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F���� �: Computational box as seen from the negative 
-direction with the growth of boundary layer illustrated. Fringe region forces the
solution back to the prescribed laminar in�ow thus enforcing periodic boundary condition. 	e lower part illustrates the spanwise velocity
forcing which is applied in a part of the wall under the turbulent boundary layer. Half square waves are used in the present study as shown in
the bottom �gure.

in the spanwise direction for the near wall region. Another
possibility is to actively manipulate wall roughness optimally
distributed along the surface. 	e main contribution of the
present work is to illustrate the use of smooth step functions
to approximate the square waves which otherwise may give
rise to Gibbs phenomenon when using spectral methods.

2. Methodology

	.
. Governing Equations. 	e governing equations which
are used for the simulations here are the Navier-Stokes
equations which are formulated in terms of velocity-vorticity
and written in tensor notation as

���
��

= �
�
���

+ �������� �
�
���

�
1
2
����� +

1
Re

�2�� + ��, (�)

���
���

= 0, (�)

where �� are the velocity components, �� are the vorticity
components,  denotes pressure, and �� is the body force.
	e nondimensional constant Re = ���

�/] is the Reynolds
numberwith�� being the streamwise freestream velocity, ��
is the displacement thickness at � = 0, and ] is the kinematic
viscosity. �� represents the coordinate system with (�, �, 
)
as streamwise, wall-normal, and spanwise coordinates and �
denotes time.

	ese equations are solved using a pseudospectral
method with appropriate boundary conditions. 	e basic

idea with spectral methods is to express the solution as a sum
of basis functions and then compute their coe�cients such
that they satisfy the governing partial di
erential equations
and the boundary conditions.

A third-order Runge-Kutta-scheme is used to perform
time integration for the nonlinear terms. A second-order
Crank-Nicolson method is used for the linear terms. For
removing aliasing errors, a �/�-rule is applied to the eval-
uation of the nonlinear terms when calculating Fourier
transforms in the wall parallel (�-
) plane. 	e numerical
code (SIMSON [��]) used for the simulations in this work
has been developed at KTH, Stockholm. Earlier simulations
of both temporal [��, ��] and spatial [��, ��] wall forcing have
been performed with the code.

	.	. Numerical Setup. Since we are trying to simulate a
turbulent boundary layer with a spatially growing boundary
layer, we need to choose our basis functions accordingly.
A basic sketch for the computational setup is shown in
Figure �. For the discretization in the streamwise-spanwise
plane, Fourier basis is chosen assuming the solutions are
periodic in these directions. However, for the wall normal
direction, periodicity does not apply and Chebyshev poly-
nomials are instead used as basis functions for the � (wall-
normal) direction. 	e technique is similar to other spectral
codes used for channel �ows [���, ��, ��], and the spectral
accuracy is a considerable advantage as compared to other
discretizations, such as the �nite volumemethods used in, for
example, [�, ��].
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F���� �: Schematic picture of the fringe region.

For initializing the simulations, a laminar base �ow is
required and is given as the Blasius similarity solution [��]. A
trip forcing using a randomvolume force is then incorporated
at � = 5 for the �ow to undergo transition and therea�er we
have turbulent �ow regime. Figure � depicts this scheme.

Particular attention must be given to the streamwise
direction since the boundary layer is growing downstream
and hence no natural periodicity exists in that direction.
	erefore, for the purpose of arti�cially creating a periodic
computational domain, a fringe region is introduced at the
end to achieve this. 	e purpose of this fringe region is
to dampen the velocity �uctuations to zero and bring the
velocity �eld back to the laminar Blasius solution such that
there are minimum upstream e
ects [��]. 	is is achieved by
introducing the volume forcing �� in (�):

�� = � (�) ���� � ��� , (�)

where �(�) is the strength of the forcing and ��� is the laminar
in�ow velocity pro�le. 	e function � is de�ned as

� (�) = �max� (�) (�)

with

� (�) = � �
� � �start
��rise

� � ��
� � �end
��fall

+ 1� . (�)

Here �max is the maximum strength of the fringe, �start and
�end denote the spatial extent of the region where the fringe is
nonzero, and ��rise and ��fall are the rise and fall distance of
the fringe function, respectively. Figure � shows a schematic
of how the fringe function varies. �(�) is a continuous step
function that varies from zero for � � 0 to unity for �  1 and
is given by

� ��� =

!"""
#"""
$

0, � � 0,
1

�1 + %(1/(	�1)+1/	)�
, 0 < � < 1,

1, �  1.

