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Abstract 

 

This paper describes a social media system to prevent dengue in Sri Lanka and potentially in the 

rest of the South and Southeast Asia regions. The system integrates three concepts of public 

health prevention that have thus far been implemented only in silos. First, the predictive 

surveillance component uses a computer simulation to forewarn health authorities and the 

general public about impending disease outbreaks. The citizen engagement component allows the 

general public to use social media tools to interact and engage with health authorities by aiding 

them in surveillance efforts by reporting symptoms, mosquito bites and breeding sites using 

smartphone technologies. The health communication component utilizes citizen data gathered 

from the first two components to disseminate customized health awareness messages to enhance 

knowledge and increase preventive behaviors among citizens. The system, known as ―Mo-

Buzz,‖ will be made available on a host of digital platforms like simple mobile phones, smart 

phones and a website. We present challenges and lessons learnt including content validation, 

stakeholder collaborations and applied trans-disciplinary research. 
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1.0 Introduction 

Sri Lanka has borne the brunt of dengue with over 70,000 cases in 2009-10 (Bhattacharya 

et al., 2013), and nearly 44,000 in 2012 (Ministry of Health, 2013b). The first nine months of 

2013 accounted for nearly 23,000 cases (Ministry of Health, 2013a) with a majority (57%) 

emerging from the capital city of Colombo (Ministry of Defense, 2013), that is increasingly 

being characterized as the nerve center of dengue in the country. Epidemiologists report that the 

threat of dengue continues to grow in Sri Lanka with new clades continuing to emerge from the 

four dengue serotypes that have been co-circulating for more than 30 years (Kanakaratne et al., 

2009). 

The narrative in the mainstream Sri Lanka media highlights how the Sri Lankan public 

health workforce is straddled by various factors that impede their functioning. For one, their 

ability to execute daily epidemiological tasks (that includes disease reporting which informs 

dengue mapping) is stymied by limited staff and a workload that has increased from one public 

health inspector (PHI) per 10,000 people to one per 40,000 (Peiris, 2009). Proactive surveillance 

measures (such as identifying and treating breeding sites in advance) are inadequate, as a result 

of which preventive actions implemented after an outbreak accrue limited benefits (Fazlulhaq, 

2012). In addition to these structural issues, public attitudes toward maintaining hygienic 

surroundings and performing health behaviors that will prevent them from dengue, remain far 

from desirable (Hettiarachchi et al., 2013). 

Public health prevention and management of dengue is challenged by three main 

limitations: 1) use of traditional epidemiological methods leading to reactive, as opposed to 

proactive, disease monitoring & surveillance (Hsieh and Ma, 2009), 2) lack of citizen 

engagement in public health programs leading to low exertions among individuals regarding 

their own health and that of the public health ecosystem (Gubler and Clark, 1996) and 3) lack of 

effective, interactive health education for citizens leaving awareness untranslated into action 

(Parks and Lloyd, 2004). 

However, the country faced with a grave dengue situation also boasts of a technological 

opportunity to help itself. According to the International Telecommunications Union (ITU) 

(2013), mobile cellular signals cover almost all (98%) of the Sri Lankan population, with prices 

of cellular services being among the lowest in the world. In the past decade, information and 

communication technologies (ICTs) – especially mobile phones – have provided the global health 

community with some of the most innovative and cost-effective strategies to address similar 

challenges in dengue and other health areas (Ekeland et al., 2010). 

 
Given the lack of an integrated mobile health system that addresses limitations in dengue 

prevention by optimizing social media, scientists at Singapore‘s Center of Social Media 

Innovations for Communities (COSMIC) have developed a prototype of an integrated social 

media-based system called Mo-Buzz. The purpose of this paper is to provide a detailed 

description of the functionalities of Mo-Buzz after discussing existing evidence on ICT-based 



approaches to address the aforementioned limitations. The paper culminates with a discussion of 

challenges encountered in terms of validating content, collaborating with institutional 

stakeholders and functioning as a trans-disciplinary team. We present lessons which will be 

relevant and valuable to public health researchers and practitioners engaged in similar initiatives 

or interventions. 

