF2Þ
�

þ c2

ω0

∂jðF2ujukÞ þ ∂kP ¼ 0;

∂t½ð1 − _β=ω0ÞF2� þ c2

ω0

∂jðF2ujÞ ¼ 0; ð39Þ

where the pressure P is defined by

P ¼ 1

2
ðF2V 0 − VÞ − c2

4ω0

F2∇2ðlnF2Þ: ð40Þ

The terms in braces are due to self interaction, while the last
term is the “quantum pressure” [2]. The nonrelativistic
superfluid density and velocity can be obtained from (23)
by putting ω0 ¼ mc2=ℏ, and formally let c → ∞∶

ρs ¼ mjΨj2ð1þ ℏ _β=mc2 − v2s=c2Þ þOðc−4Þ;

vs ¼
ℏ
m
∇βð1þ ℏ _β=mc2Þ þOðc−4Þ: ð41Þ

From (21) we obtain the nonrelativistic hydrodynamic
equations:

∂ρs
∂t þ∇ · ðρsvsÞ ¼ 0;
� ∂
∂tþ vs ·∇

�
vs ¼ −

∇P
ρs

−R; ð42Þ

where R ¼ ð∇ · vs þ vs · ∇ ln ρsÞvs vanishes for an incom-
pressible, divergenceless fluid.

B. NLSE in rotating frame

We start with the NLKG in a rotating frame:

�
∇2 −

1

c2
∂2

∂t2 − V 0 þ RCoriolis þ Rcentrifugal

�
Φ ¼ 0

V 0 ¼
�
mc
ℏ

�
2

− 2mλjΦj2;

RCoriolis ¼
2Ω
c2

∂2

∂t∂ϕ ;

Rcentrifugal ¼ −
Ω2

c2
∂2

∂ϕ2
; ð43Þ

where we use a specific form of the potential. Going to the
nonrelativistic limit yields

iℏ
∂Ψ
∂t ¼

�
−
ℏ2

2m
∇2 þ iℏΩ

∂
∂ϕþ λjΨj2

�
Ψ; ð44Þ

which is the NLSE usually used to describe a rotating
BEC [3]. The trapping potential can be included as well.
The centrifugal term does not appear, because it is
−ðℏ2Ω2=c2Þ∂2=∂ϕ2, and thus of order c−2. For comparison
some features of the relativistic and nonrelativistic limit are
listed in Table I.

VI. CURRENT-CURRENT INTERACTION
WITH A SOURCE

The complex scalar field Φ may be coupled to an
external source. In Minkowski spacetime, the only
Lorentz-invariant interaction in the Lagrangian density is
the current-current interaction,

Lint ¼ −ηJμjμ; ð45Þ

where jμ is the conserved current (11) of the complex scalar
field, η a coupling constant, and Jμ is the conserved current
of the external source. A direct coupling is possible only if
the scalar field has multi-components representing internal
symmetry. We can write, more explicitly,

Lint ¼ −ηF2Jμ∂μσ; ð46Þ

TABLE I. Comparison of some features of the relativistic and
nonrelativistic limit based on NLKG and NLSE, respectively.

Equations NLKG NLSE

Variables Φðx; tÞ ¼ Feiσ Ψðx; tÞ ¼ jΨjeiβ
Superfluid densities ρs − ℏ _σ

c2γF
2 mjΨj2

Superfluid velocities vs − c
_σ∇σ ℏ

m∇β

Rotating terms 2Ω
c2

∂2Φ
∂t∂ϕ, −

Ω2

c2
∂2Φ
∂ϕ2 iℏΩ ∂Ψ

∂ϕ
Feynman relation Ω ¼ πcξsnv Ω ¼ ðπℏ=mÞnv
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showing that it is a derivative coupling of the phase of the
field. The NLKG now reads

ð□ − V 0ÞΦ − iηJμ∂μΦ ¼ 0: ð47Þ
Ref. [5] uses an external current of the form

Jμ ¼ ðρ; JÞ; J ¼ ρΩ × r; ð48Þ
to simulate the presence of a galaxy in a cosmic superfluid.
Here, ρðxÞ is the density of the galaxy, represented by a
Gaussian distribution, and Ω is its angular velocity. In this
case, the NLKG takes the form

ð□ − V 0ÞΦþ iηρ

�∂Φ
∂t þ Ω × r ·∇Φ

�
¼ 0: ð49Þ

The last term reads, in a cylindrical coordinate system with
azimuthal angle ϕ about the rotation axis,

iηρΩ × r ·∇Φ ¼ iηρΩ
∂Φ
∂ϕ : ð50Þ

Since ρΩ effectively gives a spatially dependent angular
velocity, this term gives rise to an effect similar to frame-
dragging. We can compare it with a Coriolis term

Ω
∂2Φ
∂t∂ϕ ¼ −iωΩ

∂Φ
∂ϕ ; ð51Þ

where we have put ∂Φ=∂t ¼ −iωΦ for a stationary
solution.