(�)

	.�. Wall Oscillation Implementation. 	e form of wall oscil-
lation implemented here is a spatial square wave with only
positive forcing to reduce power consumption. However,
there are numerical challenges in implementing this using
pseudospectral method. A square wave when represented
using Fourier basis gives rise to Gibbs phenomenon which

T���� �: Oscillation parameters for the simulations presented.

Parameter set (PS) �� �
PS� (�.�, �.��, �.�, �.�, �.�, �.��, �) �.����
PS� (�.�, �.��, �.�, �.�, �.�, �.��, �) �.����
PS� (�.�, �.��, �.�, �.�, �.�, �.��, �) �.����

is shown in Figure �(a). When we try to approximate the
strong discontinuity in the square wave, it results in strong
oscillations at the edges. 	ese result in spurious values
causing numerical instability and large computational errors.
Increasing the number of terms in the Fourier series approx-
imation does reduce the oscillation but it does not eliminate
it completely.

In order to avoid Gibbs phenomenon, we utilize the same
step function as we used for fringe region (�). Using the
step function is advantageous as it has continuous derivatives
at all points and does not exhibit the spurious ringing phe-
nomenon. Figure �(b) shows the use of�(�) in implementing
the wall boundary condition for the present simulations. By
including only a few Fourier coe�cients, we can approximate
the function quite accurately and eliminate Gibbs rings.

Spatial wall oscillation can be incorporated with the fol-
lowing boundary condition:

� (�)�=0 = ��� (�) , (�)

where �(�) is the same pro�le function as used for fringe
region (see equation (�)) and �� is the amplitude of the
spatial oscillations.

	.�. Numerical Parameters. All quantities are nondimension-
alized by the free-stream velocity (��) and the displacement
thickness (��) at the starting position of the simulation (� =
0), where the �ow is laminar. 	e Reynolds number is set
by specifying Re
� = ���

�/] at the laminar inlet (� = 0).
Note that, unless otherwise stated, the + superscript indicates
that the quantity is made nondimensional with the friction
velocity of the unmanipulated boundary layer (the reference
case), denoted by �0�, and the kinematic viscosity (] ).

A computational domain with &� = 600, &� = 30, and
& = 34 is chosen with a mesh resolution of 800 × 201 × 144,
respectively. 	e resolution of these simulations in wall units
is ��+ = 16, ��+min = 0.04, and �
+ = 5.1. All scalings
are done based on �0� from reference case at the starting
position of wall forcing (� = 200). Wall oscillation boundary
conditions are employed between �start = 200 and �end = 450
once it is ascertained that the �ow has become fully turbulent.
	e Reynolds number based on momentum thickness varies
between 450 < Re� < 715 in the control region.

Table � summarizes the parameters chosen for the steady
spatial oscillation in the present work. Only the positive forc-
ing has been employed for these simulation setups as shown
in Figure �(b). 	e spatial frequencies have been doubled
and halved with respect to PS� to see its impact on drag
reduction performance. Also, the amplitude of oscillations is
varied to understand its impact on drag reduction.	e aim is
to observe the e
ect of removing the negative forcing of the
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F���� �: Function approximations using �nite Fourier series terms.
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F���� �: Wall boundary condition set for spanwise velocity
component for PS�, PS�, and PS� at�� = 0.5.

wall boundary and its e
ects on power budget and net energy
savings. Figure � shows the wall boundary condition for the
three parameter sets at�� = 0.5.

3. Results and Discussion

In this section, we look into two aspects of the results
obtained from our numerical simulations. First, we look into
attenuation of ’� values with respect to the reference case.

Subsequently, we present the power budget based on the
di
erent forcings.

�.
. Skin Friction Attenuation. Wecompare skin friction from
the unoscillated or the reference casewith the oscillated cases.
Skin friction coe�cient for turbulent �ows is de�ned as

’� = 2�
��
��

�
2

, (��)

where �� is the friction velocity and is computed based on
mean streamwise velocity gradient at the wall:

�� = *]
��
��

--------�=0
. (��)

	e resulting drag reduction (DR) is then calculated from

DR (%) = 100
’0� � ’�
’0�

, (��)

where ’0� is the skin friction of the reference case. In contrast
to internal �ows [����], the DR is varying in the downstream
direction for the present case of boundary layer �ow. Figure �
shows the results for the skin friction variation along stream-
wise direction. All three cases show skin friction attenuation.
As soon as wall oscillation is applied at �start = 200, we see a
strong gradient which marks the spatial transient for ’�. For
PS�, we have a longer wavelength and, due to discontinuous
half waves, we observe recovery of ’� back towards the
reference case. However, for PS� and PS�, due to smaller
wavelength, this recovery process is weaker. 	is is a crucial
observation as it indicates that, with positive forcing itself, we
can get drag reduction of a similar order ofmagnitude as with
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a full cycle of wall oscillation. 	is would reduce the power
required for forcing the wall oscillation and this increases
our net power saving as will be presented in the next section.
At �end = 450, the oscillations are stopped and skin friction
attains the reference case values.