 
2.0 Related Literature 

 
On the predictive surveillance front, various efforts to develop early warning systems for 

dengue (Lowe et al., 2011; Racloz et al., 2012) and malaria (Hay et al., 2001; Thomson et al., 

2006; Thomson et al., 2005) have been reported. The mandate of these initiatives  is to develop 

robust associations between environmental and vector variables that can help to predict malaria 

in advance so as to inform in advance the efforts of public health and vector control personnel 

(Ebi, 2009). The Malaria Atlas Project (MAP) is one of the foremost exemplars that attempts to 

make malaria early warning systems accessible to the general public through an interactive 

website (http://www.map.ox.ac.uk/). Predictive modeling efforts for infectious diseases such as 

dengue and West Nile virus have been extensively chronicled in public health literature 

(Degallier et al., 2010; Estallo et al., 2008; Rochlin et al., 2011) but efforts to make these early 

warning devices available to the general public remain scant. 

 
ICT-based civic engagement in public health has been driven mainly on the premise of a 

virgin concept called participatory epidemiology (PE). PE denotes the use of local, on-ground 

intelligence to gather information and track the spread, causes, and effects of diseases. The PE 

concept was popularized by Catley and Mariner‘s work in East Africa where qualitative 

community-based approaches were deployed to derive animal health status from local farmers 

(Catley, 2006). However, the rapid proliferation of the Internet and mobile phones has 

transformed the PE landscape in recent years. As shown by initiatives such as FrontlineSMS and 

Ushahidi (Freifeld et al., 2010), disease surveillance, health monitoring, and information sharing 

can now be digitally integrated and used to link disparate stakeholders such as health authorities, 

health providers and the general public. Chunara et al. (2012) tested an online initiative where 

respondents reported their experiences with malaria, and concluded that ―micro-monitoring and 

online reporting are a rapid way to solicit malaria, and potentially other public health, 

information‖.  The Program for Monitoring Emerging Diseases (http://www.promedmail.org) 

provides an online reporting system and rapid information dissemination related to infectious 

disease outbreaks. In this sense, participatory epidemiology also denotes employing participatory 

methods – those nestled in, and involving communities – to collect epidemiological data. The 

other key principle includes the use of participatory mapping techniques in order to inform 

prevention activities. 

http://www.map.ox.ac.uk/


In terms of shaping healthy behaviors through communication, mobile phone-based short 

messaging service (SMS) has been used to promote smoking cessation behaviors (Rodgers et al., 

2005), create awareness about sexually transmitted diseases (Lim et al., 2008) and encourage 

adherence to antiretroviral treatment (Lester et al., 2010) in both developed and developing 

countries. At the health systems level, mobile phones have empowered community health 

workers in developing countries through cost-effective and time-effective techniques that 

facilitate data collection, surveillance and mobile-based telemedicine (Chib et al., 2008; 

Mechael, 2009). The advantage of such technologies to the general public is that they bring 

accessible and affordable healthcare to the remotest and impoverished of communities.  The use 

of information and communication technologies (ICTs) in public health has thus rapidly 

proliferated over the last two decades given the deep penetration of the Internet and mobile 

phones in both developed and developing countries. While many developing countries in Asia 

and Africa are developing robust mechanisms for integrating mobile phones into their health 

systems framework, Sri Lanka has yet to make a concerted effort in this area. 

The above literature review underlines the emerging criticality of ICTs in addressing global 

health challenges including dengue. However, it also highlights the fact that existing initiatives 

address the three core needs – predictive surveillance, civic engagement, and health 

communication – in silos. As a result, the benefits of each of these components on the other is 

largely missed, leading to a disparate contingent of tools that the health workforce and the 

general public must use. An issue like dengue commands the necessity to integrate these 

components on a common platform and offer it to these two key stakeholders on easily accessible 

mobile devices. In addition, we argue that the capabilities of social media that allow users to 

participate and share information have thus far been underutilized in the global health space. 

There is a need to optimize social media affordances with an eye on the future, given that 

smartphones are becoming an increasingly ubiquitous commodity in developing countries 

because of decreasing costs and increasing availability. 