VII. NUMERICAL COMPUTATIONS

We solve the NLKG with various inertial or interaction
terms in (2þ 1)- and (3þ 1)-dimensional Minkowski
spacetime. Our emphasis here is on vortex states and
vortex dynamics. For the effects of gravity and dark matter
modeling, see Ref. [5].
The equations are solved by finite difference scheme and

spectrum methods are used to decouple the discretization
for derivatives ∂t and ∂ϕ in the Coriolis term. Semi-implicit
scheme similar to the Crank-Nicolson method is used for
the linear terms. The nonlinear term is handled explicitly.
We impose second order Neumann boundary condition in
solving the NLKG in the rotating frame (43) and periodic
boundary condition in studying the vortex rings lattice and
vortex line reconnection with (49), respectively.
Figure 2 shows in (2þ 1) dimensions the number of

vortices in a rotating bucket as a function of the angular
velocity and the field frequency. The computational data
agrees quite well with the relativistic Feynman relation
(27). As examples, Fig. 3 shows the modulus (left) and the
phase (right) plots of the complex scalar field in stationary
states with 8 and 63 vortices, respectively. The locations of
vortices are indicated by the dots in the modulus plots,
corresponding to positions in the phase plots around which
the color changes from blue to red, indicating a phase

change of 2π. The vortex distribution is mainly determined
by the Coriolis term while some nonuniformity is caused by
the centrifugal term.
In (3þ 1) dimensions, we introduce an external current of

the form (48) to simulate a rotating “star” immersed in a
cosmic superfluid and then solve (49). A vortex-ring
solution is found and themagnitude of the modulus gradient
is plotted in Fig. 4with the usual rainbow colormap. It shows

FIG. 2 (color online). The number N of vortices in a rotating
bucket as function of the angular velocity Ω and the field
frequency ω. The straight line represents the relativistic Feynman
relation (27), which can be rewritten N ¼ ðR2=c2ÞωΩ. Here, R is
the radius of the bucket, and ω is the frequency of the stationary
solution to the NLKG.

FIG. 3 (color online). Two lattice states with 8 and 63 vortices
respectively: The modulus of the field is plotted on the left side
and its phase is on the right side. The color map from blue to red
(see web version) indicates a phase change of 2π.
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that the star drags the superfluid into local rotation, and there
appear vortex rings surrounding the star. As pointed out in
Ref. [5,8], the so-called “nonthermal filaments” observed
near the center of theMilkyWaymay be parts of such vortex
rings around rotating black holes.
Vortex lines in three dimensions can cross and reconnect.

The originally smooth vortex lines become lines with cusps
at the reconnection point, and these cusps spring away from
each other rapidly, creating two jets of energy in the
superfluid. Through repeated reconnections, large vortex
rings can be degraded until they become a vortex tangle of
fractal dimensions (quantum turbulence). This mechanism
has been used in [8,9] to create matter in the cosmos during

the big bang era. We can simulate such a reconnection via
the NLKG, as shown in Fig. 5 by plotting the curl of the
phase gradient. Vortex reconnection in the NLSE has been
studied in Ref. [10]. Note that vortex dynamics has also
been studied via the local induction approximation (see
e.g., [11]) and its connection to the NLSE has been found in
[12]. For recent development along this direction, see
[13,14]. For actual photographs of vortex reconnection
in superfluid helium, see Ref. [15].

VIII. CONCLUSION

We formulate a framework for investigating superfluidity
and the mechanism for creating quantized vorticity in the
relativistic regime, based on a nonlinear Klein-Gordon
equation for a complex scalar field. This framework is
constructed in curved spacetime, then is reduced to flat
spacetime and also the nonrelativistic limit. Our numerical
study focuses on the flat-spacetime cases. It shows that
quantized vorticity can be created by local inertial forces
(Coriolis and centrifugal) and current-current interaction.
Feynman’s relation relating the number of vortices to the
angular frequency is numerically verified in the relativistic
regime. Our numerical solutions to the NLKG exhibit such
features as vortex lattices, three-dimensional vortex rings
around rotating stars, and vortex reconnections. In this
paper we only consider pure superfluid at zero temperature.
It would be interesting to generalize this relativistic
formulation to the finite temperature cases in which a
normal fluid component and the corresponding effects,
such as mutual friction will emerge.
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