�.	. Power Budget. To compute the net energy savings, we
need to take into account the energy required for wall
oscillation as compared to the savings due to drag reduction.
	e derivation of these terms was given for channel �ow by
Quadrio and Ricco [�] which was extended to the boundary
layer case by Skote [��].

In order to compute the saved power 9sav(%), DR (as
percentage of ratio of skin-friction coe�cients from reference
and oscillated cases; see (��)) is integrated for the region with
wall oscillation. 	e total saved power can be written as

9sav (%) =
1
&
:
�end

�start
DR (%) d�, (��)

where �start denotes the position at which the wall oscillation
is started, �end denotes the endpoint for oscillation, and & =
�start � �end.

Similarly, the wall oscillation requires power input which
can also be de�ned in terms of the friction power of the
reference �ow [��] and can be written as

9req (%) =
;
�end
�start

] ���/���----�=0� d�

;
�end
�start

��0��
2�� d�

. (��)

	e net saved power is then de�ned as 9net = 9sav � 9req.
If 9net is negative it indicates that the input power required
to oscillate the wall is greater than the saved power due to
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streamwise drag reduction. However, it is possible that, for
an optimized set of oscillation parameters, one may achieve
positive energy budget. As reported by other researchers
[��, ��, ��], a positive net energy is more attainable for spatial
forcing than for temporal forcing.

Power required for the three oscillation cases is shown in
Figure �. For lower amplitudes of forcing, we require lesser
power and it grows exponentially for larger amplitudes. For
di
erent spatial frequencies, there is not much di
erence
in input power required. Figure � shows the power saved
based on (��). Here, we see that with increasing amplitude,
the power saving saturates a�er a limit. 	e e
ect of spatial
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frequency is rather interesting as we see that the power
saved for PS� and PS� is almost the same. PS� has a lower
power saving and that can be attributed to the recovery
to unoscillated skin friction values discussed previously in
Section �.�.

Figure � shows the net power savings for the di
erent
parameter sets. PS� with �� = 0.5 gives us the maximum
net power saving (>��%) amidst our chosen parameter space.
Performance quickly deteriorates for larger amplitudes
which show negative net power savings indicating that we
spend more power in oscillating the wall as compared to the
power savings. No complete description of the drag reduc-
tion mechanism exists to date. 	us, the in�uence of the
parameters on the drag reduction remains largely unex-
plained. 	e parameter space explored in the current work is
de�nitely not exhaustive. Viotti et al. [��] show power budget
statistics for a wide parameter space using sinusoidal wall
oscillation. 	e maximum net power savings achieved is
reported as ��% which was found at �+� = 6. On the other
hand, they showed maximum net power savings of �% at
�+� = 12, which is the amplitude comparable to the present
case. 	ey concluded that lower amplitudes give higher net
power savings, even though the drag reduction values are
lower. 	e simulation cases in the present study are not as
exhaustive due to the computational demands for spatially
developing boundary layers. Nevertheless, for the current
study we obtain the maximum savings of ��% at �+� = 10.
	e current suboptimal results may very well be further
improved by increasing the parametric space.

Although the results look promising in terms of the net
power savings, one of the drawbacks of the proposedmethod-
ology is that it induces cross�ow which might be undesirable
in certain situations. In order to illustrate the phenomena,

a horizontal plane at �+ = 10 is shown in Figure �. 	e
�gure has been compressed by a factor � in the stream-
wise direction for better visualization. From the �gure it is
observed that, a�er the �rst oscillation stops, the streaks
reorient themselves to the streamwise direction. However,
a spanwise cross�ow manifests itself as can be seen by the
oblique streaks in the regions a�er the second and third
periods of forcing.

Note that this phenomena would not occur if a periodic
functionwith equal amount of positive and negative spanwise
wall velocity is used, as in the study of temporal nonsinusoidal
wall forcing by Cimarelli et al. [��].

4. Conclusion

A new form of steady spatial wall oscillation technique in
the form of square waves with positive forcing has been
presented with promising results for developing an active
drag reduction technique. Spectral methods were used to
solve the governing equations and the use of a smooth step
has been demonstrated to approximate a square wave to over-
come Gibbs phenomenon and avoid sharp discontinuities.
Downstream development of skin friction and power budget
for di
erent oscillation parameters have been presented. An
optimal set of wall oscillation parameters for the current
parameter space was found to have >��% net energy savings.
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