 
3.0 Mo-Buzz for Participatory Epidemiology & Health Communication 

 
Mo-Buzz is an integrated mobile and desktop-based dengue communication system that 

is built upon PE principles. Mo-Buzz extends its reach to provide an interface between citizens 

and health authorities, and sends customized health messages to enhance preventive behaviors 

and health awareness. 



 

 
Figure 1: Integration of three dengue prevention components in Mo-Buzz 
 

As shown in Figure 1, Mo-Buzz comprises three main components: (1) predictive 

surveillance; (2) civic engagement and (3) health communication. Broadly speaking, the 

predictive surveillance component uses a predictive algorithm and computer simulations (based 

on weather, vector and human data) to predict dengue outbreaks and disseminate such 

information in the form of hotspot maps to health officials and the general public. The civic 

engagement component enables citizens to use their smartphones in order to inform health 

authorities about breeding sites, symptoms and mosquito bites using interactive forms and social 

media such as Twitter. The crowdsourced information is also reflected on the hotspot maps. 

Using the predictive hotspots and the crowdsourced information, the intelligent system 

disseminates health alerts and tailored messages to individuals or communities living in 

respective geographic zones. The system is designed to enable sharing of health information with 

an individual‘s social network using social media tools. In this way, Mo-Buzz integrates the 

capabilities of predictive surveillance, civic engagement and tailored health communication to 

offer a holistic dengue prevention social media suite. This suite is intended to help health 

authorities manage resources more efficiently and effectively, and encourage preventive 

behaviors among the general public by forewarning them of dengue outbreaks.  Mo-Buzz is made 

available on a host of handheld devices including mobiles phones and tablets. Heretofore, the 

term ―mobile phone‖ is used to represent all such handheld devices. We now present detailed 

descriptions of each of the three components below. 

 

3.1 Predictive Surveillance 

The purpose of this component is to forewarn public health authorities and the general 

public about impending dengue outbreaks by disseminating predictive hotspot maps generated 

by a computer simulation. We start by building a spatio-temporal susceptible-exposed-latent- 

infected-recovered (SELIR) model consisting of the 47 wards of Colombo. Because Aedes 

aegypti, the primary vector for dengue transmission in Colombo, bites mostly at dawn and at 

dusk (Jones, 1981), we also discretize time in our model, so that each time step is one day. The 

model equations are 

                                           

                                                                   



 

                           

                                                                             

  

where          is the susceptible human subpopulation,           the asymptomatic human 

subpopulation,          the infected human subpopulation,          the susceptible mosquito 

subpopulation, and          the infected mosquito subpopulation of ward    on day  . In this 

prototype model, we do not explicitly simulate the recovered human subpopulation          , as it 

has no interesting dynamics of its own. We also do not simulate the exposed human 

subpopulation           and the exposed mosquito subpopulation         , and model their impact by 

introducing delays into the respective infected subpopulations. For simplicity, we assume that the 

total human population      in each ward does not change with time. 

 
In this model, susceptible humans become exposed humans after being infected by 

infected mosquitoes at a rate of    per human per mosquito per day. We assume that exposed 

humans remain symptom-free and un-infective for   days. Thereafter, a fraction    becomes 

infected, i.e. infective and showing symptoms (perhaps due to secondary infections), while the 

remaining              becomes asymptomatic, i.e. infective but shows no symptoms (perhaps due to 

primary infections). We then assume both infected and asymptomatic human subpopulations 

recover at a rate of    per human per day. At the same time, susceptible mosquitoes become 

exposed mosquitoes after biting infected or asymptomatic humans at a rate of     per mosquito per 

human per day. These exposed mosquitoes take     days to become infected mosquitoes. 

 
We assume that infected mosquitoes never recover. New susceptible mosquitoes appear 

at a rate of     per mosquito per day from all mosquito subpopulations, assuming there is no 

vertical transmission of the dengue virus from one generation of mosquitoes to the next 

generation. To keep the overall mosquito population constant, we also make all mosquito 

subpopulations die at a rate of     per mosquito per day. Finally, in contrast to static humans, 

mosquitoes can move from ward    to ward   at a rate of       per mosquito per day. This diffusion 

of mosquitoes is simulated explicitly for the susceptible and infected mosquito subpopulations. 

For the exposed mosquito subpopulation, we introduce an attenuation factor     that integrate 

mosquito diffusion as well as death of exposed mosquitoes over the time delay    . 

 
For the SELIR model to generate meaningful predictions, it must be calibrated against the 

real world. Some model parameters, such as the intrinsic incubation period (IIP), extrinsic 

incubation period (EIP), and average infectious period can be fixed to their published values of 



      days (Chan and Johansson, 2012; Nishiura and Halstead, 2007; Salazar et al., 2007) 

respectively. Other model parameters, like the proportion of asymptomatic cases            

         (Favier et al., 2005), have large uncertainties and we choose tentative values to start 

the simulations (for example,             ), but are open to adjusting them to get better fits to data. 

Finally, there are model parameters where no reliable values are reported in the literature. For 

example, the infectivities    and     are strongly influenced by human behavioral patterns. 

Therefore, we leave these parameters free in the model, to be determined by fitting model 

simulations to real-world incidences. While the diffusivities       should fundamentally be 

proportional to the length of the boundary shared by ward    and ward  , they should also 

incorporate penalty factors that reduce the mosquito exchange rate between wards separated by 

roads or rivers. The overall proportionality constant for these will also be determined by fitting 

model simulations to real-world incidences. 

 
Once the model is calibrated, we can utilize it for two purposes. The first is to use the 

present distribution of dengue cases as initial conditions, and run simulations that look one week 

to several weeks ahead of time. These simulations allow us to predict where and when an 

epidemic will likely emerge, as well as how ongoing or future infections will progress in space 

and in time. These predictions can help healthcare workers better allocate limited resources (for 

example, getting isolation wards ahead of time to meet the demands from the epidemic peak), 

and also design intervention measures to respond to the epidemic. The second is to perform 

scenario analysis. For example, if the City of Colombo has a fixed amount of funds that they can 

use to perform citywide low-intensity, low-frequency chemical fogging all year round, or to 

perform targeted high-intensity, high-frequency chemical fogging at the ward level during a 

dengue outbreak, the natural question would be which would be more effective in the short term 

and which would be more effective in the long term. As we understand how interventions like 

those described above impact the spatio-temporal SELIR model, we can run these scenario 

simulations, and compare their outcomes against the benchmark intervention-free simulation. 

 
This combined forecasting and scenario testing capability represents the greatest 

advantage of our dynamic SELIR model have over static risk factor models (no forecasting, but 

possible scenario testing. See for example Koopman et al. (1991).) and time series models 

trained on historical data (possible forecasting, but no scenario testing. See for example, (Luz et 

al., 2008) and (Althouse et al., 2011)). More importantly, the spatio-temporal transmission 

patterns predicted by our model can help health authorities prioritize mitigation and intervention 

efforts, to achieve epidemic management in the most cost-effective way. Besides catering to 

healthcare policymakers, the SELIR model is also an important component in the crowd sensing 

part of the Mo-Buzz project (Kamel Boulos et al., 2011). To encourage participatory data 

collection by Colombo citizens (described in detail in the next sub-section), low-resolution 

forecasts on the progression of the dengue epidemic will be fed back to Mo-Buzz users. These 

crowd users might also report or collect data (like mild symptoms, the time and place of 



mosquito bites, potential breeding spots, etc.) that are difficult or not collected by authorities. 

While these are generally much less reliable than official data, it is still possible to incorporate 

them into the model calibration and validation processes after assigning smaller weights. Finally, 

we aim for latent education of the masses. By sending small snippets of dengue-related 

information to users after they submitted a report, in particular evaluation ratings from the model 

on how useful the data they submitted is, we expect Mo-Buzz users to become more 

knowledgeable with time, and submit more and more useful data. 

 
3.2 Civic Engagement 

 
The fundamental purpose of this component is to strengthen the surveillance efforts of 

public health authorities with real-time information about risk-related incidents occurring among 

the general public. We crowdsource this task of data collection by enabling the general public to 

send information using their mobile phones, as health authorities might find such information 

difficult to detect or trace. Specifically, the public will be empowered to report three kinds of 

information to health authorities using the ―Report‖ option on Mo-Buzz‘s mobile app and 

website: symptoms, mosquito bites and breeding sites. 

 
Reporting symptoms involves selecting one or more among a list presented to the user on 

the symptoms page. The list includes fever, body aches, nausea, vomiting, fever with sore throat, 

joint pains, loss of appetite, development of skin rash and an option called ―others‖, where users 

can type in any other symptom they might be experiencing. The individual can report his/her 

temperature and also report whether he has been diagnosed for dengue. Clicking on the ―submit‖ 

button sends the citizen‘s symptom report to the system. 

 
While reporting mosquito bites, the user may specify whether he experienced the bite 

indoor or outdoor. He may report visible changes in skin and select one or more of ―bumps‖ and 

―rashes‖, or report any other kind of visible change by simply typing into the text box. The user 

may then report the mosquito density visible to him by answering a simple question ―How many 

mosquitoes can you see?‖ and choose between ―few‖ and ―many‖. It is unrealistic to expect the 

user to report the exact number of mosquitoes and so, this data point is solely intended to offer 

the health authorities an approximate idea of a possible threat. Lastly, citizens can report 

breeding sites that they might come across, so health authorities can plan the required preventive 

actions. While reporting breeding sites, citizens choose between an ―indoor‖ or ―outdoor‖ site. 

Then, they choose from a list of possible locations which includes industrial areas, residential 

areas, construction sites, office premises and others. Here too, users can report mosquito density 

visible to the naked eye as described earlier. 

 
Common to all the three reporting forms is a GPS-based location sensor that 

automatically captures the geographical coordinates of the user. The system also automatically 



captures date and time of the day as the latter is especially critical to dengue diagnosis. Each of 

the three reporting components – symptoms, mosquito bites, and breeding sites – is denoted with 

a unique icon. As soon as a user submits the report, it gets stored in a data repository after the 

necessary checks of authentication and validation are carried out by the server. Subsequently, the 

server is engaged in constant communication with the front-end-client (the mobile application) 

so that any new data input in the server is automatically depicted in a graphical format on the 

application‘s live map. Thus, the icons respective to each of the reports appear on the Mo-Buzz 

map and the map is made visible to health authorities and registered users. Users can choose if 

they wish to view any one specific type of reports based upon their selection. 

 

 
Figure 2: Screenshots of the Mo-Buzz mobile application (dummy data used) 
 

3.3 Health Communication 

 
Health messages can be alerts, reminders, or any useful information generated by the 

system or authorized users depending on the prediction generated by the system. The proposed 

system tries to avoid message broadcasting. Instead, personalized messaging is used to 

disseminate messages to end users based on their location, message priority and other settings of 

messages and users (such as chosen frequency, message type, etc.). Also, the client application 

can pull the messages according to its options and user settings. These messages can be sent to 

email inboxes, to devices through the Google cloud or as SMSs. 

 
The health communication component consists of three sub-components each serving a 

different function. The first pertains to ―health alerts‖ where the system, based on the data from 

the surveillance component which predicts hotspots, sends a dengue alert to the user based on his 

geographical location. Along with the alert, the system also prompts the user to access 

information on the steps needed to protect oneself from dengue. The second sub-component 

pertains to tailored health communication. Based on the submitted report, the system 



automatically prompts the user to access relevant information. For instance, a user who reports 

dengue-related symptoms will be prompted for symptom-related information; in contrast, a user 

who reports the picture of a breeding site will be prompted for information on strategies to keep 

his surroundings clean and free of mosquitoes. 

 
The third sub-component refers to an information repository which both registered and 

non-registered users can access. This informational module is divided into various sections such 

as dengue serotypes, risk factors, symptoms, statistics and preventive steps. The interface is 

designed in such a way that a user initially gets a brief snippet of information from the section he 

clicks on, but can access detailed information on that topic by simply clicking on a link. The user 

is also able to share the dengue information with those in his social network by choosing them 

from his phone‘s contact list, Facebook, Twitter or through simple SMS. 

 
4.0 Current Status 

 
In collaboration with the Colombo Municipal Council (CMC) and the University of 

Colombo, the Mo-Buzz system was deployed in July 2013 for the entire cadre of public health 

inspectors (PHIs) in Colombo, Sri Lanka. This represents the first phase of deployment for beta- 

testing by a chosen group of five PHIs, engineering modifications to the system based on their 

feedback and conducting training of trainers (TOT) sessions before final roll-out. 

 
Adapting the system for use by the PHIs involves three primary areas of change as they 

require a different set of functionalities as opposed to the general public. First, we utilize 

historical dengue-related data from the Colombo Municipal Council to build maps specific to 

this region using the model (described in section 3.1). Second, we integrate the paper-based 

Dengue Investigation Form (currently used for dengue reporting in Colombo) into a tablet 

interface for use by the PHIs. This is being done to reduce the current lag time between 

collection and reporting of dengue and preventive action taken (7-10 days) as PHIs can instantly 

submit the investigation form as soon as it is completed. Getting rapid access to such data will 

help health authorities to execute preventive steps in a quicker, more efficient manner. Third, we 

digitize existing paper-based dengue educational materials (used by the Colombo Municipal 

Council), so they can be embedded in the mobile application and used as necessary. From an 

evaluation standpoint, the Sri Lanka roll-out will comprise a mixed-method longitudinal study 

that will examine the drivers of technological adoption among the entire cadre of PHIs using the 

Unified Theory of Acceptance and Use of Technology (UTAUT) (Venkatesh et al., 2003). The 

UTAUT attempts to explain technology-related intention to use and usage behavior using four 

main constructs: performance expectancy, effort expectancy, social influence and facilitating 

conditions. 



5.0 Discussion 

 
While the conceptual thinking and design of Mo-Buzz offers a novel, holistic approach to 

dengue prevention and management in the future, the technology development process faced 

several challenges at different levels. Here, we chronicle three main challenges – content 

validation and verification, inter-organizational integration and trans-disciplinary research – and 

present strategies used to address each of them. 

 
One of the major challenges of a technology-driven participatory health system enterprise 

is validating the quality of informational inputs from citizens. Previous studies pointed to the 

dangers of misinformation spreading swiftly through social media (Scanfeld et al., 2010). There 

are three main challenges in terms of content validation: 1) quality of the image in terms of 

clarity, 2) identifying the content of the image and ensuring its topical relevance to the system 

and 3) identifying and filtering exact or near-same duplicates. We examine these challenges 

closely and present our plans for addressing them. 

 
Clarity of the image is important to enable public health authorities to identify the 

specific features of the image report and react accordingly. From a technical standpoint, image 

clarity becomes necessary for the system to be able to detect and extract content features and 

cross-validate for duplicates. Validating the image content and ensuring it‘s propriety to the 

system is important in order to protect the system from the burden of irrelevant and inaccurate 

information, especially critical in the context of public health. Identifying duplicates is critical to 

ensure that the burden of dengue-related risk incidents is accurately communicated to health 

authorities and the general public in a visible form. To illustrate this problem, let us take an 

example of a breeding site with a certain mosquito density. It is possible that 10 citizens take 

photos of the same breeding site from either the same, or slightly different geographical 

coordinates. In such a case, there is a risk of the visual interface depicting 10 breeding sites 

when, in fact, there is only one. 

 
Our strategy to address these problems is based on subjecting the content through two 

stages: filtering and verification. Filtering can be achieved using image processing and machine 

leaning techniques. The images will be uploaded to a database on the server where they would be 

classified using image processing and machine learning algorithms into two classes namely 

'breeding site' and 'irrelevant'. The breeding site class may have further subclasses such as 'water 

body', 'tyres', 'construction site' and 'bushes' as possible sites where mosquito breeding normally 

takes place. For this purpose, a large corpus of images will be collected as the training data and 

they will be appropriately annotated for machine learning purposes. The 'irrelevant' category of 

images will be removed from the server. Relevant images will be categorized with a ―high 

confidence‖ or ―low confidence‖ score based on the output of the machine learning algorithm. 

The high confidence sites will be given first priority of action by the health authorities concerned 



for mosquito control followed by manual inspection of images labeled as low confidence sites. In 

the future, a program will be developed in Java (Android) on the client side to reject the images 

that are of very low confidence from getting uploaded on the server with suggestions prompting 

the user to submit more appropriate and clear images. Over reporting of cases from the same 

geographical location can be addressed by performing a clustering of images within a 

geographically bounded area so that these images can be treated as a group for a more accurate 

verification and validation process to be carried out. Once verified, one representative location 

can be used to mark the breeding site. 

 
The validation process is consistent in keeping with the core idea of using participatory 

media and crowdsourcing technologies. In that, we engage people (individuals and health 

systems personnel) as validation experts for secondary validation. If users are self-disciplined to 

provide only related information, then the system can avoid this and there will be no delay or 

effort needed to verify the information. 

 

The process of conceptualizing, designing and deploying the Mo-Buzz system demanded 

concerted exertions to integrate with a range of stakeholders at different levels of the public 

health ecosystem: civic agencies, research institutions, telecommunications companies and 

policymakers. Our effort was guided by Axelsson and Axelsson‘s (2006) framework with an 

emphasis on two forms of inter-organizational integration in public health programs: 1) 

Cooperation, described as being ―based on hierarchical management, but combined with 

voluntary agreements and mutual adjustments between the organizations involved‖ (Mintzberg, 

1993); and 2) Collaboration, described as being ―based on a willingness to work together 

and…implemented through intensive contacts and communications between the different 

organizations‖ (Alter and Hage, 1993). 

 
Our process of cooperation and collaboration was characterized by a range of facilitators 

and barriers. First and foremost, we learnt that civic agencies and public health authorities might 

be understandably cautious about sharing dengue-related data required for building the predictive 

algorithm. However, the level of data confidentiality and the type of agencies facilitating data 

sharing vary widely between contexts, as does their willingness to consider and buy-in to a new 

public health innovation. Obtaining such data requires consistent and transparent negotiations 

with the relevant stakeholders. The key ingredients that catalyzed our success with our Sri 

Lankan collaborators were a) a detailed communication about our system‘s capabilities and 

benefits, and b) a strong assurance about our technological ability to ensure the confidentiality of 

the data. Researchers involved in similar innovations in the mobile health (Mhealth) space might 

also encounter a resistance to change if their innovations require a shift in the daily routine tasks 

of the health systems personnel. In order to address this challenge, an appreciation of the practical 

micro and macro level challenges that health workers and health authorities encounter on a day-

to-day basis needs to be complemented by a readiness to incorporate the new system in a stage-

wise or staggered manner. The main facilitating factors that furthered our efforts were 



not only the enormity of the dengue problem but the enthusiasm, curiosity and urgency to 

consider mobile phone-based innovations. The potential of mobile phones in transforming the 

global health landscape has been extensively chronicled by scholars (Boulos et al., 2011; Curioso 

and Mechael, 2010; Gurman et al., 2012; Kay, 2011; Mechael, 2009). As a result, health system 

stakeholders seem readier than ever to consider innovations that they feel might positively 

influence public health outcomes; equally so, corporate entities seem willing to partake in such 

initiatives as involvement in public-private partnerships furthers their corporate social 

responsibility initiatives. 

 
The inherent trans-disciplinary nature of research inquiries in health communication has 

been previously elucidated (Kreps and Maibach, 2008) as the field draws upon theoretical ideas 

from social psychology, communication, public health and others. The nature of designing 

Mhealth interventions such as Mo-Buzz however propels the intent of the term ―trans- 

disciplinary‖ in public health research to new levels. For instance, our team comprises experts 

from social communication, behavioral science, human computer interaction for novel interfaces, 

mathematics, software engineering, information sciences and psychology. In the absence of a 

formalized template to synergize the intellectual energies of these varied specialists, our 

collaboration is shaped organically but efficiently. The collaborative process was highlighted by 

a process of joint exploration into a new concept, identifying how and where each member could 

contribute in the development and research process and an implicit understanding of each other‘s 

capabilities. From a logistical standpoint the challenge, at times, lay in organizing various tasks 

requiring different skill sets towards achieving a common objective. The more enriching 

challenge, however, lay in communicating terminologies and concepts to each other, and we 

found, over time, that we could use the power of metaphors to accomplish the same. The other 

organizational implication from our experience in trans-disciplinary research may be construed 

either positively or negatively. At many stages during our system development, we observed that 

many processes (that could have been arduous) were easily facilitated as the team members 

trusted the respective expertise of the other, thereby not overstepping boundaries. While this 

worked in our favor, it might also be important to recognize that such a tendency, if pushed 

further, could result in an expert‘s ideas or inputs being left unchallenged and not critically 

evaluated. As Mhealth interventions expand across geographic frontiers in the future, it is 

incumbent upon health systems scientists to inquire about and inform the practice of trans- 

disciplinary research teams. 

 
6.0 Future Work 

 
Based on the data gathered and feedback from the first phase of deployment in Sri Lanka, 

Mo-Buzz will be refined in terms of its user interface, predictive ability and educational modules. 

The second phase of deployment includes the launch of the mobile application for the general 

public in Colombo. This application will comprise all the three components described in 



the paper leading to the establishment of a dynamic communication channel between the general 

public and health authorities. The foremost limitation we foresee is the restricted reach of our 

application as the current version is only available on Android smartphones, unaffordable to 

many in a country like Sri Lanka. However, emerging reports (Daily FT, 2013; The Sunday 

Times, 2011)that suggest a sharp rise in smartphone penetration in Sri Lanka provide 

encouragement about the application‘s potential in the future. 

 
A successful deployment of the system in Sri Lanka will provide a natural progression for 

the system to be contextualized and used in other countries facing similar threats of vector-borne 

infectious diseases (including malaria) such as India and Singapore. For instance, dengue has 

been increasing every year in India with nearly 50,000 cases reported in 2012 (Chaudhuri, 2013). 

Singapore – among the most developed countries in the region – is experiencing its worst dengue 

outbreak this year with more than 15,000 cases reported as of September 2013 

(http://dengue.gov.sg). This spell arrived after two previous epidemics in 2005 and 2007 that 

affected more than14,000 and 8,000 people respectively (Lee et al., 2010; Ler et al., 2011). The 

unprecedented surge of smartphones in both these countries is an encouraging sign for our 

concept. For instance, Singapore boasts more than universal penetration of mobile phones with 

80% users adopting smartphones and 150% overall mobile penetration (Blackbox Research, 

2012). India is arguably among the world‘s largest mobile phone markets with nearly 770 million 

mobile connections (Gartner, 2013) among its billion-over population. 

 
As the major components of the Mo-Buzz system architecture are generic in terms of its 

functionality, it provides an opportunity to adapt and apply the system to other health areas. In 

this regard, the team is collaborating with Singapore-based clinical and non-clinical 

organizations to adapt and apply our concept to influenza and cardio-respiratory illnesses. In the 

context of influenza, the intention is to empower three main at-risk groups – school children, 

health workers and the elderly – with the application. The purpose is to enable them to report 

vaccine uptake behavior, measure vaccine effectiveness and disseminate dynamic health 

education. For cardio-respiratory illnesses, Mo-Buzz can be adapted to create a mobile-based 

social network of citizens with cardio pulmonary resuscitation (CPR) skills, and use GIS- 

mapping to create a mobile-based alert and communication system where caretakers can access 

the nearest defibrillators in case an individual experiences myocardial infarction. 

 
7.0 Conclusion 

 
Infectious diseases such as dengue pose a formidable challenge to public health 

authorities and the general public in tropical countries and especially so in South and Southeast 

Asia. We optimized the deep penetration of mobile phones in this region to develop a system that 

establishes a chain of communication between health authorities and the public, potentially 

enhances trust between these two stakeholders, and engenders a proactive give-and-take of 

http://dengue.gov.sg/


health information. While each of the three components of our system has been previously 

conceptualized in silos (Dengue Torpedo, 2013; Malaria Atlas Project, 2013), Mo-Buzz is  among 

the first to demonstrate an innovative integration of the three. From an applied standpoint, our 

effort seeks to enhance the epidemiological capabilities of health authorities and empowers 

citizens to dynamically report to them. From an academic standpoint, our effort initiates a 

scientific conversation about how mobile phones might potentially transform the fields of 

epidemiology and health communication from being complementary to synergistic entities. 
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